- 販売開始日: 2019/09/20
- 出版社: 講談社
- レーベル: 機械学習プロフェッショナルシリーズ
- ISBN:978-4-06-515591-2
強化学習
著者 森村 哲郎
理論は裏切らない! ・強化学習で必要になる数理を広くカバーした。・一貫したていねいな解説なので、じっくり読める。付録・参考文献も充実!・ベルマン方程式、TD学習、方策勾配...
強化学習
01/02まで通常3,300円
税込 2,310 円 21ptワンステップ購入とは ワンステップ購入とは
商品説明
理論は裏切らない! ・強化学習で必要になる数理を広くカバーした。・一貫したていねいな解説なので、じっくり読める。付録・参考文献も充実!・ベルマン方程式、TD学習、方策勾配、POMDP、深層強化学習をより深く!/【おもな内容】 第1章 準備 1.1 強化学習とは 1.2 マルコフ決定過程と逐次的意思決定問題 1.3 方策 1.4 逐次的意思決定問題の定式化 第2章 プランニング 2.1 準備 2.2 動的計画法 2.3 動的計画法による解法 2.4 線形計画法による解法 第3章 探索と活用のトレードオフ 3.1 概要 3.2 探索と活用のトレードオフ 3.3 方策モデル 第4章 モデルフリー型の強化学習 4.1 データにもとづく意思決定 4.2 価値関数の推定 4.3 方策と行動価値関数の学習 4.4 収束性 4.5 アクター・クリティック法 第5章 モデルベース型の強化学習 5.1 問題設定の整理 5.2 環境推定 5.3 ブラックボックス生成モデルに対するプランニング 5.4 オンラインのモデルベース型強化学習 第6章 関数近似を用いた強化学習 6.1 概要 6.2 価値関数の関数近似 6.3 方策の関数近似 第7章 部分観測マルコフ決定過程 7.1 部分観測マルコフ決定過程(POMDP)の基礎 7.2 POMDP のプランニング 7.3 POMDP の学習 第8章 最近の話題 8.1 分布強化学習 8.2 深層強化 学習付録A 補足A.1 証明 A.2 ノルム A.3 線形計画法 A.4 自然勾配法の補足
目次
- 準備
- プランニング
- 探索と活用のトレードオフ
- モデルフリー型の強化学習
- モデルベース型の強化学習
- 関数近似を用いた強化学習
- 部分観測マルコフ決定過程
- 最近の話題
あわせて読みたい本
前へ戻る
- 対象はありません
次に進む
この著者・アーティストの他の商品
前へ戻る
- 対象はありません
次に進む
小分け商品
前へ戻る
- 対象はありません
次に進む
この商品の他ラインナップ
前へ戻る
- 対象はありません
次に進む