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Understanding structural and algorithmic properties of complex networks is an impor-
tant task, not least because of the huge impact of the internet. Our focus is to analyze
how news spreads in social networks. We simulate a simple information spreading process
in different network topologies and demonstrate that news spreads much faster in existing
social network topologies. We support this finding by analyzing information spreading in
the mathematically defined preferential attachment network topology, which is a common
model for real-world networks. We prove that here a sublogarithmic time suffices to spread
a news to all nodes of the network. All previously studied network topologies need at least
a logarithmic time. Surprisingly, we observe that nodes with few neighbors are crucial for
the fast dissemination.

Social networks like Facebook and Twitter are reshaping the way people take collective
actions. They have played a crucial role in the recent uprisings of the ‘Arab Spring’ and
the ‘London riots’. It has been argued that the ‘instantaneous nature’ of these networks
influenced the speed at which the events were unfolding [4].

It is quite remarkable that social networks spread news so fast. Both the structure of
social networks and the process that distributes the news are not designed with this purpose
in mind. On the contrary, they are not designed at all, but have evolved in a random and
decentralized manner.

So is our view correct that social networks ease the spread of information (“rumors”),
and if so, what particular properties of social networks are the reason for this? To answer
these questions, we simulate a simple rumor spreading process on several graphs having the
structure of existing large social networks. We see, for example, that a rumor started at
a random node of the Twitter network in average reaches 45.6 million of the total of 51.2
million members within only eight rounds of communication.

We also analyze this process on an abstract model of social networks, the so-called
preferential attachment graphs introduced by Barabási and Albert [3]. In [17], we obtain a
mathematical proof that rumors in such networks spread much faster than in many other
network topologies—even faster than in networks having a communication link between
any two nodes (complete graphs). As an explanation, we observe that nodes of small degree
build a short-cut between those having large degree (hubs), which due to their large number
of possible communication partners less often talk to each other directly.
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Social Networks and Rumor Spreading

Social networks arise in a variety of contexts. They are formed by people, who are connected
by knowing each other, Facebook members by agreeing on being friends (in Facebook),
scientific authors by having a joint publication, or actors appearing in the same movie.

Despite this diversity, many networks share characteristic properties. Well known is the
observation that any two individuals are connected through just “six degrees of separation”,
which was first formulated by Karinthy (see Barabási [2]) and became known to a broad
audience through Milgram’s “small world study” [25]. Similarly for the world wide web,
Albert, Jeong, and Barabasi [1] predicted a diameter (maximum distance between two nodes
in the graph) of only 19 in the network formed by web pages and links between them.

Several experimental studies [1, 13, 22] revealed another intrinsic property of social
networks: the histogram of the node connectivity follows a power-law; the number of nodes
with k neighbors is inversely proportional to a polynomial in k.

To explain this phenomenon, Barabási and Albert [3] suggested the preferential attach-
ment model for real-world networks that show a power-law. The model is widely used, also
because of its simplicity. The paper [3] is currently the fifth most cited article in “Science”
according to ISI Web of Knowledge. In the preferential attachment model, the graphs are
constructed in a random, ‘rich-get-richer’ fashion: a newly entering node connects to m ex-
isting ones chosen randomly, but gives preference to nodes that are already popular, that is,
have many neighbors. Note that the parameter m controls the density of the graph, i.e., the
ratio of the number of present edges to the number of all possible edges. For these graphs,
the authors of [3] empirically discovered a power-law of k−3, which was later proven math-
ematically by Bollobás, Riordan, Spencer, and Tusnády [11]. A number of similar models
emerged at the same time, all leading to a power-law distribution. It is known, though,
that the PA model does not share all properties observed in the real-world networks, e.g.,
it is less clustered.

Still, the preferential attachment model has been successfully used to deduce many in-
teresting properties of social networks. Famous structural results prove a small diameter of
such graphs [10], determine their degree distribution [11], show high expansion properties
[24], and a high robustness against random damage, but a vulnerability against malicious
attacks [8, 9, 15, 18]. Algorithmic works show that in such networks, viruses spread more
easily than in many other network topologies [5], or that gossip-based decentralized algo-
rithms can approximate averages better [12].

In this work, we study how rumors spread in social networks. We assume that the
rumor is sufficiently interesting so that people learn it when talking to someone knowing
it. This is substantially different to the probabilistic virus spreading model [5], where the
probability of becoming infected is proportional to the number of neighbors being infected.
Two types of rumor spreading mechanisms have been regarded in the literature. In the push
model, only nodes that know the rumor contact neighbors to inform them. This model has
been used to transmit information in computer networks [16, 21]. In contrast, to capture
the effect of gossipping in social networks, it seems more appropriate for uninformed nodes
to also actively ask for new information. We therefore use the push-pull model of Demers
et al. [16] (see also [20]), in which all nodes regularly contact a neighbor and exchange all
information they have.
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We assume that nodes choose their communication partners uniformly at random from
their neighbors, however, excluding the person they contacted just before. In this model,
we regard the spread of a single piece of information initially present at a single node. For
simplicity, as in most previous works, the rumor spreading process is synchronized, that is,
the process takes place at discrete points of time and in each time step, each node contacts
a neighbor to exchange information. This is clearly a simplification over the real-world
scenario where users act at different speeds, but we feel that in sufficiently large networks
these differences balance out and thus assuming an average speed used by all nodes does
not make a substantial difference.

We also note that the communication process is different in each social network. The
push-pull model we regard naturally captures best a personal communication between two
individuals as by phone or exchanging text messages, emails or other directed communica-
tions. Many online social networks allow also other ways of communication like posts on
user’s personal pages, possibly resulting and his friends to be notified of the post when they
next log in, and them forwarding the news given that it is sufficiently interesting. Such
forms of communication can be modelled only by more complicated mechanisms than the
push-pull protocol.

Experimental Results

To support the common observation that news spreads very fast in social networks, we have
simulated the rumor spreading process on samples of the Twitter and Orkut social networks
(taken from [6, 23]) as well as on preferential attachment graphs. As most social networks
have a roughly similar structure, we have chosen these large networks, for which data was
readily available, as instances of social networks. For comparison, we have also included
into our investigation complete graphs and random-attachment graphs (also called m-out
model, see, e.g., Bohman and Frieze [7]), in which each node chooses m neighbors uniformly
at random from all nodes.

Note that in both the random-attachment and the preferential attachment graph model,
we can control the density of the graph via the parameter m. This allows us to run exper-
iments on such graphs having equal number of nodes and density as the real-world graphs
regarded.

Figures 2 and 3 show how a rumor started in a random node spreads in the graphs
corresponding to the Orkut and Twitter social networks. Both figures show that news
spreads much faster in the real-world networks and the preferential attachment graphs than
in the complete and random-attachment graphs. For the Twitter experiment, a considerable
difference between the preferential attachment model and the real-world graph is visible,
indicating that the Twitter graph is captured less well by the theoretical model.

To determine how the graph size influences the rumor spreading speed, we ran the
process on preferential attachment graphs, random-attachment graphs and complete graphs
of varying size. The results depicted in Figure 4 indicate that a logarithmic time is needed
both for random-attachment and complete graphs, whereas for preferential attachment
graphs we observe times of a slightly smaller order of magnitude.
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Mathematical Analysis

We support this empirical finding via a mathematical analysis, which proves that the rumor
spreading process disseminates a news in sublogarithmic time. This refers to the time needed
to inform all nodes as well as any constant fraction like 1%, 10% or 50%.

We denote by Gn
m the preferential attachment graph on n nodes with density parameter

m. Since the graph Gn
m is a random graph, none of the statements mentioned previously

holds with certainty. However, the probability that the random graph Gn
m does not satisfy

the statements above, tends to zero for n growing to infinity. In the following, whenever a
statement on a random object is made, it is meant to hold with high probability. For the
preferential attachment graph Gn

m with m being any constant larger than one, we are able
to prove that after a surprisingly short time a news spreads to all nodes.

Theorem 1. There is a constant K such that the rumor spreading process described above
spreads a rumor from any starting node to all other nodes in at most K · log(n)/ log(log(n))
time steps.

This result improves the previous best bound for rumor spreading in preferential at-
tachment graphs [14], which is of order log(n)2. Theorem 1 for the first time shows that
rumor spreading in preferential attachment graphs is much faster than for the other network
topologies regarded so far. For random-attachment graphs, it is easy to see that the diam-
eter is of order log(n), which is clearly also a lower bound for the rumor spreading time.
A similar reasoning also shows that, independent of the starting node, a constant fraction
of all nodes has distance Θ(log(n)) from the starting node. Hence a logarithmic number
of rounds is already needed to inform any constant fraction of the nodes. Similar bounds
follow for hypercube networks, which are common communication networks in computer
science applications.

However, it is not always the diameter that tells us the time needed for rumor
spreading. The complete graph obviously has a diameter of exactly one, but the time
needed to spread a rumor from one node to all others is of logarithmic order. This

Figure 1: How a rumor progresses from a large-
degree node A to another one B. Due to their large
degrees, A and B need long to push or pull the ru-
mor. C having a small degree however quickly pulls
the rumor from A and again quickly pushes it to B.

result was proven by Karp et al. [20] for a
rumor spreading process where nodes are al-
lowed to choose their random communica-
tion partners among all neighbors, including
the one they have just talked to. It is not
difficult to see that their proof remains valid
in our setting. Furthermore, it can be seen
from their proof that a logarithmic number
of rounds is still necessary to inform any con-
stant fraction of the nodes. Similar results
hold for the classical Erdős-Rényi random
graphs as can be deduced from [19, 20]. All
these results were proven by mathematical
means, that is, they do not rely on exper-
iments conducted for certain graph sizes n,
but are valid for all graph sizes. Unfortunately, the proof of Theorem 1 is too long to be
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presented here (it can be found in [17]). However, we will sketch one main argument, that
also explains why rumor spreading in social networks is that fast.

To this aim, let A and B be neighboring nodes in Gn
m. We denote their degrees by dA

and dB . Assume that A is informed and B is not. How does the rumor progress from A to
B? Since A contacts its neighbors randomly, it will take around dA rounds until A contacts
B and thus A pushes the news to B. Similarly, it will take an expected number of around
dB time steps until B calls A and thus pulls the rumor from there. If dA and dB are large,
e.g., n1/3, then it would take an expected number of almost 1

2
n1/3 rounds to propagate the

rumor from A to B along the direct link.
Note that in Theorem 1 we stated a much smaller bound. Hence there must be a better

way to get the news from A to B. Interestingly, it is the small-degree nodes that make the
difference. Assume for the moment that there is a third node C that is a neighbor of both
A and B, and that has a small degree dC of say 4 only. Now after an expected number
of roughly dC = 4 rounds, C will have contacted A and thus learned the news from A.
Similarly, after another expected number of about dC = 4 rounds, C will have contacted
B and told the news to B. So in expectation, in around 2 · dC = 8 time steps, the rumor
went from A to B via C. Fortunately, such a node C exists with high probability—the
preferential attachment rule ensures that newly entering nodes put enough preference on
connecting with A and B.

So one mechanism which allows fast rumor spreading in social networks is that small-
degree nodes quickly learn the rumor from an informed neighbor and then quickly forward
it to all other neighbors. In a sense, they act as an automatic link between their neighbors;
once one neighbor is informed, then all other neighbors are informed in a short time (without
doing anything). Such mechanisms are missing, e.g., in complete graphs, because all nodes
have a high degree of n − 1. Consequently, all neighbors of the starting node A have a
very small probability of calling A and asking for the news (A is just one of their n − 1
neighbors).

Let us add that such fast links are abundant in preferential attachment graphs. To ease
the language, let us call a node popular, if it has a degree of Θ(log(n)2) or higher. We can
show that between any two popular nodes, there is a path of length O(log(n)/ log(log(n)))
such that every second node on the path has the minimal possible degree of m. As seen
above, these nodes act as fast links, propagating the rumor in an expected number of roughly
2 ·m rounds. In consequence, the expected time the rumor needs to traverse the whole path
is about m times its length. With some extra care, namely by showing that there is a huge
number of such paths between any two popular nodes, we can even show that once any
popular node is informed, then after O(log(n)/ log(log(n))) rounds with high probability all
popular nodes are informed.

Since nodes tend to attach to popular nodes, a rumor started in a small-degree node is
propagated to some popular node even faster, namely in O(log(n)3/4 log(log(n))) rounds.
Once all popular nodes are informed, we can use a symmetric argument showing that
after another O(log(n)3/4 log(log(n))) rounds, the remaining small-degree nodes, mostly by
calling more popular nodes, all become informed. This finishes the proof sketch. For more
details, we refer to [17].
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Conclusion

We simulated a natural rumor spreading process on different graphs representing real-world
social networks and several classical network topologies. We also performed a mathematical
analysis of this process in preferential attachment graphs. Both works demonstrate that
rumor spreading is extremely fast in social networks.

A key observation in the mathematical proof and a good explanation for this phe-
nomenon is that small-degree nodes quickly learn a rumor once one of their neighbors
knows it, and then again quickly forward the news to all their neighbors. This in particular
facilitates sending a rumor from one large-degree node to another.

What does this mean for our everyday life? It partially explains why social networks are
observed to spread information extremely rapidly even though this process is not organized
centrally and the network is not designed in some intelligent way. Crucial is the fruitful
interaction between hubs, which have many connections, and average users with few friends.
The hubs make the news available to a broad audience, whereas average users quickly convey
the information from one neighbor to another.
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In 41st IEEE Symposium on Foundations of Computer Science (FOCS), pages 565–574,
2000.

[21] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate informa-
tion. In 44th IEEE Symposium on Foundations of Computer Science (FOCS), pages
482–491, 2003.

[22] S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-scale
knowledge bases from the web. In 25th International Conference on Very Large Data
Bases (VLDB), 1999.

[23] J. Leskovec. Stanford large network dataset collection.
http://snap.stanford.edu/data/.

[24] M. Mihail, C. Papadimitriou, and A. Saberi. On certain connectivity properties of the
internet topology. J. Comput. Syst. Sci., 72:239–251, 2006.

[25] S. Milgram. The small-world program. Psychology Today, 2:60–67, 1967.

7

http://snap.stanford.edu/data/


Figure 2: Average numbers of informed nodes over time for the Orkut network and preferential attachment,
random-attachment and complete graphs of same size n = 3, 072, 441 and density parameter m = 38 (where
applicable). Both the real network and the mathematical model for social networks show a significantly
faster dissemination of the rumor.
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Figure 3: Average numbers of informed nodes over time for the Twitter network and comparable preferential
attachment, random-attachment and complete graphs (size n = 51, 217, 936, density parameter m = 32).
Again, the two graphs modelling social networks greatly outperform the random-attachment and complete
graph.
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Figure 4: Average times needed to inform all nodes of different networks of varying size. The data show a
logarithmic dependence for random-attachment and complete graphs. For preferential attachment graph
(a mathematical model for social networks), the times appear to be of lower order. Note that the generally
small times partially obscure the advantage of the preferential attachment network structure. The data
above can also be read also as follows. If one is willing to spend an average number of 16 rounds, then one
can inform more than 300,000 people connected as in the preferential attachment model, but only around
30,000 organized in a random-attachment fashion.
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