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1 Introduction

The field of Post-Quantum Cryptography concerns the design and analysis of cryptographic
protocols that are robust against attackers utilizing large-scale quantum computers. This
area of research is of increasing importance, given the potential advancements in quantum
computing and the consequences for the security of classical cryptographic schemes. These
consequences could be widespread breaches of sensitive data, compromising individuals’ privacy
and financial security. Therefore, the urgency to develop and implement secure post-quantum
cryptographic schemes cannot be overstated.

Current classical cryptographic constructions rely heavily on number-theoretic assumptions,
like the factoring problem or the discrete logarithm problem. Thus, the existence of efficient
quantum algorithms for solving these problems has prompted exploration into various security
foundations. Consequently, submissions to the NIST standardization effort in 2016 encompass
a broad spectrum of security assumptions. Among these, lattice-based candidates stand out,
drawing on challenging problems from algebraic number theory, while code-based assumptions
are based upon hard problems in coding theory.

In total 82 schemes were submitted, of which 69 met the acceptance criteria. Among
these, 26 were lattice-based and 19 code-based submissions. After seven years in 2023, NIST
announced the lattice-based scheme CRYSTALS-Kyber [BDK+18] as the new encryption
standard. At the same time, the NIST also announced that three other schemes would
advance into a final round to select an additional standard, namely Classic McEliece [BCL+17],
BIKE [ABB+17], and HQC [MAB+18]. These three schemes are all based on linear codes,
highlighting the importance of code-based cryptography. This was done by NIST, specifically
to diversify the landscape of encryption standards.

The Computational Syndrome Decoding Problem (CSD) is one of the most well-known
computational problems from coding theory. It can be described as follows. Given a random
(binary) parity check matrix H ∈ F(n−k)×n

2 and a syndrome s = He ∈ Fn−k
2 decode to an

error vector e ∈ Fn
2 with hamming weight ω. This problem serves as the foundation for many

code-based cryptographic schemes, making assessing its complexity crucial for evaluating the
security of proposed systems. When appropriately choosing the parameters n, k, ω the CSD
problem becomes hard, with the most efficient algorithms needing exponential runtime. This
is particularly true when ω = c · n, for some constant c.

A significant lineage of generic decoding algorithms solving the CSD, originating from
Prange’s work in 1962 [Pra62], is known as Information Set Decoding (ISD). Over the past six
decades, these algorithms have garnered considerable attention from coding theorists. At a
conceptual level, these algorithms transform the original Computational Syndrome Decoding
(CSD) instance H, s, with parameters n, k, ω, into a related CSD instance, H′, s′ with reduced
parameters n′, k′, ω′. Subsequently, one solves the somewhat smaller instance and then tries
to map the resulting solution back to a solution of the original problem. In essence, this
transformation is a randomized procedure, predominantly yielding instances H′, s′ that lack
solutions to the original problem. This is resolved by repetitively applying the randomized
transformation a sufficient number of times.
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Almost 30 years after Prange’s original work, Stern [Ste89] published the first exponential
speedup in 1989. More than twenty years later May, Meurer and Thomae [MMT11] as well
as Becker, Joux, May and Meurer [BJMM12] published two innovative algorithms. Both
methods utilized the representation technique, to varying degrees, to solve the transformed
problem more efficiently.

The main idea behind the representation technique is to artificially expand the search
space while increasing the expected number of solutions even more. For simplicity let us
introduce the following notation. ByWn

ω we denote the set of all vectors e ∈ Fn
2 with hamming

weight ω. Consider the following basic algorithm for the CSD problem. Suppose ω is divisible
by 2 and there exists a solution e = (e1e2), with ei ∈ Wn/2

ω/2 . By similarly splitting the parity
check matrix H = (H1H2), with Hi ∈ F(n−k)×n/2

2 , we can rewrite the parity check equation
as follows:

He = s (1)
H1e1 + H2e2 = s

H1e1 = H2e2 + s.

The algorithm now computes a list L1 containing all candidates e1 ∈ Wn/2
ω/2 and sorts the lists

according to the values H1e1. Next, it computes H2e2 + s for all e2 ∈ Wn/2
ω/2 , and searches for

a collision, i.e. an e1, s.t. H1e1 = H2e2 + s. Finding such a collision recovers a solution e
to the CSD problem. Neglecting all polynomial factors inherited by sorting and searching,
constructing the list L1 has a complexity of

(n/2
ω/2
)
. Similarly, the worst-case complexity of

finding a collision can be determined by the number of e2 vectors that need to be enumerated,
which is also

(n/2
ω/2
)
. Thus, we obtained an algorithm for the CSD problem with complexity(n/2

ω/2
)
≈
(n

ω

)1/2.
Note that the algorithm splits the search space Wn

ω into two distinct parts, meaning the
solution vector e can be written as a unique sum of e1, e2 ∈ Wn/2

ω/2 ×W
n/2
ω/2 . The core idea of

the representation technique is to relax this decomposition by allowing the vectors e1, e2 to
be chosen from Wn

ω/2 ×W
n
ω/2. Consequently, many such vectors will exist, enabling every

e ∈ Wn
ω to be represented in numerous ways. Using this decomposition yields R =

( ω
ω/2
)

different representations of the unique solution e. On the downside, this approach increases
the search space to |Wn

ω/2| =
( n

ω/2
)
≫
(n/2

ω/2
)
. The second key insight of the representation

technique is that it is sufficient to find just one of these representations to solve the original
problem. Specifically, we aim to construct two lists L1,L2 ⊂ Wn

ω/2, s.t. there is a high
probability of finding a representation (e1, e2) ∈ L1 × L2. These lists must be at least as
large as |Wn

ω/2|/R =
( n

ω/2
)
/R. Assuming an algorithm computing these lists in minimal time,

recovering the solution e then becomes a matter of finding a collision, similar to the previous
algorithm. Overall, this results in an algorithm with a time complexity of

( n
ω/2
)
/R ≤

(n/2
ω/2
)
,

which holds for all 2 ≤ ω ≤ n. This simplified overview hides significant technical details,
particularly regarding the algorithm for computing the lists. One of the primary technical
contributions of this thesis is the implementation of such an algorithm.

However, the evolution of new ISD algorithms did not cease there. Presently, the two
asymptotic fastest algorithms for solving the CSD problem are due to May and Ozerov [MO15]
and Both and May [BM17]. These algorithms heavily rely on a subroutine for computing the
Nearest Neighbor Problem, allowing them to solve the transformed problem more efficiently
than the previous algorithms. The Nearest Neighbor Problem asks to find all vectors within
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two lists from Fn
2 that are close to each other according to the Hamming metric. That is,

given L1,L2 ⊂ Fn
2 , find all (x, y) ∈ L1 × L2, s.t. wt(x + y) = ω.

The use of an algorithm for solving the Nearest Neighbor Problem becomes apparent
through the following observation. Assume that after applying the transformation to obtain a
reduced CSD problem, the resulting parity check matrix has the form H′ = (In−kH2), where
In−k is the identity matrix and H2 ∈ F(n−k)×k

2 and e1 ∈ Fn−k
2 , e2 ∈ Fk

2. Then Equation (1)
becomes

H2e2 = e1 + s.

Note that E[wt(e1)] = ω · n−k
n . Assuming that the expectation is met and ω ≪ n, it follows

that wt(e1)≪ n− k, meaning the error vector e1 is small. Consequently, H2e2 is equal to s
up to a small amount of errors in e1. In other words, H2e2 is close to the syndrome s. This
information is useful for an algorithm computing the lists containing a representation of the
solution e. May and Ozerov [MO15] proposed an efficient algorithm for certain parameter
regimes for the Nearest Neighbour Problem, but left its practical applicability as an open
question. Consequently, another technical contribution of this thesis is a new algorithm
for solving the Nearest Neighbour Problem that extends the May-Ozerov algorithm for all
parameter regimes. Additionally, a proof of concept implementation is provided.

In 2016, Canto-Torres and Sendrier [CTS16] proved an observation that was made far
earlier, which is related to the very low weight of the instances of code-based schemes. They
proved that as long as the weight is a linear in n, e.g. ω = Θ(n), all ISD algorithms improve
asymptotically over the previous one. However, in the case of sublinear error weight, ω = o(n),
as in the case of McEliece, BIKE, or HQC, all improvements of subsequent algorithms are
limited to second-order terms. Hence, the runtime of the different ISD algorithms converges
to the asymptotic runtime of Prange’s original ISD algorithm. This means that all algorithmic
improvements in the setting of cryptographic instances are of a practical nature.

As previously mentioned, NIST selected three different code-based schemes as probable
next standards. A major challenge lies in selecting secure parameter sets that match the
security level set by NIST. Therefore, estimating their bit-security - the expected number of bit
operations required to successfully recover the solution - is of utmost importance. Two things
are necessary to make such estimations. First, a precise description of the best algorithm
for solving the problem at hand—in this case, the CSD. Second, an implementation of this
algorithm is needed to realistically model real-world implications, such as slowdowns caused
by memory access. All of this is thoroughly provided and discussed in this thesis.

What most ISD algorithms have in common is a significant memory requirement. These
immense memory demands either cause a substantial slowdown of the algorithm due to
physical memory access times or prevent the algorithm from running altogether. In practical
implementations, both scenarios demand a fallback to a more memory-efficient but asymptot-
ically slower algorithm. In such cases, time-memory trade-offs become invaluable, as they
allow the memory requirements to be adjusted according to the available resources, while
ideally only slightly increasing the runtime.

Consequently, another contribution of this thesis is a new time-memory trade-off for ISD
algorithms and their implementation. This implementation is particularly important as it
demonstrates that the practical improvements of subsequent ISD algorithms, resulting from the
work of Canto-Torres and Sendrier, translate into practical application, even though they rely
on complex algorithmic techniques that may introduce overhead. With this implementation,
new computational records were achieved, leading to more precise bit-security estimations for
the three code-based schemes in round four of the NIST standardization process.
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Goal of this work

The objective of the first half of this work is to conduct a thorough evaluation of the security
of code-based cryptographic schemes. This is achieved by implementing the most efficient
attacks for those code-based schemes. As a result of these implementations, we were able to
break several records on decodingchallenge.org, a website containing cryptanalytic, thus
downsized, versions of the proposed schemes. This, in turn, allowed us to extrapolate the
security of the proposed parameter sets. With these extrapolations, we can make statements,
whether a given scheme is reaching its claimed level of security or not.

As a secondary aim, new time-memory trade-offs for the generic attacks are proposed,
implemented, and evaluated through their application in breaking additional challenges.
Initially, we develop these time-memory trade-offs for the subset sum problem, improving the
state of the art across most memory regimes. These trade-offs are therefore of independent
interest and are likely to enable improved time-memory trade-offs also for other problems
beyond the CSD as well.

To condense this, the primary objective of this work is:

Devise a fast and efficient implementation of the asymptotically fastest generic
decoding algorithms for random binary codes to extrapolate the exact security of

post-quantum code-based cryptographic schemes

and

Develop new Time-Memory Trade-Offs for the Subset Sum problem as well as
the computational syndrome decoding problem.

Additionally, this work includes an analysis of the Nearest Neighbour Problem in Hamming
metric. As a result, this dissertation comprises the following chapters:

• Chapter 2: McEliece needs a Break–Solving McEliece-1284 and Quasi-Cyclic-2918
with Modern ISD, co-authored with Andre Esser and Alexander May. This chapter is
dedicated to a practical implementation of the MMT/BJMM algorithm. Through this
implementation, we were able to demonstrate the practical superiority of advanced ISD
algorithms. Moreover, we employed this implementation to extrapolate the bit security
of the three code-based participants in the fourth round of the NIST standardization,
McEliece, BIKE, and HQC. We conducted these assessments using different memory
models to accurately estimate the runtime, even if the algorithms utilize a significant
amount of memory.

• Chapter 3: New Time-Memory Trade-Offs for Subset Sum—Improving ISD in Theory
and Practice, co-authored with Andre Esser. This chapter extends on the previous
chapter by introducing a novel time-memory trade-off for the Subset Sum problem. This
new trade-off unifies the algorithmic landscape of Subset Sum under memory constraints
to two algorithms. Moreover, we translate this trade-off into the realm of Syndrome
Decoding and apply it to the MMT/BJMM algorithm. Additionally, we implemented
this trade-off and employed the same extrapolation methodology as in the previous
chapter to calculate the bit-security of code-based schemes.

• Chapter 4: A Faster Algorithm for Finding Closest Pairs in Hamming Metric, co-
authored with Andre Esser and Robert Kübler. In this chapter, a new algorithm for the
Nearest Neighbour Problem is presented. This extends the previously best algorithm by
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May and Ozerov in the regime of large distances. Our proposed algorithm is notably
simpler to analyze and can be applied to non-uniform distributions. Furthermore, we
provide a proof of concept implementation, which was not possible with the previous
algorithm.

• Chapter 5: Legendre PRF (multiple) key attacks and the power of preprocessing, co-
authored with Alexander May. The final chapter of this dissertation is centered around
precomputation attacks on the Legendre Pseudorandom Function (PRF). These attacks
specifically target scenarios where an attacker precomputes a hint, and upon access to
an oracle containing a secret key, the attacker can accelerate the process of retrieving
the secret key using the precomputed hint. Three distinct scenarios are highlighted,
the first being a precomputation attack on a single key, followed by a precomputation
attack on multiple keys. The final scenario involves an attack on multiple keys that does
not rely on a precomputation hint but rather utilizes the distinguished points technique
introduced by van Oorschot and Wiener [vW94].

Security Extrapolation

The challenge of selecting secure parameters for cryptographic schemes is not a new problem
the cryptographic community is facing in the NIST selection process. Over the years, for
the two most widespread used security foundations, namely factorization of large composite
numbers and the Discrete Logarithm, secure parameters have been selected not just once, but
several times.

In this context, a methodology for selecting secure parameters has been established. This
methodology combines theoretical and practical results and mainly evolves the following three
steps: First, a theory is developed to answer the question: what is the best algorithm for
solving the problem at hand? For this algorithm, a usually asymptotic runtime formula Td is
derived. This formula provides a scaling of the number of operations required to solve the
problem, but it is not directly used to estimate the bit security of the proposed cryptography
scheme. This is because purely theoretical estimates do not account for implementation
challenges, such as extensive random memory access into large amounts of RAM, which
can significantly slow down the algorithm. Therefore, translating these theoretical estimates
directly into practical metrics such as CPU years or CPU cycles does not adequately address
these issues.

Instead, the typical approach, and thus the second step of the methodology, is to implement
the proposed algorithm and perform experiments on smaller parameter sets. Consequently,
one extrapolates an experiment in dimension d to a larger scale instance in dimension
d′, by multiplying the experimentally obtained runtime with the quotient Td′/Td. This is
demonstrated in Figure 1.1 on the left side.
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dimension

CPU years

100

•

200

•

T200
T100

=50

500

10
•

T200
T125

=40

125 200

•

12

480
CPU years

dimension

Figure 1.1: One possible way to increase the confidence in an extrapolation is to increase the solved
instance size. On the left-hand size, an instance of dimension d = 100 is shown. This instance was
solved in 10 CPU years, from which an instance of dimension d′ = 200 is extrapolated, which can be
solved in expected 500 CPU years. On the right-hand side, we have an instance of dimension d′′ = 125
which was solved in 12 CPU years, from which a new (lower) expected runtime (480 CPU years) can
be extrapolated.

Of course, such extrapolations are not perfect, they inherit uncertainties. One of these
uncertainties is the accurate modeling of memory accesses, as previously discussed. Thus,
the question that arises is how to enhance the accuracy of this extrapolation process. The
two straightforward approaches are to either increase the size of the experiments or to refine
the runtime formula Td. Increasing the size of the experiments to d′′ > d is an effective way
of narrowing the gap between the start and end points of the extrapolation. By doing so,
the quotient Td′/Td′′ becomes smaller, and can hence carry less uncertainties, thus improving
the reliability of the extrapolated result. The second approach to increasing the accuracy
of extrapolation involves a more thorough examination of the theoretical algorithm under
more accurate models. For instance, this includes accounting for the memory consumption of
the algorithm. This approach is further explored and analyzed in detail in Chapter 3 and
Chapter 4.

Before examining the security of code-based schemes, it is useful to explore the historical
evolution of RSA and how the extrapolation methodology was applied. Following this, a
comparative analysis with the current state-of-the-art in code-based cryptanalysis will be
conducted to identify any missing parts of the extrapolation methodology. These parts will
then be addressed in the subsequent chapters.

Timeline Comparing RSA with Decoding.

The publication of RSA in 1977 by Rivest, Shamir and Adleman [RSA78], marks the beginning
of a new era in cryptography as it is one of the first public-key cryptographic schemes. The
concept is as follows: two prime numbers of equivalent bit size p and q are selected, their
product N = p · q and Φ(N) = (p− 1) · (q − 1) are computed. Next, a public key e ∈ Z∗

Φ(N) is
chosen and its inverse d = e−1 mod Φ(N) is calculated. The public key is denoted by the
pair (e, N), while the secret key is the triplet (d, p, q). Encryption and decryption are defined
as follows:

Enc: ZN → ZN

m 7→ me,

and Dec: ZN → ZN

c 7→ cd.

12



The hardness is based on the assumption that integer factorization is hard: Given N = p ·q,
computing the prime numbers p and q is hard. Currently, the most practical and efficient
method for attacking RSA is by factoring the public modulus N through the General Number
Field Sieve, which has sub-exponential runtime. Once the secret factorization is known, the
secret key d can be easily computed.

The algorithm, known today as General Number Field Sieve, by Lenstra, Lenstra, Manasse
and Pollard [LL93] was a breakthrough in the development of factorization algorithms. As of
today, this is still the asymptotically fastest known integer factorization algorithm. While there
have been improvements of the algorithm over the past 30 years, they have been primarily of
a practical nature, providing at most a polynomial factor or second-order term improvement.

As a result, it is challenging to judge the significance of such improvements from a pure
asymptotic point of view. These improvements often result from more complex routines
which may introduce overhead, or they are based upon heuristics that are uncertain in
their validity. To accurately assess the impact of these improvements on the security of
proposed RSA parameters, it is crucial to consider their implementations and eventually
refined extrapolations. Often then these implementations have been able to break challenges
and achieve new computational records, providing new data points in the extrapolation
methodology of RSA.

Consequently, we can see that after the introduction of the number field sieve, a long stream
of approximately 30 years of practical work was published. Up to the work by Shor [Sho97]
who published his famous quantum polynomial-time factorization algorithm, which initiated
the search for new post-quantum alternatives to RSA.

The picture changes in the setting of code-based cryptography. Starting from 1962 when
the first algorithm by Prange [Pra62] was published, long before the first public encryption
scheme based upon codes was published by McEliece [McE78] in 1978. This algorithm
by Prange laid the foundations for the class of Information Set Decoding (see Section 2.2)
algorithms, which are still the main tools for estimating the security of code-based schemes.

From that point on a long stream of practical improvements was published, which then
were interrupted by the algorithms by Stern [Ste89] and Dumer [Dum91] in the year 1989.
These algorithms improved asymptotically over Prange‘s via an enumeration strategy. In
subsequent years, the first implementations of Stern’s algorithm were carried out, and these
were subsequently employed for estimating bit security. These estimates indicated that the
parameter set proposed by McEliece did not meet the required bit security level of 64 bits.
It wasn’t until 2008 that Bernstein, Lange, and Peters [BLP08] published the first record
computation for breaking an instance that followed this original parameter set proposed
by McEliece. This record computation was achieved using an optimized version of Stern’s
algorithm.

Following this, several asymptotic improvements to Stern’s and Dumer’s algorithms
were published, which sped up the enumeration step. First, the work by May, Meurer and
Thomae [MMT11] leveraged the Representation Technique which then was subsequently
improved by Becker, Joux, May and Meurer [BJMM12] with a finer analysis. After that
the work of May and Ozerov [MO15] improved significantly over this by introducing an
efficient Nearest Neighbour (see Section 2.4) algorithm. This work was extended by Both
and May [BM18] to the currently asymptotically fastest known Information Set Decoding
algorithm. This demonstrates the strength of the research on theoretical algorithms in the
past 60 years in the field of code-based cryptography.

As already mentioned, Canto-Torres and Sendrier [CTS16] proved that in the case of
sublinear error weight, ω = o(n), as in the case of McEliece, BIKE, or HQC, all improvements of
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Figure 1.2: Comparison of the history of research in the field of integer factorization vs. code-based
cryptography. With the work of Canto-Torres and Sendrier [CTS16], all asymptotic improvements in
the code-based setting changed to practical improvements for cryptographic instances. The values
displayed above the record computation symbol on the RSA side correspond to the bit size of the
challenge that has been successfully broken.



subsequent algorithms are limited to second-order terms. Hence, all algorithmic improvements,
in this setting, are of a practical nature. Thus, drawing an analogy to the RSA case, Prange’s
algorithm can be compared to the number field sieve, serving as a foundation for a long series
of practical improvements. However, unlike RSA, there appears to be a lack of implementation
work and computational records that confirm the significance of those improvements. One
main goal of this thesis is to address this discrepancy.

History of Computational Records of RSA

The RSA Laboratories [Lab91] published in 1991 a list of 50 RSA modules in increasing
size, to encourage research into computational number theory and the practical difficulty of
factoring integers. Successfully factorizing one of them would grant a price money, ranging
from 1000$ to 200000$. The size of the numbers ranges from 330 to 2048 bits.

Until the closing of the challenge in 2007, 11 numbers were factored. Despite the end
of the prize money incentive, the scientific community continued their efforts, successfully
factoring another 10 bigger instances of up to 829 bits. Table 1.1 presents a list of the most
significant challenges that have been solved.

Date Bits Authors CPU years Time Algorithm
1991 330 [ML91] 71 -0 ppmpqs [Mis13]
1994 426 [AGLL94] 50001 -0 ppmpqs
1996 430 [DMEH+96] 500 19d GNFSa

1999 463 [tRCL+99] 15.8 2.5m GNFSb

1999 512 [tRAC+99] 35.7 5.2m GNFSb

2005 640 [BBFK05] 33.9 5m GNFS
2012 704 [BTZ12] 512 1.2y CADO-NFS [Tea]
2009 768 [KAF+10] 2000 2.5y CADO-NFS [Tea]
2020 829 [KAF+20] 2700 -0 CADO-NFS [Tea]

Table 1.1: The most important integer factorization records.
0 neither the hardware or the wall clock was specified in the record data,

1 MIPS based,
a with lattice sieving, block Lanczos [Mon95] and improved square root algorithms,

b with a new polynomial selection method developed by Murphy and Montgomery [Mur99], with new line
sieving

While examining Table 1.1, it may be mistakenly perceived that only three distinct
implementations were utilized. However, it should be noted that these implementations
underwent continuous development over time, with certain subroutines being replaced with
more advanced and efficient ones, as indicated in the table’s accompanying footnotes. The
first publicly known implementation used for record computations is pppmqs, based on the
double large primes procedure variation of the multiple polynomial quadratic sieve. Following
the development of the general number field sieve in 1989, the initial implementation was
introduced by Bernstein and Lenstra in 1991 [BL06]. However, it was not until five years later
that the first record was successfully broken using the number field sieve [DMEH+96]. The
culmination of implementation efforts resulted in the release of CADO-NFS in 2006 [Tea],
which has since become the leading implementation of the general number field sieve.

The first two records do need further explanation. As these computations were performed
prior to the establishment of public record databases, the sole source of information regarding
these records is a private email exchange originating from RSA Laboratories, lacking details
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regarding the specific hardware utilized and the precise duration of time taken. Furthermore,
due to the significant advancements in CPU performance since that time, a direct comparison
between modern CPUs and older MIPS CPUs used in these record computations is not
meaningful. As a result, the MIPS-based records have been excluded from subsequent
comparisons.

History of Computational Records in Code-Based Cryptography

This chapter presents the publicly available computational records for code-based cryptography.
In 2019, the release of the decodingchallenge.org website [ALL19] initiated a pursuit to
attain the highest records in various code-based categories. Notably, the website offers two
categories relevant to this work. First Goppa-Code based challenges on which McEliece
[McE78,BCL+17] is based on and secondly Quasi-Cyclic codes on which the schemes BIKE
[ABB+17] and HQC [MAB+18] are based on.

Most records previous to this work are either made with the implementation by Landais
[Lan], or by Vasseur [Vas], both implementing the algorithm by Dumer [Dum91], one of the
early improvements of Prange’s original ISD algorithm. Vasseur‘s implementation is extending
the original Dumer algorithm, to handle multiple syndromes, which is especially important in
the Quasi-Cyclic setting. The notable exception in the Table 1.2 of computational records,
is the implementation by Narisada, Fukushima and Kiyomoto [NFK22] which is a GPU
implementation of the Dumer’s algorithm.

Date n Bit Security Authors CPU Time Time Algorithm
2019 640 32 [Lan] 0.09h 0.01h Dumer
2020 923 45 [Vas] 3.3d 10h Dumer
2020 1041 45 [NFK22] - 108h Dumer GPU
2021 1223 54 [EMZ22] 1254.4d 2.5d MMT/BJMM
2021 1284 56 [EMZ22] 8047d 37.5d MMT/BJMM

Table 1.2: The most important record computations in the McEliece setting from https://
decodingchallenge.org/goppa/. The column Bit Security states the estimated bit security of
the given instance. The n = 1041 record was broken with GPUs, thus no valid CPU time can be
stated.

As the record by Narisada, Fukushima and Kiyomoto [NFK] was made using GPUs and
only the wall time was stated by the authors, a CPU runtime cannot be computed. A detailed
theoretic description of the used algorithm for the records is given in Section 2.2 in the case
of Dumer and in Section 3.2 and Section 4.5.1 in the case of MMT/BJMM.

The computational records for the quasi-cyclic setting are given in Table 1.3. Understanding
the table presented requires familiarity with the term DOOM, which stands for Decoding One
Out of Many. It was first introduced by [Sen11]. Informally speaking, it’s a method that
utilizes N instances to speed up the computation of only one of those instances by a factor of√

N . Therefore, using the fact that quasi-cyclic codes have a structure that holds a linear
amount of cyclic equivalent solutions for each challenge, an attacker can find one of these
equivalent solutions to recover the original solution.

Using the implementation provided with this work we were able to obtain new compu-
tational records as can be seen in Table 1.3. Those records contribute substantially to a
better security understanding of code-based cryptographic schemes and are one of the major
contributions of this thesis. The following Chapter 3 and Chapter 4 provide an in-depth
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Date n Bit Security Authors CPU Time Time Algorithm
2019 1158 34 [Vas] 0.31d 0.2h Dumer
2019 1766 42 [Vas] 47.9d 31.9h Dumer + DOOM
2021 2118 46 [EMZ22] 22.4d 1.05h MMT/BJMM + DOOM
2021 2918 54 [EMZ22] 1719d 80h MMT/BJMM + DOOM
2022 3138 56 [EZ23] 817d 38.31h mem. opt. MMT/BJMM + DOOM

Table 1.3: The most important record computations in the quasi-cyclic setting from https:
//decodingchallenge.org/q-c. The runtime is stated in wall time. The column Bit Security
states the estimated bit security of the given instance.

analysis of how those records were achieved. Especially Chapter 3 is about the algorithm
solving the challenges n = 2118, n = 2918, whereas Chapter 4 describes the algorithmic
improvements made to get the last record n = 3138.

Comparing just the accumulated CPU years, roughly 5250 in the case of RSA, and 32.6
for the code-based cryptography (only counting the McEliece and Quasi-Cyclic setting) shows
the tremendous backlog of practical record computations for code-based schemes.

Extension to non-binary codes The main instances solved in the context of this work
are defined over a binary field. However, the CSD defined over non-binary fields has shown
to become increasingly relevant, especially with respect to recent signature constructions
[BMPS20, DST19, AFG+23]. We therefore provide our implementation in full generality,
capable of handling arbitrary non-binary linear codes. To demonstrate the efficiency of
this implementation we obtained the five largest records for the ternary syndrome decoding
challenges, following parameters found in WAVE1.

1 See https://decodingchallenge.org/large-weight
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2 Preliminaries

In this chapter, we will introduce the general notation and provide basic definitions and
results from coding theory. Additionally, an introduction to the Information Set Decoding
algorithms will be presented.

2.1 Notation

Throughout this thesis, we denote with Fq the finite field with q elements. We are mostly
interested in the binary case, e.g. q = 2. Following this notation, we describe with Fn

2
the corresponding n-dimensional vector space, which elements will be denoted with a bold
lowercase letter v ∈ Fn

2 . Additionally, matrices are denoted as bold capital letters: G ∈ Fn×k
2 ,

and with G⊺ ∈ Fk×n
2 its transposed. Furthermore, we denote by wt(x) := |{i ∈ [n] |xi ̸= 0}|

the Hamming Weight of the vector x, where [n] = {1, . . . , n}. Often we are also interested
in comparing only parts of a vector with each other, therefore we denote with πℓ(x) =
{xn−ℓ, . . . , xn} ∈ Fℓ

2 the projection onto the last ℓ coordinates of x ∈ Fn
2 . As we often need to

enumerate binary sets with a specific hamming weight we denote Wn
ω = {x ∈ Fn

2 |wt(x) = ω}
as the set of vectors of hamming weight ω. Finally, all logarithms are to the base 2. In addition
to that, we describe with x ∈R D the random choice of an element of the distribution/set D.
If D is a set we always sample following the uniform distribution.

Algorithms: For a deterministic algorithm A, we write y := A(x) if y is the output of A
with input x. To indicate a probabilistic Algorithm A, we write y ← A(x) instead.

The Binary Entropy Function is defined as

H : [0, 1]→ [0, 1]

x 7→
{
−x log(x)− (1− x) log(1− x) x ∈ (0, 1)
0 else

Note that the binary entropy function is therefore symmetric around x = 1
2 . Additionally,

we define the inverse function of H by setting the value of H−1(y) to the unique x ∈ [0, 1
2 ],

which solves H(x) = y.

Stirling’s Formula To be able to better analyse the asymptotic behavior of an algorithm,
we make heavy use of the following theorem:

log n! = (n− 1
2) log n− n + 1

2 log(2π) + o(1)

= n log n− n +O(log n), for n→∞
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Using this formula we are able to approximate the binomial coefficient as

1/n log
(

n

αn

)
= H(α), for n→∞

for proofs we refer to [Meu12], chapter 2.3.

CPU Years and other type of measurements In this work, we state runtime in the unit
of CPU years or core years. We use these terms interchangeably, as a CPU year is equivalent
to a core year. Consequently, it should be noted that a modern CPU typically consists of
multiple cores that can perform computations in parallel. For example, an 8-core CPU can
perform 8 core years of computation in a single wall year, where wall year refers to the actual
time elapsed.

While this unit of measurement provides a precise way to predict the runtime of an
algorithm irrespective of the number of CPUs in use, it also introduces inaccuracies. These
inaccuracies stem from the rapid development of CPUs over time. CPUs manufactured in 2023
are significantly more powerful than those produced in 2013, not just in terms of the number
of cores, but also in clock speed and instructions per cycle. Furthermore, the Instruction
Set Architecture (ISA) is continuously evolving. Modern CPUs now have up to 512-bit-wide
instructions and registers, which enable even higher throughput of operations.

Consequently, to enable a fair comparison of different implementations, it is necessary
to run them on the same hardware. Thus, all our benchmark and stated CPU years were
performed on an AMD EPYC 7742 with 2TB of RAM.

2.2 Code-Based Cryptography
As previously stated, there is an urgent need to replace current encryption schemes with new
constructions based on other hard problems on lattices, codes, or multivariate polynomial
equations. The objective of this short introduction is to demonstrate how a one-way trapdoor
function can be constructed using hard problems from coding theory. Specifically, the
Computational Syndrome Decoding Problem (SDP) is the fundamental computational problem
in code-based cryptography.

In the following, we assume that the reader has some familiarity with the basic definitions
and concepts of binary linear codes, for reference see [PBH98,VL98].

Linear Codes The concept of adding redundant information to data that will be transmitted
over a noisy channel dates back to Shannon [Sha48]. This process is known as encoding, while
the process of removing redundant data and potentially correcting errors is referred to as
decoding. In the following, we will denote the application of these processes as Encode and
Decode, respectively.

Over the years, numerous codes have been developed that possess distinct properties or
efficiency. Codes with common structures are grouped, and the simplest but most useful is
likely the family of linear codes, in particular the binary linear codes.

Definition 1. (Binary) Linear Codes. Let C ⊂ Fn
2 be a subspace of dimension k. We call C

an [n, k] code and R := k
n is called (code) rate of C.

One usually identifies a (binary) linear code C by the row-space of a k×n generator matrix
G, e.g. C = {m⊺G |m ∈ Fk

2} or as the kernel of an (n− k)× n parity check matrix H, e.g.
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C = {c ∈ Fn
2 |Hc = 0}. Note that we explicitly defined only binary codes, as they are of

particular interest in this work. Furthermore, the following nomenclature is used throughout
this work: a codeword is denoted by c, an error vector by e, an erroneous codeword by
x = c + e and a syndrome by s = Hx = H(c + e) = He.

Consequently, we introduce Minimum decoding distance, an important property that every
code possesses.

Definition 2. Minimum decoding distance d of a linear [n, k] code C is defined as the minimum
hamming distance of every two distinct codewords:

d := d(C) = min
c∈C\{0}

wt(c).

Note that ω := ⌊d−1
2 ⌋ is the largest distance where decoding is still uniquely possible. A

lower bound of the minimum decoding distance is given by Gilbert and Varshamov.

The (Relative) Gilbert-Varshamov Distance dGV (R) ∈ R, given a code rate R ∈ (0, 1),
is the unique solution of the equation

H(x) = 1−R.

with 0 ≤ x ≤ 1
2 .

The usefulness of this bound is supported by the following theorem:

Theorem 1. For almost all linear codes C of rate R, it holds true that

d(C) ≥ ⌊DGV (R)⌋ · n

The proof is given in [Meu12] Theorem 2.4.9. These properties of linear codes lead to the
problem that lies at the center of most code-based cryptographic schemes:

Definition 3. (Binary) Computational Syndrome Decoding Problem (SDP): Given a parity
check matrix H ∈ F(n−k)×n

2 , a syndrome s ∈ Fn−k
2 and a target weight ω ∈ N, find an (error)

vector e ∈ Fn
2 with He = s and wt(e) ≤ ω.

Note that we again explicitly only state the binary case of the problem. This problem is
particularly intriguing due to its well-known NP-hardness, as demonstrated by Berlekamp
[BMVT78], and its resilience against algorithms utilizing quantum computers. Naturally, this
leads to the question, for which (n, k, ω) the SDP is hard, or better, the hardest, such that one
can use such parameters as the foundation of a code-based scheme. In the asymptotic setting,
it is often assumed heuristically that the SDP is the hardest if ω = DGV (R). See [Meu12]
chapter 3.1 for justification.

The usefulness of the Gilbert-Varshamov Distance comes from the following consideration.
We expect the parity check equation He = s to be solvable if the search-space of e is at least of
size 2n−k. Thus, for weight-d error vectors e ∈ Wn

d we have O(|Wn
d |) = O(2H(d)n) = O(2n−k).

Whereby the last equation follows from the Gilbert-Varshamov Distance. Therefore, this
guarantees, together with the well-known fact that random linear codes asymptotically reach
the Gilbert-Varshamov Distance, that we can always expect a solution to the SDP. Thus,
we refer to this case of ω = DGV (R) as full distance decoding and we refer to the case
ω = ⌊DGV (R)−1

2 ⌋ as the half distance decoding case, the latter being the largest case in which
decoding is still uniquely possible.
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Code-Based One-Way Function For our purpose, a sufficient definition of a one-way
function is as follows. Let f : X 7→ Y , we call f a one-way function if it is efficiently
computable ∀x ∈ X and for almost all y ∈ Y it is computationally infeasible to find a
preimage x.

There are essentially two dual ways to build a one-way function based on the hardness of
the SDP. The first, due to the Robert McEliece [McE78], is fully described by the generator
matrix G ∈ Fk×n

2 . It works by scrambling a codeword c with an error vector e to an erroneous
codeword x = c + e.

fG : Fk
2 ×Wn

ω → Fn
2

(m, e) 7→m⊺G + e⊺,

and fH : Wn
ω → Fn−k

2
e 7→ He.

The latter method by Niederreiter [Nie86] is fully described by a parity check matrix H ∈
F(n−k)×n

2 and works by mapping an error e to the syndrome s = He. It should be noted that
a one-way function can be obtained directly by instantiating one of the two constructions
defined, through the selection of a random linear code C. Throughout this work, we will use
the Niederreiter approach for describing the problem to be attacked, as it has wider adaption
due to its efficiency.

In addition to the normal one-way function, a trapdoor one-way function allows for
efficient inversion by using some auxiliary trapdoor information. Hence, one has a public
description of f : X 7→ Y and a secret description of f−1 such that one can efficiently compute
f−1(f(x)) = x,∀x ∈ X. Consequently, one cannot use a random linear code anymore to
instantiate the trapdoor one-way function but needs to use a structured one. The idea is
then to hide the structure of the chosen code via linear algebra. Thus, choosing a random
permutation P ∈ Fn×n

2 and a basis transformation T ∈ F(n−k)×(n−k)
2 and applying them to the

parity check matrix H to compute a public matrix H′ = THP. The trapdoor then consists of
the construction of H as well as the transformation matrices T and P.

The (Classic) McEliece trapdoor one-way function is based on binary Goppa codes.
However, this additional structure opens the door for further (structural) attacks. History has
shown that replacing Goppa codes with alternative codes often leads to successful attacks. For
example Generalized Reed-Solomon codes were broken by Sidelnikov and Shestakov [SS92],
and Reed-Muller codes were broken by Minder and Shokrollahi [MS07].

So far, the family of binary Goppa codes resists all known structural attacks, which leads
to the following assumption.

Assumption. A randomly transformed parity check matrix H′ of a binary [n, k] Goppa code
is computationally indistinguishable from a random parity check matrix H ∈ F(n−k)×n

2 .

Therefore, the only available approach to attack code-based encryption schemes relying
on the Niederreiter one-way function construction is generic decoding.

Generic Decoding. All decoding algorithms solving the Syndrome Decoding Problem have
a runtime T (n, k, d) as a function in three parameters n, k, d. Given any random linear code,
we can use the Gilbert-Varshamov distance from Section 2.2, which shows that d itself is
a function in n, k. This simplifies the runtime formula to T (n, k). Furthermore, we mostly
consider worst-case runtimes T (n) over all code rates k

n . As of today, Information Set Decoding
algorithms are the most efficient way to decode random linear codes. However, these run in
exponential time of the form T (n) = 2ϑn, where ϑ is a constant. In literature, this coefficient
is used as a metric to compare different algorithms asymptotically.
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Information Set In the previous section, we mentioned that Information Set Decoding is
currently considered to be the most efficient way to decode random binary linear codes. To
better understand this, we need the following definitions.

Definition 4. Information Set (Generator Matrix): Given a linear [n, k] code C with generator
matrix G ∈ Fk×n

2 , an index-set I ⊂ [n] of size k is called an Information Set if the sub-matrix
G′ ∈ Fk×k

2 , that arises from the columns of G selected by I has full rank, i.e. rank(G′) = k.

If G′ has full rank, it means that its column vectors span the k-dimensional vector space
C and can be used to represent any non-redundant linear operation on any message m.
Consequently, the I indexed entries are of an error-free codeword c and are sufficient to
recover the message m. Hence, correcting linear codes and therefore retrieving the original
message can be described as the problem of finding an error free information set. Adapting
this to the parity check matrix yields the following.

Definition 5. Information Set (Parity Check Matrix): Given a linear [n, k] code C with
parity check matrix H ∈ F(n−k)×n

2 , an index-set I ⊂ [n] of size k is called Information Set if
the sub matrix H′ ∈ F(n−k)×(n−k)

2 , emerged from the columns of H selected by [n] \ I has full
rank, i.e. rank(H′) = n− k.

The fundamental concept behind the class of algorithms known as information set decoding
is to randomly select an information set I and then attempt to guess or calculate the errors
in this particular set of coordinates using a predetermined method. The specific method used
distinguishes the various algorithms.

Information Set Decoding

In this section, we introduce the most important algorithms used to attack code-based
cryptography. The goal of this chapter is to provide an overview of the state-of-the-art
cryptanalysis techniques used in code-based cryptography, in particular, applications in
practical cryptanalysis. This is necessary background information for Chapter 3 and Chapter 4.

We will assume that we are given an instance of the Syndrome Decoding Problem (SDP),
which consists of a parity check matrix H ∈ F(n−k)×n

2 , a syndrome s, and a weight ω for all
subsequent algorithms. Our objective is to find the error vector e that corresponds to this
instance.

The Brute Force Attack is the simplest of all, but never the less important algorithm.
The idea is to consider all vectors e ∈ W n

ω , which takes O(|W n
ω |) = O(

(n
ω

)
) = O(2H(w)n)

computations. However, this algorithm is crucial as it is often used as a subroutine in
subsequent algorithms to solve some kind of smaller Syndrome Decoding Problem. Although
the algorithm itself is simple, it is important to pay attention to details, such as the method
used to compute He. A naive matrix-vector multiplication can take up to n2 operations,
whereas in Section 2.2 a method is shown to reduce this to ω operations. Lastly, if the weight
ω is unknown, one can enumerate every ω ∈ {1, . . . , n}. This increases the total runtime at
most by a factor of n.

The Meet in the Middle (MitM) is the second algorithm we will consider, which
represents the first time-memory trade-off that can be utilized. Rather than enumerating
the whole search space, it is split into two halves. First, create a list that can be efficiently

23



searched and contains pairs (He1, e1), where e1 ∈ Wn/2
ω/2 × 0n/2 enumerates the weight ω/2 on

the first n/2 coordinates. In a subsequent step enumerate He2 + s, with e2 ∈ 0n/2 ×Wn/2
ω/2 ,

and attempt to find a collision within the list. Consequently, a collision leads to the solution

He1 = He2 + s
s = He1 + He2

s = H(e1 + e2) = He

Algorithm 1: Meet-in-the-Middle
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , ω

Output : e ∈ Fn
2 st. He = s and wt(e) ≤ ω

1 S ← ∅
2 while S is empty do
3 choose random permutation matrix P
4 Set H1 = PH
5 Compute L = {(H1e1, e1) | e1 ∈ Wn/2

ω/2 × 0n/2}
6 for e2 ∈ 0n/2 ×Wn/2

ω/2 do
7 if (H1e2 + s, e1) ∈ L then
8 S ← S ∪ {P−1(e1 + e2)}

9 return S

Note that this algorithm succeeds with probability
(n/2

ω/2
)2(n

w

)−1 because the weight has
to distributed equally over the two enumeration halves. Due to this, an additional random
column permutation P needs to be applied to the parity check matrix.

Furthermore, it is crucial to highlight that this algorithm is frequently utilized as a
subroutine in the subsequent algorithms, where a smaller instance of the Syndrome Decoding
Problem must be solved, which is expected to yield not just one, but multiple solutions.
Therefore, the pseudocode is formulated to return all solutions. The runtime and space
complexity is O(Wn/2

ω/2) = O(
(n/2

ω/2
)
) = O(2H(w)n/2).

Equipped with these two basic algorithms we can introduce the class of Information Set
Decoding algorithms.

Prange The class of Information Set Decoding (ISD) algorithms was introduced in 1962
by Prange [Pra62]. Before presenting the algorithm specifics, we provide an overarching
framework for all ISD algorithms in Algorithm 2.

All ISD algorithms proceed in a two-step manner. First, the provided parity check matrix
is randomly permuted and afterward systematized via a Gaussian elimination, see line 3. In
the second step, the algorithm tries to find an information set, which may yield a solution to
the problem. If no such set is found, the process is repeated with a new randomly chosen
permutation.

Note that after applying the random permutation the resulting matrix does not necessarily
have full rank, resulting in a possible failure of the Gaussian elimination. In theory, we restart
the algorithm by choosing a new random permutation, whereas in practice we permute a
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Algorithm 2: General Framework of all Information Set Decoding Algorithms
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , ω

Output : e ∈ Fn
2 st. He = s and wt(e) ≤ ω

1 choose p
2 repeat
3 choose random permutation matrix P ∈ Fn×n

2 ▷ Permutation Step
4 H̄ =

(
In−k H1

)
= GHP in systematic form

5 s1 = Gs
6 L← Search(H1, s1, p) ▷ Search Step
7 for e2 ∈ L do
8 e1 = H1e2 + s1
9 if wt(e1) = ω − p then

10 return P−1(e1 e2)

previously unused column into the current position of the elimination step to archieve full
rank. In the following, we also refer to this step as Permutation Step. This step is needed to
permute the weight of the error vector e in such a way that it is useful for the underlying ISD
algorithm. Our goal is to have weight p (or p erroneous positions) in the last k coordinates of
e, whereas the remaining weight of ω− p is positioned in the first n− k coordinates. We refer
to such a permutation as a good one. If this happens, we can search for partial solutions in
the following step.

The second step is a Search phase, in which a smaller sub Syndrome Decoding Problem
must be solved, where the algorithm finds all e1 ∈ Wk

p s.t. H1e1 = s1. Note that the (sub-)
parity check matrix H1 ∈ F(n−k)×k

2 is now much smaller and therefore many e1 fulfill the
constraint. The various ISD algorithms differ in how they solve this step. In the following, we
also refer to this step as Search Step.

Correctness First, one needs to see that a solution e found for a permuted parity check
matrix HP holds a valid solution if one applies the inverse permutation, as in line 10, i. e. it
holds (HP) · (P−1e) = He = s. Secondly, as the Gaussian elimination, denoted by G, only
applies elementary row operations, the resulting parity check matrix H̄ is still a valid one for
the given code. Note that the syndrome must be changed as well.

Runtime The runtime is a result of the combination of the two steps above. First, the ex-
pected numbers of random permutation needed to hit a correct one, which is P =

(n−k
ω−p

)(k
p

)(n
ω

)−1.
Second, we assume that the search phase requires a runtime TS . Hence, the expected runtime
of every ISD algorithm can be described as

T = P−1 · Ts.

The precise runtime TS depends on the Search subroutine used.
Prange‘s idea was to use the brute-force algorithm in the search step, thus enumerating

every error vector e1 ∈ Wk
p

1 and hoping for a solution H1e1 = s1. If no such solution is
1 At this point we ignore the additional runtime introduced by the matrix-vector multiplication and only

state the runtime as the size of the search space. Note that there are more efficient ways to enumerate all
e1 than by simple matrix-vector operations, see Section 2.2
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found, the algorithm restarts. The runtime of the Search subroutine is therefore O(
(k

p

)
). Thus,

the overall runtime can be denoted by O
( (n

ω)(k
p)

(n−k
ω−p)(k

p)

)
= O

(
(n

ω)
(n−k

ω−p)

)
. Numerical optimization

of p yields p = 0, meaning nothing is enumerated. To put it another way, Prange‘s algorithm
is designed to solve the case where there are no errors in the information set.

H1In−k

e1 e2

s=

kn− k

n
−

k

ω 0

Figure 2.1: Schematic view of Prange‘s ISD algorithm, in which all the ω error positions are permuted
into e1.

Therefore, Prange‘s algorithm 2.1 finds solutions of the form

He = In−ke1 + H1e2 = e1 = s. (2.1)

Finally, we can check for a correct permutation if the resulting syndrome s1 has low weight,
i.e. wt(s1) = ω. Note that this is only possible because we assume ω ≪ n− k, as it is given
for codes with sub-linear weight.

Algorithm 3: Prange
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , ω

Output : e ∈ Fn
2 st. He = s and wt(e) ≤ ω

1 repeat
2 choose random permutation matrix P ∈ Fn×n

2 ▷ Permutation Step
3 H̄ =

(
In−k H1

)
= GHP in systematic form

4 s1 = Gs
5 if wt(s1) = ω then
6 return e = P −1(s1 0k) ▷ Search Step

Note the following things:
• Even though we represent the permutation matrix P in all our pseudocodes as a matrix,

for simplicity and readability, it is sufficient to store the permutation in a vector. This
reduces the memory from O(n2) to O(n).

• Again, for simplicity alone, we represent the systematization step via a matrix G,
which can be computed in O(n3). There are faster ways to achieve this, see [BLP08,
Hob12,AB21] for more details. In summary, these optimizations reduce the runtime of
elimination from O(n3) to O( (n−k)3

log(n−k)) via the Method of the four Russians [Bar07,AB21]
and clever pivoting. In the following chapters we refer to the runtime of the elimination
step as TG.

In summary, the algorithm by Prange has runtime TP range = O
(

(n
ω)

(n−k
ω−p)

· TG

)
and a memory

complexity of O(n2). While this only reflects the asymptotic runtime, an implementation
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of the algorithm is dominated by the runtime of the Gaussian elimination. Thus, many
subsequent developments of ISD algorithms are focused on how to reduce the cost of this
step [LB88,Leo88,CC94,Cha95,CC98,BLP08].

Lee-Brickell Up to this point, we analyzed Prange‘s algorithm asymptotically, ignoring the
runtime of the Gaussian elimination, which is the dominating factor of an implementation.
The idea of the next algorithm by Lee and Brickell [LB88] is to relax the constraint p = 0, thus
enumerating a little weight, to amortize the cost of the Gaussian elimination, even though
this is not optimal asymptotically. Consequently, error vectors with the weight distribution of
ω − p in the first n− k and weight p in the last k coordinates, thus allowing for an erroneous
information set, can be recovered. Therefore, the algorithm finds solutions of the form:

s = In−ke1 + H1e2

⇔ e1 = H1e2 + s

As in the algorithm by Prange, such a solution can be detected efficiently by checking for

wt(H1e2 + s1) = ω − p.

Algorithm 4: Lee Brickell
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , ω

Output : e ∈ Fn
2 st. He = s

1 Choose p
2 repeat
3 choose random permutation matrix P ∈ Fn×n

2 ▷ Permutation Step
4

(
In−k H1

)
= GHP−1 in systematic form

5 s1 = Gs
6 for e1 ∈ Wk

p do
7 if wt(H1e1 + s1) = ω − p then
8 return e = P −1(H1e1 + s1 e1) ▷ Search Step

Thus, the cost of each iteration increases to TG +
(k

p

)
. Given the required amount of

iterations is (n
ω)

(n−k
ω−p)(k

p)
, the overall runtime can be stated as

TLB =
(n

ω

)(n−k
ω−p

)(k
p

) · (TG +
(

k

p

))
=

(n
ω

)(n−k
ω−p

) ·
1 + TG(k

p

)
 >

(n
ω

)(n−k
ω−p

) >

(n
ω

)(n−k
w

) = TP range

TG

This implies that the algorithm proposed by Lee and Brickell can never outperform
Prange‘s algorithm by more than a polynomial factor. The exact value of this factor is
dependent on the set of optimizations applied in the implementation, such as the reuse of
error vector e1 additions in line 7 of the algorithm, as described in Section 2.2, or the early
termination of the computation of H1e1 + s1 when the weight has already exceeded a certain
threshold for a subset of computed operations. For an in-depth analysis of the bit operations
involved in this algorithm, we refer the reader to [Hob12].
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Leon In 1988, Leon proposed an idea [Leo88] that served as the foundation for all subsequent
ISD algorithms. He observed that the approach by Lee and Brickell could be extended by
introducing a new parameter ℓ which guesses additional zeros in the error vector. In other
words, one could reduce the number of columns to be systematized from n− k to n− k − ℓ,
because zeros were guessed in the selected ℓ coordinates within the error vector e . Since this
method is utilized in Stern’s algorithm, we move the concrete analysis to the next section.

Stern — Permutation Based ISD In the subsequent algorithm, we leap forward to the
year 1989 and the next era of ISD algorithms, to the point when Stern presented his work. The
central concept of his algorithm is again aimed at reducing the cost of Gaussian elimination,
combining and extending the ideas of Lee, Brickell and Leon. More specifically, instead
of brute-forcing the correct weight-p error vector, a more sophisticated Meet-in-the-Middle
(MitM) strategy is employed, as described in Section 2.2.

To understand Stern‘s idea, it is necessary to reconsider equation (2.1)

He = In−ke1 + H1e2 = s.

Instead of brute forcing H1e2, ∀e2 ∈ Wk
p , we construct e2 in a MitM manner e2 = e21 + e22,

with e21 ∈ Wk/2
p/2 × 0k/2, e22 ∈ 0k/2 × Wk/2

p/2 . While only applying a meet-in-the-middle
technique would not improve that much over Lee-Brickell‘s algorithm, Stern‘s second idea
was to use Leon‘s [Leo88] ℓ parameter to be able to control the number of possible e2 which
are constructed as the sum of underlying e21, e22.

For a better understanding of the algorithm, it is recommended that the reader closely
examines Figure 2.2. In contrast to previous algorithms, Gaussian elimination in Stern’s
algorithm is performed on the first n− k− ℓ rows. It is noteworthy that the ℓ× n− k− ℓ sub
matrix below the identity matrix can still be eliminated, which is critical to the correctness of
the algorithm. We refer to a matrix in this form as semi-systematic.

In−k−ℓ

0

s1

s2

H2e2=s2

=

n− k − ℓ

n
−

k
−

ℓ

k + ℓ

ℓ

kℓ
H1

H2

$

$

e
ω − p

k/2

p/2 H2e21

k/2

p/2 H2e22⊕
s2

L1

L2

kℓ

p0

0

⊕

=

ℓ

e1 = H1e2

0

e21

e22

Figure 2.2: Schematic description of Stern‘s algorithm. The target syndrome s2 is added into list L2.
Thus, each collision between L1 and L2 holds the syndrome on the last ℓ coordinated.
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Additionally, we split the matrix H = (H1, H2) ∈ F(n−k−ℓ)×(k+ℓ)
2 × Fℓ×(k+ℓ)

2 as well as the
syndrome s = (s1, s2) ∈ Fn−k−ℓ

2 × Fℓ
2. With these, we are now able to formulate the correct

MitM step as proposed by Stern.
First, we enumerate all e21 ∈ Wk/2

p/2 × 0k/2, (e22 ∈ 0k/2 × Wk/2
p/2 ) and save the tuples

(e21, H2e21) in a list L1 ((e22, H2e22 + s2) in list L2 respectively). As s2 is included in the
second list, the algorithm then can search for pairs (e21, e22), where

H2e12 = H2e22 + s2 (2.2)

holds. Such (e21, ∗) ∈ L1, (e22, ∗) ∈ L2 can be found by looking for equality in the second
component of the lists. These collisions (e21, e22) are stored in the final list L.

Consequently, the size of the lists L1 and L2 is
(k/2

p/2
)

and the final list has expected size

|L| = (k/2
p/2)

2

2ℓ . The latter follows from the fact that we can find at most
(k/2

p/2
)2

equal elements
in the two base lists, whereas any two elements are equal with a probability 2−ℓ. Therefore,
the overall cost of Stern‘s Search Step is

TS = 2(|L1|+ |L|) = 2

(k/2
p/2

)
+
(k/2

p/2
)2

2ℓ

 .

Note that the algorithm needs to enumerate the last list twice, once to build it, and a second
time to check whether one of the constructed error vectors leads to a solution.

ω − p 0 p/2 p/2

n− k − ℓ ℓ k

Figure 2.3: Weight distribution needed by Stern‘s algorithm.

In this algorithm the parameter ℓ fulfills two purposes: it determines both the number of
elements in the final list and the number of permutations required until we can expect to find
a good permutation that fulfills our demands. The algorithm expects weight ω − p in the first
n− k − ℓ coordinates of the error vector, followed by ℓ zeros and finally twice the enumerate
weight p/2 in each k/2 coordinates halves. Thus, Stern‘s algorithm requires in expectation

(n
ω)

(n−k−ℓ
ω−p )(k/2

p/2)
2 permutations. The weight distribution is depicted in Figure 2.3.

It should be noted that we can find all collisions between the two lists in O(|L1|+|L2|+|L|),
without introducing any factors for sorting. In practice, this can be archieved via a hashmap
M that at index H2e21 stores the value e21 in one of the required 2ℓ many buckets. As H2 is

random, we expect (k/2
p/2)
2ℓ many elements per bucket. If we now choose ℓ ≈ log

(k/2
p/2
)
, only a

constant amount of elements are stored in each bucket. More concrete implementation details
can be found in the work by Bernstein, Lange and Peters [BLP08].

The overall runtime of Stern‘s Search Step is TG + TS =
(

TG + 2
(k/2

p/2
)

+ 2(k/2
p/2)

2

2ℓ

)
. The

second term represents the cost of enumerating the base lists, while the third term represents
the construction of the final list and the verification of whether a solution has been found.
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Algorithm 5: Stern
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , ω

Output : e ∈ Fn
2 st. He = s

1 choose optimal ℓ, p
2 repeat

3

(
In−k−ℓ T1 H1

0 T2 H2

)
= GHP−1 in semi-systematic form ▷ Permutation Step

4 H1 ∈ F(n−k−ℓ)×k
2 , H2 ∈ Fℓ×k

2 , T1 ∈ F(n−k−ℓ)×ℓ
2 , T2 ∈ Fℓ×ℓ

2
5 s̄ = (s1, s2) = Gs ∈ Fn−k−ℓ

2 × Fℓ
2

6 L = MitM(H2, s2, p)
7 for e2 ∈ L do
8 if wt(H1e2) = ω − p then
9 return e = P−1(H1e2 0ℓ e2) ▷ Search Step

Therefore, the total runtime is given by:

TStern = O

 (n
ω

)
(n−k−ℓ

ω−p

)(k/2
p/2
)2 ·

TG +
(

k/2
p/2

)
+
(k/2

p/2
)2

2ℓ




= O

 (n
ω

)(n−k−ℓ
ω−p

) ·
 1(k/2

p/2
) + 1

2ℓ


Note that the parameters p = p(n), ℓ = ℓ(n) are both functions in n. In most cases, the

asymptotic optimization yields the minimum of the formula for ℓ = log(
(k/2

p/2
)
), as this term

balances the two addends.
The memory complexity of the algorithm is O

((k/2
p/2
))

, because an implementation only
needs to store one of the base lists, as the remaining lists can be computed on the fly due to
the ability to immediately disregard each element in the final list when it is not a solution.

Dumer – Permutation Based ISD Dumer‘s algorithm [Dum91] is based on Stern‘s
algorithm as well as the observation that the zero window in the final error vector e is not
optimal in terms of needed permutations. To overcome this Dumer‘s algorithms allows the
base lists to enumerate on length (k + ℓ)/2 instead of only k/2 as shown in Figure 2.4.

The resulting weight distribution of the error vector changes only slightly, as shown in
Figure 2.5.

Compared to Stern‘s algorithm the expected number of permutations changes to(n
ω

)
(n−k−ℓ

ω−p

)((k+l)/2
p/2

)2 .

However, the size of the base list increases from
(k/2

p/2
)

to
((k+l)/2

p/2
)
.

MMT/BJMM – Enumeration Based ISD In this paragraph, we enter the most advanced
algorithms in the field of ISD algorithms, thus making a jump into the year 2011. The core
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In−k−ℓ
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H2e2=
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=
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−
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−

ℓ

k + ℓ

ℓ

H1
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e
ω − p

p/2 p/2

(k + ℓ)/2

p/2 H2e21
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p/2 H2e22+
s2
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L2

0

0

⊕

=

ℓ

e1 = H1e2

Figure 2.4: Schematic view of Dumer‘s algorithm. The error vector e2 is build as the sum of two
vectors e21 and e22 which are enumerated in a Meet-in-the-Middle fashion. Each entry of the lists
L1, L2 consists of the enumerated error vector and the matrix-vector product e.g. H2e21, which is
matched on s2

ω − p p/2 p/2

n− k − ℓ k + ℓ

Figure 2.5: Weight distribution needed for Dumer‘s algorithm.

idea of the two algorithms invented by May, Meurer, Thomae [MMT11] and Becker, Joux,
May, Meurer [BJMM12] is to use the representation technique invented by Howgrave-Graham
and Joux [HJ10] in 2010 in the context of the Subset Sum problem (see Section 2.3) and one
year later further improved by Becker, Coron and Joux [BCJ11]. In a way, the representation
technique is based on a relaxation of the construction of the lists in Dumer‘s algorithm, by
allowing the enumeration of k + l coordinates (instead of (k + l)/2) in the error vector. This
introduces some redundancy into the search space because each solution vector e2 ∈ Wk+l

p

can now be represented in multiple ways as a sum of two e2 = e21 + e22. Thus, (e21, e22) are
called representations.

This is best visualized with an example. Let x = (10110010) be the solution. Thus, x can
be represented as

(10100000) + (00010010), (10010000) + (00100010), (10000010) + (00110000)

(00110000) + (10000010), (00100010) + (10010000), (00010010) + (10100000)

We can choose 2 out of 4 of the 1-entries, so there exist
(4

2
)

= 6 many representations, in
general

(n/2
n/4
)

= 2n/2. For more detailed information on the representation technique, we
recommend reading [HJ10,BCJ11,MMT11,BJMM12] or the dissertation by Meurer [Meu12].

Assume that there are 2r many such representations for e2. Consequently, the two lists
L1 and L2 are bloated by this factor. However, we are not interested in all representations
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Algorithm 6: Dumer
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , ω

Output : e ∈ Fn
2 st. He = s

1 choose optimal ℓ, p
2 repeat

3

(
In−k−ℓ H1

0 H2

)
= GHP−1 in semi-systematic form

4 H1 ∈ F(n−k−ℓ)×(k+ℓ)
2 , H2 ∈ Fℓ×(k+ℓ)

2
5 s̄ = (s1, s2) = Gs ∈ Fn−k−ℓ

2 × Fℓ
2

6 L = MitM(H2, s2, p)
7 for e2 ∈ L do
8 if wt(H1e2) = ω − p then
9 return e = P−1(H1e2 e2)

of the error vector, since it is sufficient if only one of those representations is in the final
list. Therefore, the goal is to construct a 2r-fraction of the two lists instead. This can
be done, by forcing ℓ1 = r < ℓ coordinates of the two lists to be 0l1 , e.g. be redefining
L1 = {(e21, H2e21) | e21 ∈ Wk+l

p/2 , πℓ1(H2e21) = 0ℓ1}.
While enumerating Wk+ℓ

p/2 for the two lists would result in the same runtime as the full
search space, we could construct the lists themselves in MitM fashion, see Figure 2.6. For
additional theoretical analysis and proofs we refer to [MMT11,BJMM12,Meu12] as well as to
Section 3.2 and Section 4.5 in this work.

The full algorithm therefore works as follows: First, we start by enumerating the four base
lists in a meet-in-the-middle manner, i.e.

Li = {(ei, H2ei) | ei ∈ W(k+ℓ)/2
p/2 × 0(k+ℓ)/2},

Li+1 = {(ei+1, H2ei+1) | ei+1 ∈ 0(k+ℓ)/2 ×W(k+ℓ)/2
p/2 }, i = 0, 2.

Note that we add (s2, 0ℓ1) into the second base list and s3 into the last base list. This is required
to be able to match on zeros in the first level of the search tree. Thus, if the algorithm starts to
construct the right intermediate list L

(1)
2 , finding all (e3, e4) ∈ L3×L4, s.t. πℓ1(y3 + y4) = 0ℓ1 ,

by construction for all (e3, e4) ∈ L3 × L4 it holds that πℓ1(H2e3 + H2e4) = s3. Accordingly,
this step is repeated for the left intermediate list L

(1)
1 .

The same happens in the next step constructing the output list L as the merge result of
the two intermediate lists L

(1)
1 and L

(1)
2 , where we search for elements ((e21, x1), (e22, x2)) ∈

L
(1)
1 × L

(2)
1 s.t. πℓ(x1 + x2) = 0ℓ. For each of those collisions, we are checking if they yield a

full solution

wt(H1e2 + s1) = wt(H1(e21 + e22) + s1)
= wt(H1(e1 + e2 + e3 + e4) + s1) = ω − p.

Additionally, in Section 4.5, a more sophisticated time-memory trade-off is proposed for
the MMT and BJMM algorithm. This trade-off is based on the idea of reusing already built
lists many times. Assume that we choose ℓ1 > r, reducing the probability of a representation
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Figure 2.6: Search tree construction of the MMT algorithm in depth 2, with the improvement of
reusing parts of the search tree. Here once the base list L1 is built up we are reusing it 2t1 times, each
time we rebuild the right hand side of the tree.

to be detected as such to 1
2ℓ1−r . In this case Section 4.4 shows that it is possible to compensate

for this by repeatedly rebuilding the rest of the search tree 2t1 = 2ℓ1−r many times. We show
that in terms of expected runtime, we could not improve, but the memory complexity is
noticeably reduced. In Section 3.2 and Section 4.5, we present a more elaborate analysis of the
MMT and BJMM algorithm, thus we now focus on the practical aspects of the implementation
and the results.

As mentioned at the beginning of this chapter the implementation 2 of the MMT/BJMM
algorithm is one of the main results of this work. Therefore, let us describe the details of
the implementation compared to the theoretical description of the algorithm. First, notice
that the lists L1 and L3 are the same by definition, so there is no need to build them twice.
Secondly, notice that L2 and L4 only differ in the syndrome we add to the lists. Thus, we
build up a plain list without the syndromes and only add to it while iterating over the lists.
Furthermore, we replace the lists L1 and L3 with a hashmap. While merging two lists consists
of sorting one list and a subsequent binary search for each element in the other list, it is
considerably faster to first hash one list into a hashmap (which is algorithmically the same as
sorting if the key of the hashmap is the value itself) and afterward doing a single lookup for
each element of the other list in the hashmap.

Enumerating vectors of low weight Enumerating Vectors in Wk
p , or to be more precise,

the setW(k+ℓ)/2
p , is crucial for all ISD algorithms, be it the enumeration-based ones like Stern‘s

2 publicly available under https://github.com/FloydZ/decoding
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or Dumer‘s, or the representation-based ones like MMT, BJMM. For the best performance,
the enumeration algorithm needs to fulfill the following constraints.

• It is not on the error vector ei itself, but rather on the modifications made to move from ei

to its successor ei+1 we are interested in. If we have such a change sequence we can simply
compute Hei+1 from Hei by adding and subtracting the changed columns. To initiate
this sequence, we once compute the first element He1, with e1 = (1, . . . , 1, 0, . . . , 0) via
a matrix-vector multiplication.

• The changes between successive elements should be minimal, ideally involving only two
bit positions. Moreover, it is highly beneficial if these changes occur nearby, meaning
that they are only one or two bit positions apart. This significantly reduces the memory
span required by the algorithm, thereby minimizing the occurrence of cache misses.

The Chase Sequence (described in Exercise 45 of [Knu11]) satisfies all of these requirements
and is therefore an ideal choice. In our implementation, we precompute this change list and
save it in a list of size

((k+ℓ)/2
p/2

)
· p.

Exact parameters For our record computations, we used the configurations shown in
Table 2.1. Only the optimal parameters are shown, where the optimization process bruteforces
over p, ℓ, ℓ1 and the hashmap meta parameters. The optimal ℓ, ℓ1 that were found in this way
is normally only one dimension bigger than the theoretic optimization predicted. We assume
that this is due to our stream-join implementation favoring smaller lists. Notice that all our
records were made with p = 1, and consequently, the final error vector in list L has weight 4,
respectively 3 in case of QC, because the last list was replaced with the list of syndromes, see
Section 3.5. A detailed analysis of the cost of memory and where the break-even points lay to
switch to high-memory configurations is made in Section 3.4.2. Whereby, with high-memory
configurations a bigger p, e.g. p = 3 is meant. Additionally, a detailed description of the
hardness of each instance can be found Section 3.4.1.

Instance HashMap 1 HashMap 2 Lists (log)

n ℓ ℓ1 p BS NB BS NB |L1| |L(1)
1 | |L|

1223 17 2 1 150 22 5 215 8.9 15.9 16.8McEliece 1284 17 2 1 146 22 4 215 9.0 16.0 17.1
2118 20 1 1 300 21 2 219 9.1 17.1 15.3
2306 20 1 1 320 21 2 219 9.2 17.4 15.8
2502 21 1 1 340 21 2 220 9.3 17.6 15.2
2706 21 1 1 360 21 2 220 9.4 17.8 15.7
2918 21 1 1 360 21 2 220 9.5 18.0 16.1

QC

3138 23 7 1 10 27 1 216 9.6 12.3 8.5

Table 2.1: Used parameters for the record computations. BS describes the number of elements each
bucket can contain, and NB descibes the number of buckets each hashmap contains.

The last quasi-cyclic record, QC-3138, was computed with the new time-memory trade-off.
The chosen parameters result in much smaller lists. The final list, whose computation denotes
the majority of the runtime is roughly 28 times smaller than the final list computed by the
algorithm that does not utilize time-memory trade-offs. On the other side, the new algorithm
needs to recompute the final list 2t1 = 26 = 64 times per iteration. Overall, this still yields a
runtime improvement factor of 3.2.
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What didn’t work During the implementation process, a lot of testing was conducted on
different ideas that led to runtime improvements. In this section, we list a couple of ideas
that did not improve the underlying algorithm:

• In [BLP08], a lot of optimization effort was put into reducing the cost of Gaussian
elimination. Instead of permuting n columns (and therefore permuting (n− k)/2 non-
unity vectors into the first n− k columns in expectation), the idea is to only permute
c ≪ n, i.e. c = 8 columns. In this case, the cost of systematizing the first n − k
columns is dramatically reduced. However, on the other side, we do not apply a random
permutation anymore. As a result, have to pick more permutations overall to hit a good
one. In the end, we were unable to improve with these methods due to two reasons:
First, the Gaussian elimination holds only a share of about 5% of the overall runtime,
meaning any improvement would not significantly reduce the total runtime. Secondly,
the bookkeeping requirements of the algorithm are too high for a significant speed-up
to be reached. Consequently, all of our algorithms and records were made with an
implementation of the Method of the 4 Russians.

• Our servers are equipped with AMD EPYCs of the second generation, meaning they
are x86 processors whose word width is 64 bits. Because of this, the implementation
needs to allocate 2 words for a row of the parity check matrix containing 65 variables.
Therefore, we waste a total of 63 bits for each of the last words of a row. Thus, it could
be beneficial to introduce a new parameter d which removes as many as d columns from
the parity check matrix, such that each row fits perfectly into a multiple of the word
size. Unfortunately, our experiments did not show any significant improvement.

• Recent advancements in the field of ISD algorithms, as [MO15,BM18], have incorporated
nearest neighbour search techniques to accelerate the search-tree computation. An
introduction to these techniques can be found in Section 2.4. In our implementation,
we have also integrated these LSH (Locality-Sensitive Hashing) techniques. However,
our experiments did not yield any practical runtime improvements when using these
techniques. Further investigation revealed that this was due to our implementation’s
preference for low-memory configurations. It should be noted that the nearest neighbour
search allows for savings of permutations of the algorithm, at the cost of an increased
effort to compute the final list. Therefore, the savings are realized in the Gaussian
elimination, base list construction, and matching to the final list. Our benchmark results
indicate that these procedures collectively account for only around 10-15% of the total
running time when using our optimal low-memory configuration. Thus, the nearest
neighbour approach is not well-suited for our streaming design, as the level-one lists
need to be available in memory to fully leverage the nearest neighbour gain. As a result,
the nearest neighbour strategy did not contribute to our record computations.

Results With the implementation described in Section 2.2, we were able to break two
McEliece challenges (n = 1284, 1223, more details about the hardness in Section 3.4), six
quasi-cyclic BIKE, HQC challenges (from n = 2118 up to n = 2918, more details about the
hardness in Section 3.5, and n = 3138 with a more memory-optimized version of the algorithm,
more details in Section 4.5.3) and five in the large weight ternary syndrome decoding setting.
Thus, we gathered more and better data points for step 2 in our extrapolation methodology.

The last step of the extrapolation methodology is shown in Table 2.2 for McEliece and
Table 2.3 for BIKE and HQC, where we extrapolated from our record computations to
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cryptographic sized instances. In order to provide a better understanding of the resulting
runtimes, we relate their security level to the corresponding security of AES-128, -192 and
-256. To estimate the time complexity of breaking AES on our cluster, we benchmarked the
number of AES encryptions that our cluster can perform per second. Using this information,
we were able to calculate the expected time to break AES with respective key sizes. The
resulting bit-difference is presented in both tables.

McEliece Category 1
n = 3488

Category 3
n = 4608

Category 5a
n = 6688

Category 5b
n = 6960

Category 5c
n = 8192

constant:
unlimited −0.82 −26.10 −24.04 −24.73 5.14
M ≤ 280 0.29 −23.95 −13.65 −13.36 21.18
M ≤ 260 2.63 −19.85 − 9.07 − 8.58 26.43

logarithmic:
unlimited 0.84 −24.15 −21.60 −22.26 7.85
M ≤ 280 1.54 −22.65 −12.40 −12.11 22.47
M ≤ 260 3.46 −19.18 − 8.32 − 7.81 27.21

cube-root:
8.94 −13.79 − 1.57 − 0.72 35.43

Table 2.2: Bit-difference in security of Classic McEliece and AES with respective key-length considering
different memory access cost.

As in Chapter 1 described, extrapolation inherits uncertainties. One of these uncertainties
is related to the correct modeling of memory accesses. To address this issue, we are using three
different memory penalization models to account for the large memory usage. These models
multiply the runtime by either a logarithmic, cube-root, or square-root factor, resulting in
a runtime function of Td · log M , Td · 3√M or Td ·

√
M , respectively. A detailed analysis is

conducted in Section 3.4.2.
Summarizing this work, in the contexts of BIKE and HQC, the security claims made by the

authors were validated across all memory models. However, in the McEliece setting, significant
discrepancies were identified between the desired security levels and the extrapolated ones.
For example, assuming unlimited memory, McEliece-4608 showed a difference of up to 26
bits. In a more realistic setting, where the runtime is penalized based on memory usage
and the total memory is limited to 260, a difference of 19 bits was still observed. This work
demonstrates the superior performance of advanced Information Set Decoding algorithms at
the implementation level. Consequently, these algorithms must be considered when estimating
the security level of code-based cryptographic schemes.
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Quasi-
Cyclic

Category 1 Category 3 Category 5

constant:
BIKE 0.73 −1.07 2.13
HQC −1.84 1.19 −0.86

logarithmic:
BIKE 1.24 −0.10 3.50
HQC −1.51 1.61 −0.38

cube-root:
BIKE 1.89 0.79 4.60
HQC −0.67 2.71 0.90

Table 2.3: Bit-difference in security of BIKE/HQC and AES with respective key-length considering
different memory access cost.

2.3 Subset Sum Problem

In Chapter 4, a new time-memory trade-off for the Syndrome Decoding Problem is introduced.
This is done in the light of the well-known Subset Sum problem, which is defined as follows:

Definition 6. Let a := (a1, . . . , an) ∈ Zn
2n be drawn uniformly at random. For a random

e ∈ {0, 1}n with wt(e) = n
2 , let t := ⟨a, e⟩. The (random) subset sum problem is: given

(a, t) find any e′ ∈ {0, 1}n satisfying ⟨a, e′⟩ = t. We call any such e′ a solution and (a, t) an
instance.

It should be noted that our consideration of the subset sum problem is different from
the general subset sum problem in that we focus on the modular version over Z2n , which is
motivated by practical applications, unlike the general subset sum problem, where the size of
the elements of a is unbounded.

Moreover, our focus is on analyzing the random Subset Sum problem, where the vector
a is chosen uniformly at random from Zn

2n , as opposed to worst-case instances where a
can be chosen arbitrarily. This choice is motivated by the cryptanalytic nature of our
work, as cryptographic problems usually involve random instances. In the definition of
the random Subset Sum problem, the modulus M := 2n is considered a function of the
problem dimension n, leading to a commonly used measure called density. For a random
Subset Sum instance (a, t) ∈ (ZM )n+1, the density d is defined as d := n

log M . It is worth
noting that the density is directly related to the expected number of solutions, which is
given by E[# Solutions] = 2n

M = Md−1. Thus, a higher density corresponds to a greater
number of expected solutions, while a lower density relates to fewer solutions. In the realm of
cryptography, the objective is typically to achieve a unique solution, such as a unique key.
Consequently, in the early stages of constructing cryptographic systems, low-density instances
were primarily used. However, Coster et al. [CLOS91] (in conjunction with independent
research by Joux and Stern [JS91]) demonstrated that instances with a density of d < 0.94
could be reduced to solving the shortest vector problem in lattices. While computing shortest
vectors in lattices is generally NP-hard, practical analysis have shown that these instances
can be solved efficiently.
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We are only interested in instances with density d = 1, for which no similar result could
be obtained. The best-known algorithms to solve them require an exponential amount of time
and a few of them even require exponential memory. Although known algorithms capable
of solving the Subset Sum problem can work with arbitrary weight ω of the solution vector
e, we focus specifically on instances where wt(e) = n

2 . This is motivated by the intuition
that instances of this form are the hardest, as the entire search space

(n
ω

)
is maximized when

ω = n
2 .

The relationship between the Subset Sum Problem and the Syndrome Decoding Problem
can be understood by viewing the SDP as a vectorized form of the Subset Sum Problem.
This can be achieved by mapping each column, hi, of the parity check matrix H into the ring
Z2n−k through the canonical isomorphism. As such, each new algorithm developed for the
Subset Sum setting can be applied to the Syndrome Decoding Problem.

2.4 Nearest Neighbour Problem

Historically, the Nearest Neighour problem was defined by giving a list L1 and a query point.
The objective is then to locate an element in L1 which is close under a certain metric to the
given query point. Nowadays, the most common way to define the problem is to find the
solution or closest pair (x, y) ∈ L1 × L2, e.g. in two inputs lists. The problem is formally
defined as follows.

Definition 7 ((Bichromatic) Closest Pair Problem). Let n ∈ N, ω ∈
[
0, 1

2

]
and λ ∈ (0, 1]. Let

L1 = (vi)i∈2λn , L2 = (wi)i∈2λn ∈ (Fn
2 )2λn

be two lists containing elements uniformly drawn
at random, together with a distinguished pair (x, y) ∈ L1 × L2 with wt(x + y) = ωn. The
Closest Pair Problem CPd,λ,ω asks to find this closest pair (x, y) given L1, L2 and the weight
parameter ω. We call (x, y) the solution of the CPd,λ,ω problem.

The nearest neighbour problem in extension to the closest pair problem now asks to find
all solutions (x, y) ∈ L1 × L2 which are close together. This problem, ever since the first
definition by Minsky and Papert [MP69] as well as Knuth [Knu98], led to several interesting
results for the euclidean or hamming metric. The latter is of special interest in this work
because it is the key algorithmic ingredient in modern ISD algorithms.

The latest ISD algorithms, proposed by May-Ozerov [MO15] and Both-May [BM18], use
nearest neighbour algorithms to accelerate the search tree construction. However, the nearest
neighbour algorithm proposed by May and Ozerov incurs a high polynomial overhead, making it
impractical to implement. Therefore, in Chapter 5, we take the first step towards using nearest
neighbour algorithms as a subroutine in ISD algorithms by introducing a novel, implementable
algorithm that can optimally solve the problem. A proof-of-concept implementation of this
algorithm can be found at https://github.com/FloydZ/NNAlgorithm.

2.5 Legendre Pseudorandom Function

In the last chapter of this work, the Legendre pseudorandom function is analyzed. For
our purpose, a sufficient definition of a pseudorandom function (PRF) is as follows. Let
fk : X 7→ Y be, s.t. fk is efficiently computable ∀x ∈ X and computationally indistinguishable
from a randomly chosen function f : X 7→ Y .

Before proceeding, it is important to provide a brief review of the definition of the Legendre
symbol for the reader’s convenience. The Legendre symbol is defined as follows: Let p be a
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prime, and let x ∈ Fp. Then

(
x

p

)
=


0 if x = 0
1 if x is a quadratic residue
−1 else.

This leads to the following definition.

Definition 8 (Legendre Function). Let k ∈ Fp be a secret key. The Legendre PRF is defined
as Lk : Fp → {−1, 0, 1},

Lk(x) :=
(

x + k

p

)
.

This PRF construction was already proposed in 1987 by Damgård [Dam88]. Given oracle
access to this function, the problem at hand is to find the secret key k. Note that Lk(x) = 0
if and only if x = p− k, so it is easy to check whether x ∈ Fp is the secret key.

The Legendre PRF has recently attracted renewed attention due to its potential use
in various applications, including multi-party computation [GRR+16] and quantum secure
signature schemes [BD20]. Additionally, the Ethereum 2.0 protocol [Fou20a,Fou20b], which
has been designed to increase transaction throughput and achieve competitiveness with modern
credit card systems, relies on the Legendre PRF as an efficient and fast pseudorandom function
in their Proof-of-Stake mechanism. However, if the Legendre PRF fails to provide sufficient
security, a malicious user could potentially steal the stake of an honest user, making it crucial
to assess the security of this newly proposed PRF. Moreover, given the large user base of the
Ethereum blockchain, an attacker might be interested in stealing the secret keys of a few users
without any preference for which ones. Hence, it is natural to inquire whether the attack
can be accelerated with access to multiple keys. This work presents three distinct attacks
on the Legendre PRF. The first two leverage precomputation, whether an attacker wants to
recover a single key or multiple keys. The last attack of the chapter focuses on the multi key
setting with no precomputation. This is realized via the method of distinguished points by
van Oorschot and Wiener [vW99]. All the algorithms discussed have been implemented and
are publicly available at https://github.com/FloydZ/prep-legendre.

39

https://github.com/FloydZ/prep-legendre


40



3 McEliece Needs a Break – Solving
McEliece-1284 and Quasi-Cyclic-2918
with Modern ISD

With the recent shift to post-quantum algorithms it becomes increasingly important to
provide precise bit-security estimates for code-based cryptography such as McEliece and
quasi-cyclic schemes like BIKE and HQC. While there has been significant progress on
information set decoding (ISD) algorithms within the last decade, it is still unclear to which
extent this affects current cryptographic security estimates.

We provide the first concrete implementations for representation-based ISD, such as
May-Meurer-Thomae (MMT) or Becker-Joux-May-Meurer (BJMM), that are parameter-
optimized for the McEliece and quasi-cyclic setting. Although MMT and BJMM consume
more memory than naive ISD algorithms like Prange, we demonstrate that these algorithms
lead to significant speedups for practical cryptanalysis on medium-sized instances (around
60 bit). More concretely, we provide data for the record computations of McEliece-1223
and McEliece-1284 (old record: 1161), and for the quasi-cyclic setting up to code length
2918 (before: 1938).

Based on our record computations we extrapolate to the bit-security level of the proposed
BIKE, HQC and McEliece parameters in NIST’s standardization process. For BIKE/HQC,
we also show how to transfer the Decoding-One-Out-of-Many (DOOM) technique to
MMT/BJMM. Although we achieve significant DOOM speedups, our estimates confirm
the bit-security levels of BIKE and HQC.

For the proposed McEliece round-3 192 bit and two out of three 256 bit parameter sets,
however, our extrapolation indicates a security level overestimate by roughly 20 and 10
bits, respectively, i.e., the high-security McEliece instantiations may be a bit less secure
than desired.

The content of this Chapter is the result of a collaboration with Andre Esser
and Alexander May. It previously appeared as McEliece Needs a Break – Solving
McEliece-1284 and Quasi-Cyclic-2918 with Modern ISD in EuroCrypt 2022 and
is reproduced here with permission.

3.1 Introduction

For building trust in cryptographic instantiations it is of utmost importance to provide a
certain level of real-world cryptanalysis effort. Code-based cryptography is usually build on
the difficulty of correcting errors in binary linear codes. Let C be a binary linear code of length
n and dimension k, i.e., C is a k-dimensional subspace of Fn

2 . We denote by H ∈ F(n−k)×n
2 a

parity-check matrix of C, thus we have Hc = 0 for all c ∈ C.
Let x = c + e be an erroneous codeword with error e of small known Hamming weight

ω = wt(e). Let s := Hx = He denote the syndrome of x. Then decoding x is equivalent to
the recovery of the weight-ω error vector from He = s.
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Permutation-Dominated ISD – Prange. Let P ∈ Fn×n
2 be a permutation matrix. Then

(HP )(P −1e) = H̄ ē = s is another weight-ω decoding instance with permutated solution
ē = P −1e.

Assume that ē = (e1, e2) with e2 = 0k. An application of Gaussian elimination G ∈
F(n−k)×(n−k)

2 on the first n− k columns of H̄ yields

GH̄ ē = (In−kH ′)ē = e1 + H ′e2 = e1 = Gs. (3.1)

Thus, from wt(Gs) = ω we conclude that ē = (Gs, 0k) and e = P ē.
In summary, if we apply the correct permutation P that sends all weight ω to the first

n− k coordinates, then we decode correctly in polynomial time. This is why the first n− k
coordinates are called an information set, and the above algorithm is called information set
decoding (ISD). This ISD algorithm, due to Prange [Pra62], is the main tool for estimating
the security of code-based cryptography such as McEliece and BIKE/HQC.

We would like to stress that the complexity of Prange’s algorithm is mainly dominated
by finding a proper permutation P , which takes super-polynomial time for cryptographic
instances. All other steps of the algorithm are polynomial time. This is why we call Prange a
permutation-dominated ISD algorithm. A permutation-dominated ISD performs especially
well for small weight errors e and large co-dimension n− k. More precisely, we have to find a
permutation P that sends all weight ω to the size-(n − k) information set, which happens
with probability

Pr[P good] =
(n−k

ω

)(n
ω

) = (n− k)(n− k − 1) . . . (n− k − ω + 1)
n(n− 1) . . . (n− ω + 1) .

Let ω = o(n), and let us denote C’s rate by R = k
n . Then Prange’s permutation-based ISD

takes up to polynomial factors expected running time

T = 1
Pr[P good] ≈

( 1
1−R

)ω

. (3.2)

Modern Enumeration-Dominated ISD – MMT/BJMM. The core idea of all ISD im-
provements since Prange’s algorithm is to allow for some weight p > 0 outside the information
set. Thus we allow in Equation (3.1) that wt(e2) = p, and have to enumerate H ′e2. However,
the cost of enumerating H ′e2 may be well compensated by the larger success probability of a
good permutation

Pr[P good] =
(n−k

ω−p

)(k
p

)(n
ω

) .

Indeed, modern ISD algorithms like MMT [MMT11] and BJMM [BJMM12] use the repre-
sentation technique to heavily speed up enumeration. In the large weight regime ω = Θ(n),
parameter optimization of MMT/BJMM yields that these ISD algorithm do not only bal-
ance the cost of permutation and enumeration, but their enumeration is so efficient that it
eventually almost completely dominates their runtime. This is why we call these algorithms
enumeration-dominated ISD.

The large error regime ω = Θ(n) is beneficial for MMT/BJMM, since for large-weight
errors e it becomes hard to send all weight to the information set, and additionally a large-
weight e introduces a large number of representations. From a cryptographic perspective
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however it remains unclear if MMT/BJMM also offer speedups for concrete cryptographic
instances of interest.

Main question: How much improve modern enumeration-based ISD algorithms
cryptanalysis of code-based crypto in practice (if at all)?

What makes this question especially hard to answer is that as opposed to permutation-
based ISD, all enumeration-based ISD algorithms require a significant amount of memory.
Thus, even if enumeration provides significant speedups it is unclear if it can compensate
for the introduced memory access costs. As a consequence, the discussion of enumeration-
based ISD in the NIST standardization process of McEliece already led to controversial
debates [Var21b,Var21a]. We would like to stress that up to our work, all decoding records
on decodingchallenge.org have been achieved either using Prange’s permutation-based ISD, or
Dumer’s first generation enumeration-based ISD [Dum91].

In the asymptotic setting, Canto-Torres and Sendrier [TS16a] showed that all enumeration-
dominated ISD approaches offer in the small-weight setting ω = o(n) only a speedup from T
in Equation (3.2) to T 1−o(1), i.e., the speedup asymptotically vanishes. While this is good
news for the overall soundness of our cryptographic constructions, it tells us very little about
the concrete hardness of their instantiations.

Recently, Esser and Bellini [EB22] pursued a more practice-oriented approach by providing
a concrete code estimator, analogous to the successfully applied lattice estimators [APS15].
Their code estimator also serves us as a basis for optimizing our ISD implementations. However,
such an estimator certainly fails to model realistic memory access costs.

3.1.1 Our Contributions

Fast enumeration-dominated ISD implementation. We provide the first efficient,
freely available implementation of MMT/BJMM, i.e., a representation-based enumeration-
dominated ISD. Our implementation uses depth 2 search-trees, which seems to provide best
results for the cryptographic weight regime. For the cryptographic instances that we attack
we used weight p = 4 for McEliece with code length up to 1284, and p = 3 for BIKE/HQC.
However, our benchmarking predicts that McEliece with code length larger than 1350 should
be attacked with significantly larger weight p = 8. Our code is publicly available on GitHub.1

In comparison to other available implementations of (first-generation) enumeration-based
ISD algorithms, our implementation performs significantly faster. Our experimental results
demonstrate that in cryptanalytic practice even moderately small instances of McEliece can
be attacked faster using modern enumeration-based ISD.

So far, our efforts to additionally speed up our enumeration-based ISD implementations
with localilty-sensitive hashing (LSH) techniques [MO15,BM18] did not succeed. We discuss
the reasons in Section 3.3.3.

Real-world cryptanalysis of medium-sized instances. For building trust in the bit-
security level of cryptographic instances, it is crucial to solve medium-sized instances, e.g.
with 60 bit security. This gives us stable data points from which we can more reliably
extrapolate to high security levels. An example of good cryptanalysis practice is the break of
RSA-768 [KAF+10] that allows us to precisely estimate the security of RSA-1024.

Before our work, for McEliece the record code length n = 1161 on decodingchallenge.org
was reported by Narisada, Fukushima, Kiyomoto with an estimated bit-security level of 56.0.
1 https://github.com/FloydZ/decoding
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We add two new records McEliece-1223 and McEliece-1284 with estimated bit-security levels
of 58.3 and 60.7, respectively. These record computations took us approximately 5 CPU years
and 22 CPU years.

As a small technical ingredient to further speed up our new MMT/BJMM implementation,
we show how to use the parity of ω to increase the information set size by 1, which saved us
approximately 9% of the total running time.

For the quasi-cyclic setting we improved the previously best code length 1938 of Bossard [ALL19]
with 6400 CPU days to the five new records 2118, 2306, 2502, 2706, and 2918. The last has a
bit-security level of 58.6, and took us (only) 1700 CPU days.

As a technical contribution for the quasi-cyclic setting, we show how to properly generalize
the Decoding-One-Out-of-Many (DOOM) strategy to the setting of tree-based enumeration-
dominated ISD algorithms. Implementing our DOOM strategy gave us roughly a

√
n− k

experimental speedup, where n− k = n/2 is the co-dimension in the quasi-cyclic setting. This
coincides with our theoretical analysis, see Section 3.5.1.

Our real-world cryptanalysis shows that memory access certainly has to be taken into
account when computing bit-security, but it might be less costly than suggested. More
precisely, our ISD implementations support the so-called logarithmic cost model, where an
algorithm with time T and memory M has cost T · log2 M .

Solid bit-security estimations for McEliece and BIKE/HQC. Based on our record
computations and further extensive benchmarking for larger dimensions, we extrapolate to
the proposed round-3 McEliece and BIKE/HQC instances. To this end, we also estimate via
benchmarking the complexity of breaking AES-128 (NIST Category 1), AES-192 (Category
3) and AES-256 (Category 5) on our hardware.

For McEliece, we find that in the logarithmic cost model the Category 1 instance
mceliece348864 achieves quite precisely the desired 128-bit security level, whereas the Cate-
gory 3 instance (mceliece460896) and two out of three Category 5 instances (mceliece6688128
and mceliece6960119) fail to reach their security level by roughly 20 and 10 bit, even when
restricting our attacks to a memory upper limit of M ≤ 280. Hence, these instances seem to
overestimate security.

For BIKE/HQC, our extrapolation shows that the proposed round-3 instances achieve
their desired bit-security levels quite accurately.

Discussion of our results. In our opinion, the appearance of a small security gap for
McEliece and no security gap for BIKE/HQC is due to the different weight regimes. Whereas
BIKE/HQC use small weight ω =

√
n, McEliece relies on Goppa codes with relatively large

weight ω = Θ(n/ log n),
Both the BIKE/HQC and McEliece teams use the asymptotic formula from Equation (3.2)

to analyze their bit-security, which is the more accurate the smaller the weight ω. Hence,
while in the BIKE/HQC setting the speedups that we achieve from enumeration-dominated
ISD in practice are compensated by other polynomial factors (e.g. Gaussian elimination),
in McEliece’s (large) weight regime the speedups are so significant that they indeed lead to
measurable security losses.

Comparison to previous security estimates. Baldi et al. [BBC+19] and more recently
Esser and Bellini [EB22] already provide concrete bit security estimates for code-based NIST
candidates. Further, Esser and Bellini introduce new variations of the BJMM and MMT
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algorithm based on nearest neighbor search, which however did not result in practical gains
for our implementation (see Section 3.3.3 for details).

Both works [BBC+19, EB22] take into account memory access costs. While [BBC+19]
uses a logarithmic cost model, [EB22] considers three models (constant, logarithmic, and
cube-root). As opposed to our work, [BBC+19,EB22] both solely rely on the computation of
runtime formulas.

Our work extends and specifies these estimates in the following way. For the first time,
we establish with our record computations solid experimental data points for the hardness
of instances with roughly 60 bits security. Moreover, our implementation for the first time
allows us to identify a proper memory access model that closely matches our experimental
observations. Based on our data points, we extrapolate to NIST parameters of cryptographic
relevance, using an estimator like [EB22] with the proper memory access model choice. This
eventually allows for a much more reliable security estimate.

3.2 The MMT/BJMM Algorithm
Let us briefly recap the MMT and BJMM algorithm. From an algorithmic point of view
both algorithms are the same. The benefit from BJMM over MMT comes from allowing
a more fine-grained parameter selection. In our practical experiments, we mainly used the
simpler MMT parameters. Therefore, we refer to our implementation as MMT in the simple
parameter setting, and as BJMM in the fine-grained parameter setting.

Main idea. Let He = s be our syndrome decoding instance with parity check matrix
H ∈ F(n−k)×n

2 , unknown error e ∈ Fn
2 of known Hamming weight ω, and syndrome s ∈ Fn−k

2 .
As usual in information set decoding, we use some permutation matrix P ∈ Fn×n

2 to send
most of the weight ω to the information set. Let H̄ = HP and ē = P −1e. Then, obviously
s = H̄ ē.

MMT/BJMM now computes the semi-systematic form as originally suggested by Dumer [Dum91].
To this end, fix some parameter ℓ ≤ n− k. Let ē = (e1, e2) ∈ Fn−k−ℓ

2 × Fk+ℓ
2 , and assume for

ease of exposition that the first n− k− ℓ columns of H̄ form a full rank matrix. Then we can
apply a Gaussian elimination G ∈ F(n−k)×(n−k)

2 that yields

s̄ := Gs = GH̄ ē =
(

In−k−ℓ H1
0 H2

)
= (e1 + H1e2, H2e2) ∈ Fn−k−ℓ

2 × Fℓ
2. (3.3)

Let s̄ = (s1, s2) ∈ Fn−k−ℓ
2 × Fℓ

2. From Equation (3.3) we obtain the identity s2 = H2e2.
MMT/BJMM constructs e2 of weight p satisfying s2 = H2e2. Notice that for the correct e2
we directly obtain from Equation (3.3) that

e1 = s1 + H1e2. (3.4)

Since we know that wt(e1) = ω − p, MMT/BJMM checks for correctness of e2 via wt(s1 +
H1e2) ?= ω − p.

Tree-based recursive construction of e2 using representations. For the tree-based
construction of e2 the reader is advised to closely follow Figure 3.1. Here, we assume
at least some reader’s familiarity with the representation technique, otherwise we refer
to [HJ10,MMT11] for an introduction.
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Figure 3.1: Search tree of the MMT algorithm. Striped areas indicate matching of the last coordinates
of Hxi or H(x1 + x2) with some predefined values.

We write e2 as a sum e2 = x1 + x2 with x1, x2 ∈ Fk+ℓ
2 and wt(x1) = wt(x2) = p1. In

MMT we choose p1 = p/2, whereas in BJMM we allow for p1 ≥ p/2 s.t. a certain amount of
one-coordinates in x1, x2 has to cancel in their F2-sum.

The number of ways to represent the weight-p e2 as a sum of two weight-p1 x1, x2, called
the number of representations, is

R =
(

p

p/2

)(
k + ℓ− p

p1 − p/2

)
.

However, it suffices to construct e2 from a single representation (x1, x2). Recall from
Equation (3.4) that we have

H2x1 = H2x2 + s2 ∈ Fℓ
2.

Notice that we do not know the value of H2x1. Let us define ℓ1 := ⌊log2(R)⌋. Since there
exist R representations (x1, x2) of e2, we expect that for any fixed random target vector
t ∈ Fℓ1

2 and any projection π : Fℓ
2 → Fℓ1

2 on ℓ1 coordinates (e.g. the last ℓ1 bits), there is on
expectation at least one representation (x1, x2) that satisfies

π(H2x1) = t = π(H2x2 + s2).

We construct all x1 satisfying π(H2x1) = t in a standard Meet-in-the-Middle fashion. To this
end, we enumerate vectors of length k+ℓ

2 and weight p2 := p1
2 in baselists L1, L2. Analogously,

we find all x2 that satisfy π(H2x2 + s2) via a Meet-in-the-Middle from baselists L3, L4, see
Figure 3.1.

The resulting MMT/BJMM algorithm is described in Algorithm 7.

Runtime analysis. For every permutation P , MMT/BJMM builds the search tree from
Figure 3.1. P has to send weight ω− p to the information set of size n− k− ℓ which happens
with probability

q := Pr[P good] =
(n−k−ℓ

ω−p

)(k+ℓ
p

)(n
ω

) . (3.5)
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Algorithm 7: MMT Algorithm
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , w ∈ N

Output : e ∈ Fn
2 , He = s

1 begin
2 Choose optimal ℓ, p, p2

3 Set ℓ1 = ⌊
( p

p/2
)(k+ℓ−p

p1−p/2
)
⌋ and p1 = 2p2

4 repeat
5 choose random permutation matrix P

6 H̄ =
(

In−k−ℓ H1
0 H2

)
= GHP in semi-systematic form

7 s̄ = (s1, s2) = Gs
8 Compute

L1 = L3 = {(y1, H2y1) |y1 ∈ F(k+ℓ)/2
2 × 0(k+ℓ)/2, wt(y1) = p2}

L2 = {(y2, H2y2) |y2 ∈ 0(k+ℓ)/2 × F(k+ℓ)/2
2 , wt(y2) = p2}

L4 = {(y2, H2y2 + s2) |y2 ∈ 0(k+ℓ)/2 × F(k+ℓ)/2
2 , wt(y2) = p2}

9 Choose some random t ∈ Fℓ1
2

10 Compute
L

(1)
1 = {(x1, H2x1) | π(H2x1) = t, x1 = y1 + y2} from L1, L2

L
(1)
2 = {(x2, H2x2 + s2) | π(H2x2 + s2) = t, x2 = y1 + y2} from L3, L4

11 Compute L = {e2 | H2e2 = s2, e2 = x1 + x2} from L
(1)
1 , L

(2)
2

12 for e2 ∈ L do
13 e1 = H1e2 + s1
14 if wt(e1) ≤ ω − p then
15 return P −1 (e1, e2)
16 end
17 end
18 end

The tree construction works in time Tlist, which is roughly linear in the maximal list size in
Figure 3.1. Let |Li| denote the common list base size. Then it is not hard to see that the
overall expected runtime can be bounded by

T = q−1 · Õ (Tlist) , where Tlist = max
{
|Li|,

|Li|2

2ℓ1
,
|Li|4

2ℓ+ℓ1

}
.

Part of the strength of our MMT/BJMM implementation in the subsequent section is to
keep the polynomial factors hidden in the above Õ (·)-notion small, e.g. by using a suitable
hash map data structure.

Locality-Sensitive Hashing (LSH). Most recent improvements to the ISD landscape
[MO15,BM18] use nearest neighbor search techniques to speed-up the search-tree computation.
We also included LSH techniques in our implementation. However for the so far benchmarked
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code dimensions, LSH did not (yet) lead to relevant speedups. See Section 3.3.3 for further
discussion on LSH.

3.3 Implementing MMT/BJMM Efficiently
In Section 3.3.1 we introduce an elementary, but at least for McEliece practically effective
decoding trick. We then detail our MMT/BJMM implementation in Section 3.3.2

3.3.1 Parity Bit Trick

Let us introduce a small technical trick to speed up ISD algorithms, whenever the weight of the
error vector is known. Known error weight is the standard case in code-based cryptography.
The trick is so elementary that we would be surprised if it was missed in literature so far, but
we failed to find a reference, let alone some proper analysis.

Let He = s be our syndrome decoding instance, where ω is the known error weight of e.
Then certainly

⟨1n, e⟩ = ω mod 2.

Thus, we can initially append to the parity-check matrix the row vector 1n, and append to s
the parity bit ω mod 2.

Notice that this parity bit trick increases the co-dimension by 1, and therefore also the size
of the information set. For Prange’s permutation-dominated ISD this results in a speedup of(n

ω

)(n−k
ω

) · (n−k+1
ω

)(n
ω

) =
(n−k+1

ω

)(n−k
ω

) .

The speedup for Prange with parity bit is the larger the smaller our co-dimension n− k is.
For McEliece with small co-dimension and our new record instance (n = 1284, k = 1028, ω =
24) we obtain more than a 10% speedup, and for the proposed round-3 McEliece parameter
sets it is in the range 8-9 %. If instead of Prange’s algorithm we use the MMT/BJMM variant
that performed best in our benchmarks then the speedup is still in practice a remarkable 9%
for the n = 1284 instance, and 6-7% for the round-3 parameter sets.

For BIKE and HQC with large co-dimension n− k = n
2 and way bigger n, the speedup

from the parity bit goes down to only 0.5-1%.

3.3.2 Implementation

Parameter Selection and Benchmarking.

As seen in Section 3.3 and Algorithm 7, the MMT/BJMM algorithm —even when limited
to depth 2 search trees— still has to be run with optimized parameters for the weights on
all levels of the search tree, and an optimized ℓ. We used an adapted formula based on the
syndrome decoding estimator tool by Esser and Bellini [EB22] that precisely reflects our
implementation to obtain initial predictions for those parameters on concrete instances. We
then refined the choice experimentally.

To this end, we measure the number of iterations per second our cluster is able to process
for a specific parameter configuration. We then calculate the expected runtime to solve
the instance as the number of expected permutations q−1 (from Equation (3.5)) divided
by the number of permutations per second. We then (brute-force) searched for an optimal
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configuration in a small interval around the initial prediction that minimizes the expected
runtime.

For instances with McEliece code length n ≤ 1350 we find optimality of the most simple
non-trivial MMT weight configuration with weight p2 = 1 for the baselists L1, . . . , L4 on level
2, weight p1 = 2 in level 1, and eventually weight p = 4 on level 0 in Figure 3.1. We refer to
the weight configuration p2 = 1 in the baselists as the low-memory configuration. Recall that
for p2 = 0 MMT becomes Prange’s algorithm, and therefore is a memory-less algorithm.

We call configurations with p2 ∈ {2, 3} high-memory configurations. The choice p2 = 3
already requires roughly 40 gigabytes of memory. Increasing the weight to p2 = 4 would
increase the memory consumption by another factor of approximately 211.

Gaussian Elimination.

For the Gaussian elimination step we use an open source version [AB21] of the Method
of the four Russians for Inversion (M4RI), as already proposed by Bernstein et al. and
Peters [BLP08,Pet10]. According to [Bar07] the M4RI algorithm is preferable to other advanced
algorithms like Strassen [Str69] up to matrices of dimension six-thousand. We extended
the functionality of [AB21] to allow for performing a transformation to semi-systematic
form, without fully inverting the given matrix. Even for small-memory configurations the
permutation and Gaussian elimination step together only account for roughly 2-3% of our
total computation time. Therefore we refrain from further optimizations of this step, as
introduced in [BLP08,Pet10].

Search Tree Construction.

To save memory, we implemented the search tree from Figure 3.1 in a streaming fashion, as
already suggested by Wagner in [Wag02]. See Figure 3.2 for an illustration showing that we
have to store only two baselists and one intermediate list.

Our implementation exploits that L1 = L3, and L2 and L4 only differ by addition of s2 to
the label H2y2. To compute the join of L1, L2 to L

(1)
1 we hash list L1 into a hashmap HL1

using π(H2y1) as an index. Then we search each label π(H2y2) of list L2 in HL1 , and store
all resulting matches in another hashmap H

L
(1)
1

using the remaining ℓ− ℓ1 bits of label H2x2.
For the right half of the tree we reuse the hashmap HL1 and the list L2, to which we add

s2. The resulting matches from L
(1)
2 are directly processed on-the-fly with H

L
(1)
1

, producing
e2 ∈ L.The candidates e2 are again processed on the fly, and checked whether they lead to
the correct counterpart e1.

For speed optimization we worked with a single 64-bit register computation of our candidate
solutions throughout all levels of the tree. Even eventually falsifying incorrect e1 can be
performed within 64 bit most of the time. For construction of the baselists L1, L2 we used a
Gray-code type enumeration.

Parallelization of Low- and High-Memory Configuration.

Recall that ISD algorithms consist of a permutation and an enumeration part. In the low-
memory regime, we only perform a light enumeration with p2 = 1. The algorithmic complexity
is in this configuration dominated by the number of permutations. Therefore, we choose
to fully parallelize permutations, i.e., each thread computes its own permutation, Gaussian
elimination, and copy of the search tree.
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Figure 3.2: Streaming implementation of the MMT / BJMM search tree in depth two using two
physically stored lists and hashmaps. HL1 and H

L
(1)
1

denote the hashmaps, while dashed lists and
hashmaps are processed on the fly.

In the high memory regime however, the number of permutations is drastically reduced at
the cost of an increasing enumeration complexity. Therefore for the p2 = 2, 3 configurations
we choose to parallelize the search tree construction. To this end, we parallelize among N
threads by splitting the baselist into N chunks of equal size. To prevent race conditions, every
bucket of a hashmap is also split in N equally sized partitions, where only thread number i
can insert into partition i.

3.3.3 Other Benchmarked Variants – Depth 3 and LSH

It is known that asymptotically, and in the high error regime, an increased search tree depth
and the use of LSH techniques [MO15, BM18] both yield asymptotic improvements. We
implemented these techniques, but for the following reasons we did not use them for our
record computations.

The estimates for depth 2 and 3 complexities are rather close, not giving clear favour
to depth 3. This explains why in practice the overhead of another tree level outweighs its
benefits.

LSH allows to save on some permutations at the cost of an increased complexity of
computing L from the level-one lists L

(1)
1 , L

(2)
2 . Accordingly, the LSH savings lie in the

Gaussian elimination, the base list construction and the matching to level one. Our benchmarks
reveal that these procedures together only account for 10-15% of the total running time in
the low-memory setting. Moreover, LSH is not well compatible with our streaming design.
Therefore, LSH did not yet provide speedups for our computations, but this will likely change
for future record computations, see the discussion in Section 3.4.2.
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3.4 McEliece Cryptanalysis

In this section we give our experimental results on McEliece instances. Besides giving
background information on our two record computations, we discuss how good different
memory cost models fit our experimental data.

Moreover, we show that MMT reaches its asymptotics slowly from below, which in turn
implies that purely asymptotic estimates tend to overestimate bit security levels. We eloborate
on how to properly estimate McEliece bit security levels in Section 3.7.

For our computations we used a cluster consisting of two nodes, each one equipped with 2
AMD EPYC 7742 processors and 2 TB of RAM. This amounts for a total of 256 physical
cores, allowing for a parallelization via 512 threads.

3.4.1 Record Computations

Table 3.1 states the instance parameters of our records we achieved in the McEliece-like
decoding category of decodingchallenge.org.

n k ω time
(days)

CPU years bit
complexity

1223 979 23 2.45 1.71 58.3
1284 1028 24 31.43 22.04 60.7

Table 3.1: Parameters of the largest solved McEliece instances, needed wallclock time, CPU years and
bit complexity estimate.

McEliece-1223.

We benchmarked an optimal MMT parameter choice of (ℓ, ℓ1, p, p2) = (17, 2, 4, 1). With this
low-memory configuration our computing cluster processed 233.32 permutations per day, which
gives an expected computation time of 8.22 days, since in total we expect 236.36 permutations
from Equation (3.5). We solved the instance in 2.45 days, only 30% of the expected running
time. If we model the runtime as a geometrically distributed random variable with parameter
q = 2−36.36, then we succeed within 30% of the expectation with probability 26%.

McEliece-1284.

Our benchmarks identified the same optimal parameter set (ℓ, ℓ1, p, p2) = (17, 2, 4, 1) as for
McEliece-1223. For this configuration our estimator formula yields an expected amount of
238.49 permutations. We benchmarked a total performance of 233.26 permutations per day,
leading to an expected 37.47 days. We solved the challenge within 31.43 days which is about
84% of the expected running time, and happens with probability about 57%.

Experimental Results and Discussion.

In Figure 3.3, we plot our record computations as squares. Before we performed our record
computations, we heavily tested our implementation with smaller instances n < 1000. As
before, we computed the expected running time for every value of n, denoted as larger open
diamonds in Figure 3.3, via the quotient of expected permutations and permutations per
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Figure 3.3: Running time of experiments and records as well as interpolation for McEliece.

second on our cluster. The small diamonds depict the actual data points which cluster around
their expectation, as desired.

The runtime jumps from n = 695 to n = 751 and from n = 982 to n = 1041 can be
explained by the instance generation method. For every choice of n the parameters k and ω

are derived on decodingchallenge.org as (see [ALL19]) k =
⌈

4n
5

⌉
and ω =

⌈
n

5⌈log n⌉

⌉
.

For most consecutive instances ω increases by one, but for n = 695 to n = 751 there is an
increase of 2, whereas for n = 982 to n = 1041 there is a decrease of 1. Besides these jumps,
the instance generation closely follows the Classic McEliece strategy.

Comparison with other Implementations.

We also compare our implementation to those of Landais [Lan12] and Vasseur [Vas]. These
implementations were used to break the previous McEliece challenges, with the only exception
of the n = 1161 computation by Narisada, Fukushima, and Kiyomoto that uses non-publicly
available code. We find that our implementation performs 12.46 and 17.85 times faster on
the McEliece-1284 challenge and 9.56 and 20.36 times faster on the McEliece-1223 instance
than [Lan12] and [Vas], respectively.

3.4.2 The Cost of Memory

Not very surprising, our experimental results show that large memory consumption leads to
practical slowdown. This is in line with the conclusion of the McEliece team [CCU+20] that
a constant memory access cost model, not accounting for any memory costs, underestimates
security. However, this leaves the question how to properly penalize an algorithm with
running time T for using memory M . Most prominent models use logarithmic, cube-root or
square-root penalty factors, i.e. costs of T · log M , T · 3√M or T ·

√
M , respectively.

In [EB22] it was shown that logarithmic costs do not heavily influence parameter selection
of enumeration-based ISD algorithms, whereas cube-root costs let the MMT advantage
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deteriorate. Thus, it is crucial to evaluate which cost model most closely matches experimental
data.

Break-Even Point for High-Memory Regime.

Using our estimator formula we find that under cube-root memory access costs the point
where the low-memory configuration p2 = 1 becomes inferior lies around n = 6000, falling in
the 256-bit security regime of McEliece. In contrast, the logarithmic cost model predicts the
break even point at n ≥ 1161.
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Figure 3.4: Estimated running times for low- and high-memory configurations.

By benchmarking the running time of our implementation in the range n = 1101 to
1536 for different choices of p2, see Figure 3.4, we experimentally find a break even point
at n ≈ 1400. For n ≥ 1400 the choice p2 = 3 performs best. The configuration p2 = 2 was
experimentally always inferior to p2 = 1 and p2 = 3 (which is consistent with our estimation).
The reason is that as opposed to p2 = 2 the configuration p2 = 3 does allow for a BJMM
parameter selection with p = 8 < 4p2, and also leads to a better balancing of list sizes in the
search tree.

In conclusion, the experimentally benchmarked break-even point is way closer to the
theoretical point of n = 1161 in the logarithmic cost model than to n = 6000 in the cube-root
model. This already supports the use of logarithmic costs, especially when we take into
account that many of our implementation details heavily reward the use of low-memory
configurations, such as:

• Large L3 Caches. Our processors have an exceptionally large L3 cache of 256 MB that
is capable of holding our complete lists in low-memory configurations.

• Use of Hashmaps. As indicated in Section 3.3.2, our parallelization is less effective e.g.
for hashmaps in the large-memory regime.

• Communication complexity. As opposed to low-memory configurations the high-memory
regime requires thread communication for parallelization.
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3.4.3 McEliece Asymptotics: From Above and from Below

It was analyzed in [TS16a], that asymptotically all ISD algorithms converge for McEliece
instances to Pranges complexity bound(

1− k

n

)ω

, see Equation (3.2).

Since we have rate k
n = 0.8 for the decodingchallenge.org parameters, we expect an asymptotic

runtime of
T (n) = 22.32 n

log n . (3.6)
This asymptotic estimates supresses polynomial factors. Thus, in Prange’s algorithm we
have rather 22.32(1+o(1)) n

log n , and the algorithm converges to Equation (3.6) from above. For
other advanced ISD algorithms the asymptotics suppresses polynomial runtime factors as well
as second order improvements. Thus, they have runtime 22.32(1±o(1)) n

log n , and it is unclear
whether they converge from above or below.

Let us take the interpolation line from our data in Figure 3.3, where we use for the runtime
exponent the model function f(n) = a · n

5 log n + b. The interpolation yields

a = 2.17 and b = −22.97,

where the negative b accounts for instances which can be solved in less than a second. The
small slope a experimentally demonstrates that the convergence is clearly from below, even
including realistic memory cost.

However, we still want to find the most realistic memory cost model. To this end, we
used our estimator for all instances from Figure 3.3 in the three different memory access
models, constant, logarithmic and cube-root. The resulting bit complexities are illustrated
in Figure 3.5 in a range n ∈ [640, 1536] for which in practice we have optimal p2 ≤ 3. For
each model we computed the interpolation according to f(n) = a · n

5 log n + b. For a constant
access cost we find a = 2.04, for a logarithmic a = 2.13, and for the cube-root model we find
a = 2.24. Hence, again a logarithmic access cost most accurately models our experimental
data.

Cryptographic Parameters.

So far, we considered only instances with n ≤ 1536. However, the current round 3 McEliece
parameters reach up to code length n = 8192. Thus, we also used our estimator to check the
slopes a in this cryptographic regime. We compared the ISD algorithms of Prange, Stern and
our MMT/BJMM variant. For all algorithms we imposed logarithmic memory access costs
T · log M and considered the three cases of unlimited available memory, as well as 280-bit and
260-bit as memory limitation for M . The results for the exponent model f(n) = a · n

5 log n + b
are given in Table 3.2.

We observe that Prange does not quickly converge to Equation (3.2) from above. For
Stern and MMT however we are even in the most restrictive memory setting below the
exponent from Equation (3.2). This clearly indicates an overestimate of McEliece security
using Equation (3.2). We eloborate on this more qualitatively in Section 3.7.

3.5 The Quasi-Cyclic Setting: BIKE and HQC
The proposals of BIKE and HQC —both alternate finalists of the NIST PQC competition—
use double circulant codes with code rate 1

2 , i.e., n = 2k. It has been shown by Sendrier [Sen11]
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Figure 3.5: Estimated bitcomplexities for different memory access cost models and corresponding
interpolations.

Prange Stern MMT

unlimited 2.438 2.297 2.075
M ≤ 280 2.438 2.299 2.207
M ≤ 260 2.438 2.308 2.287

Table 3.2: Slope of interpolation of bitcomplexities under logarithmic memory access costs considering
instances with n ≤ 8192 according to the model function f(n) = a · n

5 log n + b.

that these codes allow for a speedup of Stern’s ISD algorithm by a factor of up to
√

k. The
basic observation is that the cyclicity immediately introduces k instances of the syndrome
decoding problem, where a solution to any of the k instances is a cyclic rotation of the original
solution. Thus, this technique is widely known as Decoding One Out of Many (DOOM).

Let H1, H2 ∈ Fk×k
2 be two circulant matrices satisfying(

H1 H2
)

(e1, e2) = s

with e1, e2 ∈ Fk
2. Let us denote by roti(x) the cyclic left rotation of x by i positions. Then

for any i = 0, . . . , k − 1 we have(
H1 H2

)
(roti(e1), roti(e2)) = roti(s) =: si.

This implies that a solution to any of the k instances (H1H2, si, ω) yields (e1, e2).
Note that in the special case of s = 0, thus, when actually searching for a small codeword

the instances are all the same, meaning there simply exist k different solutions e. In this case
any ISD algorithm obtains a speedup of k.

For s ̸= 0 one usually assumes a speedup of
√

k in the quasi-cyclic setting, referring to
Sendrier’s DOOM result [Sen11]. However, [Sen11] only analyzes Stern’s algorithm.

In the following section we adapt the idea of Sendrier’s DOOM to the MMT/BJMM
algorithm in the specific setting of double circulant codes, achieving speedups slightly larger
than

√
k both in theory and practical experiments.
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3.5.1 Decoding one out of k (DOOMk)

To obtain a speedup from the k instances we modify the search tree of our MMT/BJMM
variant such that in every iteration all k syndromes are considered. To this end, similar
to Sendrier, we first enlarge list L4 (compare to Figure 3.2) by exchanging every element
(x, Hx) ∈ L4 by (x, Hx + s̄i) for all i = 1 . . . k, where s̄i := Gsi denotes the i-th syndrome
after the Gaussian elimination. This results in a list that is k times larger than L4. To
compensate for this increased list size we enumerate in L4 initially only vectors of weight
p2 − 1 rather than p2.

This simple change already allows for a speedup of our MMT/BJMM algorithm of order√
k, as shown in the following lemma.

Lemma 1 (DOOMk speedup). A syndrome decoding instance with double circulant parity-
check matrix, code rate k

n = 1
2 and error weight ω = Θ(

√
k) allows for a speedup of the

MMT/BJMM algorithm by a factor of Ω(
√

k).

Proof. First note, that since list L4 is duplicated for every syndrome si by the correctness of
the original MMT algorithm our modification is able to retrieve any of the rotated solutions
if permutation distributed the weight properly.

Let us first analyze the impact of our change on the size of the list L4. The decrease of
the weight of the vectors in L4 from p2 to p2 − 1 decreases the size by a factor of

δL :=
((k+ℓ)/2

p2

)
((k+ℓ)/2

p2−1
) =

k+ℓ
2 − p2 + 1

p2
≈ k

2 · p2
,

since ℓ, p2 ≪ k. Thus, together with the initial blowup by k for every syndrome we end up
with a list that is roughly 2p2 times as large as the original list. Next let us study the effect
on the probability of a random permutation distributing the error weight properly for anyone
of the k error vector rotations, which is

δP :=
(n−k−ℓ

ω−p+1
)(k+ℓ

p−1
)
· k/

(n
ω

)(n−k−ℓ
ω−p

)(k+ℓ
p

)
/
(n

ω

) =
(n−k−ℓ

ω−p+1
)(k+ℓ

p−1
)
· k(n−k−ℓ

ω−p

)(k+ℓ
p

) (3.7)

= (k − ℓ− ω + p) · p · k
(ω − p + 1)(k + ℓ− p + 1) = Ω(

√
k). (3.8)

Here the denominator states the probability of a permutation inducing the correct weight
distribution on any of the k syndromes, while the numerator is the probability of success
in any iteration of the MMT algorithm (compare to Equation (3.5)). Observe that the last
equality follows from the fact, that ω = Θ(

√
k) and p≪ ω as well as ℓ≪ k.

So far we showed, that our modification increases the list size of L4 by a small factor of 2p2,
while we enhance the probability of a good permutation for any of the given k instances by a
factor of Ω(

√
k). While in the case of Sterns’ algorithm this is already enough to conclude that

the overall speedup in this setting is Ω(
√

k), as long as p2 ≪ k, for MMT/BJMM we also need
to consider the reduced amount of representations. Note that the amount of representations
decreases from an initial R to Rk, i.e., by a factor of
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Instance log
(√

k
) Speedup

k ω Stern MMT

Challenge-1 451 30 4.41 4.88 4.96
Challenge-2 883 42 4.89 5.39 5.43
QC-2918 1459 54 5.26 5.77 5.77
BIKE-1 12323 134 6.79 7.58 7.47
BIKE-3 24659 199 7.29 8.00 7.55
BIKE-5 40973 264 7.66 8.32 8.06
HQC-1 17669 132 7.05 8.14 8.00
HQC-3 35851 200 7.56 8.55 8.39
HQC-5 57637 262 7.91 8.83 8.66

Table 3.3: Estimated DOOMk speedups for Stern and MMT in the quasi-cyclic setting with double
circulant codes (n = 2k).

δR := Rk

R
=
(p−1

p/2
)(k+ℓ−p+1

p1−p/2
)

( p
p/2
)(k+ℓ−p

p1−p/2
)

= (k + ℓ− p + 1) · p/2
(k + ℓ− p/2− p1 + 1) · p = (k + ℓ− p + 1)

2(k + ℓ− p + 1− ε) ≈
1
2 ,

Here ε = p1−p/2 is the amount of 1-entries added by BJMM to cancel out during addition,
which is usually a small constant. Hence ℓ1 := log R in Algorithm 7 decreases by one. This in
turn increases the time for computing the search-tree by a factor of at most two.

In summary, we obtain a speedup of δP = Ω(
√

k) on the probability while losing a factor
of at most δL

δR
= 4p2 in the construction of the tree. Hence, for MMT/BJMM with p2 ≪

√
k

this yields an overall speedup of Ω(
√

k) .

We included the DOOMk improvement in our estimator formulas for Stern as well as
MMT. Table 3.3 shows the derived estimated speedups. As a result both algorithms Stern
and MMT achieve comparable DOOMk speedups slightly larger than

√
k. Additionally, we

performed practical experiments on the instances listed as Challenge-1 and Challenge-2 to
verify the estimates. Therefore, we solved these instances with MMT with and without
the DOOMk technique. Averaged over ten executions we find speedups of 4.99 and 5.40
respectively (closely matching 4.96 and 5.43 from Table 3.3).

3.6 Quasi-Cyclic Cryptanalysis
In the quasi-cyclic setting we obtained five new decoding records on decodingchallenge.org
with our MMT implementation [ALL19], see Table 3.4. Instances are defined on [ALL19] for
every ω using parameters n = ω2 + 2 and k = n

2 , closely following the BIKE and HQC design.

QC-2918.

The largest instance we were able to solve has parameters (n, k, w) = (2918, 1459, 54), and took
us 3.33 days on our cluster. The optimal identified parameter set is (ℓ, ℓ1, p, p2) = (21, 1, 3, 1),
for which we estimated 231.9 permutations. We were able to perform 229.31 permutations per
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n k ω time
(days)

CPU years bit
complexity

2118 1059 46 0.08 0.05 50.5
2306 1153 48 0.22 0.15 52.5
2502 1459 50 0.30 0.21 54.6
2706 1353 52 1.18 0.83 56.6
2918 1459 54 3.33 2.33 58.6

Table 3.4: Parameters of the largest solved BIKE/HQC instances, needed wallclock time, CPU years
and bit complexity estimates.

day, resulting in an expected running time of 6.02 days. Our computation took only 55% of
the expected time, which happens with probability 42%.
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Figure 3.6: Estimated running times and interpolations for low- and high-memory configurations.

Interpolation.

In Figure 3.6 we give the expected running times that we obtained via benchmarking, both
with (diamonds) and without (triangles) our DOOMk result from Section 3.5.1. Our five
record computations are depicted as squares. All record computations where achieved in a
runtime closely matching the expected values.

In the quasi-cyclic setting with rate k
n = 1

2 and ω =
√

n Prange’s runtime formula
from Equation (3.2) gives 2

√
n. An interpolation of our experimental data points using the

model f(n) = a
√

n + b yields a best fit for

f(n) = 1.01
√

n− 26.42. (3.9)

The slope a = 1.01 shows how accurately our MMT implementation matches the asymptotics
already for medium sized instances, i.e., our MMT advantage and the polynomial runtime
factors almost cancel out.
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Concrete vs Asymptotic.

Similar to the McEliece setting in Section 3.4.3 and in Table 3.2, we also performed for
BIKE/HQC an interpolation of estimated bit complexities in the logarithmic cost model using
the algorithms of Prange, Stern and our MMT variant. We included instances up to code
length 120, 000, reflecting the largest choice made by an HQC parameter set. As opposed
to Section 3.4.3 we do not need addtional memory limitations, since none of the optimal
configurations exceeds 260-bit of memory.

The interpolation with f(n) = a
√

n + b gave us slopes of 1.054, 1.019 and 1.017 for Prange,
Stern and MMT, respectively, i.e., all slopes are slightly above the asymptotic prediction of
a = 1. Thus, as opposed to the McEliece setting our MMT benefits are canceled by polynomial
factors.

Verification of the DOOMk Speedup.

From Figure 3.6, we can also experimentally determine the speedup of our DOOMk technique
inside MMT. Lemma 1 predicts a speedup of

√
k =

√
n/2. Let f(n) = 1.01

√
n − 26.42 as

before, and in addition take the model f(n) + c · log(n/2)
2 for non-DOOMk. The new model

should fit with c = 1.
The interpolation of our experimental non-DOOMk data, see the dashed line in Figure 3.6,

yields c = 1.17. Thus, in practice we obtain a DOOMk speedup of k0.58, slightly larger than√
k.

3.7 Estimating Bit-Security for McEliece and BIKE/HQC
Based on our record computations, let us extrapolate to the hardness of breaking round-3
McEliece, BIKE and HQC. To provide precise statements about the security levels of proposed
parameter sets, we also need to compare with the hardness of breaking AES. Recall that
NIST provides five security level categories, where the most frequently used categories 1, 3,
and 5 relate to AES. Category 1, 3, and 5 require that the scheme is as hard to break as
AES-128, AES-192, and AES-256, respectively.

For AES we benchmarked the amount of encryptions per second on our cluster using
the openssl benchmark software. The results for different key-lengths are listed in Table 3.5.
For AES-192 and AES-256, we increased the blocklength from 128 to 256 bit, such that on
expectation only a single key matches a known plaintext-ciphertext pair.

AES-128 AES-192 AES-256

109enc/sec 2.16 0.96 0.83
Table 3.5: Number of AES encryptions per second performed by our cluster.

From Table 3.5 we extrapolate the running time to break AES-128, AES-192, and AES-256
on our hardware.

Extrapolation for McEliece and BIKE/HQC.

Let us detail our extrapolation methodology. We take as starting points the real runtimes of
22.04 = 24.46 CPU years for McEliece-1284 and 2.33 CPU years for QC-2918.

Then we estimate by which factor it is harder to break the round-3 instances, and eventually
compare the resulting runtime to the hardness of breaking AES.
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Let us give a numerical example for McEliece-4608. Assume that we take 260-bit memory
limitation for M , and we are in the most realistic logarithmic memory cost model. In this
setting our estimator (without LSH) gives for n = 4608 a bit complexity of 187.72, and for
n = 1284 a bit complexity of 65.27. Thus, it is a factor of 2122.45 harder to break McEliece-4608
than to break our record McEliece-1284. Therefore, we conclude that a break of McEliece-4608
on our hardware would require 24.46 · 2122.45 = 2126.91 CPU years.

In contrast, from Table 3.5 we conclude that breaking AES-192 on our hardware requires
2145.24 CPU years. Thus, from our extrapolation McEliece-4608 is a factor of 218.33 easier to
break than AES-192. This is denoted by −18.33 in Table 3.6.

McEliece Slightly Overestimates Security.

For completeness, we consider in Table 3.6 all three different memory-access cost models,
constant, logarithmic and cube-root, even though we identified the logarithmic model as most
realistic (compare to Section 3.4.2). Recall that in these models an algorithm with memory
M suffers either no penalty (constant), a multiplicative factor of log M (logarithmic) or even
a 3√M factor penalty (cube-root).

Moreover, we also provide memory limitations for the constant and logarithmic models.
This is unnecessary in the cube-root model, in which no optimal parameter configuration
exceeds a memory bit complexity of 60.

McEliece Category 1
n = 3488

Category 3
n = 4608

Category 5a
n = 6688

Category 5b
n = 6960

Category 5c
n = 8192

unlimited 0.09 −24.86 −23.18 −23.80 6.10
constant M ≤

280
1.54 −21.52 −11.67 −10.87 23.37

M ≤
260

4.80 −19.12 − 3.86 − 3.80 32.70

unlimited 1.77 −23.11 −20.70 −21.29 8.84
logarithmic M ≤

280
2.86 −20.41 −10.46 − 9.63 24.64

M ≤
260

5.55 −18.33 − 3.46 − 3.40 33.16

cube-
root

10.37 −12.27 0.82 1.38 38.22

Table 3.6: Difference in bit complexity of breaking McEliece and corresponding AES instantiation
under different memory access cost.

Let TMcEliece denote the extrapolated McEliece runtime, and let TAES be the extrapo-
lated AES runtime in the respective security category. Then Table 3.6 provides the entries
log2(TMcEliece

TAES
). Thus, a negative x-entry indicates that this McEliece instance is x bits easier

to break than its desired security category.
Whereas the Category 1 instance McEliece-3488 meets its security level in all memory

models, the Category 3 instance McEliece-4608 misses the desired level by roughly 20 bits for
constant/logarithmic costs. Even for cube-root costs McEliece-4608 is still 12 bits below the
required level.

The Category 5a and 5b McEliece instances are in the realistic logarithmic model with
280-bit memory also 10 bits below their desired security level, whereas the Category 5c
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McEliece instance is independent of the memory model above its security level.

BIKE / HQC Category 1 Category 3 Category 5

BIKE message 2.44 2.50 3.49
constant key 3.88 2.13 5.87

HQC 1.24 4.28 2.23

BIKE message 2.86 3.04 4.10
logarithmic key 4.42 3.11 6.74

HQC 1.72 4.87 2.90

BIKE message 4.47 5.20 6.68
cube-root key 5.77 5.00 9.03

HQC 3.62 7.34 5.75
Table 3.7: Difference in bit complexity of breaking BIKE/HQC and corresponding AES instantiation
under different memory access cost.

BIKE/HQC Accurately Matches Security.

In Table 3.7 we state our results for BIKE and HQC. As opposed to the McEliece setting we
do not need memory limitations here, since none of the estimates exceeded 260-bit of memory.

Note that for BIKE we need to distinguish an attack on the key and an attack on a
message. That is because recovering the secret key from the public key corresponds to finding
a low-weight codeword, whereas recovering the message from a ciphertext corresponds to a
syndrome decoding instance, where the syndrome is usually not the zero vector. Both settings
allow for different speedups as outlined in Section 3.5.

We observe that the BIKE as well as the HQC instances precisely match their claimed
security levels already in the conservative setting of constant memory access costs. Introducing
memory penalties only leads to slight increases in the security margins.
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4 New Time-Memory Trade-Offs for
Subset Sum–Improving ISD in
Theory and Practice

We propose new time-memory trade-offs for the random subset sum problem defined on
(a1, . . . , an, t) over Z2n .

Our trade-offs yield significant running time improvements for every fixed memory
limit M ≥ 20.091n. Furthermore, we interpolate to the running times of the fastest
known algorithms when memory is not limited. Technically, our design introduces a
pruning strategy to the construction by Becker-Coron-Joux (BCJ) that allows for an
exponentially small success probability. We compensate for this reduced probability by
multiple randomized executions. Our main improvement stems from the clever reuse of
parts of the computation in subsequent executions to reduce the time complexity per
iteration.

As an application of our construction, we derive the first non-trivial time-memory
trade-offs for Information Set Decoding (ISD) algorithms. Our new algorithms improve on
previous (implicit) trade-offs asymptotically as well as practically. Moreover, our optimized
implementation also improves on running time, due to reduced memory access costs. We
demonstrate this by obtaining a new record computation in decoding quasi-cyclic codes
(QC-3138). Using our newly obtained data points we then extrapolate the hardness of
suggested parameter sets for the McEliece, BIKE and HQC schemes, lowering previous
estimates by up to 6 bits.

The content of this chapter is the result of a collaboration with Andre Esser. It
previously appeared as New Time-Memory Trade-Offs for Subset Sum–Improving
ISD in Theory and Practice in EuroCrypt 2023 and is reproduced here with
permission.

4.1 Introduction
For the ongoing NIST PQC standardisation process to be successful, large cryptanalytic
efforts analysing the involved primitives are required. This includes theoretical studies of the
asymptotically best attacks as well as experiments on a meaningful scale to safely extrapolate
the hardness of cryptographic-sized instances. This methodology, combining theory and
practice, is well established for conventional (number-theoretic) cryptographic systems and
has found its adaptation to post-quantum secure schemes in recent years [EKM17,ADH+19,
DSv21,UV21,EMZ22].

The best attacks on post-quantum schemes often suffer from high memory demands
[BKW00,BDGL16,BJMM12,BBC+20,Din21]. This either leads to an immense slowdown of
the algorithm due to physical access times or, in the worst case, prevents its application entirely.
In practice, both cases usually lead to a fallback to more memory-efficient but asymptotically
inferior procedures. In these cases time-memory trade-offs for the best algorithms are needed
which allow to tailor their memory consumption to any given amount while (only slightly)
increasing their running time.
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For post-quantum secure candidates, especially from code- and lattice-families, several of
the known attacks are build on techniques initially introduced in the context of the (random)
subset sum problem [MMT11, BCDL19, May21, BDGL16]. This is because the underlying
problems can usually be formulated as (vectorial) variants of subset sum, as it is the case for
LPN / LWE, SIS or the syndrome decoding problem.

The subset sum problem defined on (a1, . . . , an, t) ∈ Z2n asks to find a subset S ⊆
{1, . . . , n} such that ∑i∈S ai = t mod 2n. For this problem time-memory trade-offs are
actually well studied [DDKS12,AKKM13,Din18,HJ10]. However, the translations of those
trade-offs to the aforementioned applications are mostly missing. The reason is the very
diverse landscape of optimal trade-offs for subset sum, i.e., for different memory limitations
there exist different optimal trade-offs. Furthermore, these trade-offs often do not match the
design of the fastest subset sum algorithm used in the original application, which implies a
separate translation effort for each algorithm.

In this work we construct new improved time-memory trade-offs for the subset sum
problem. In contrast to previous works, our constructions follow the design by Becker-Coron-
Joux (BCJ) [BCJ11], which is the basis for the fastest known algorithms. This allows for an
easy adaptation of our trade-off to known applications of the BCJ algorithm. Further, our
trade-offs reduce the running time of previous approaches for any fixed memory significantly.
Only for very small available memory a trade-off based on a memory-less algorithm by Esser
and May [EM20] becomes favourable. In total this reduces the trade-off landscape to only
two algorithms.

We illustrate the potential of our trade-off by formalizing its application to the syndrome
decoding problem, whose hardness forms the basis of code-based cryptography. Informally,
the problem asks to find a low Hamming weight solution e ∈ Fn

2 to the matrix-vector equation
He = s, where H ∈ Fr×n

2 and s ∈ Fr
2. Moreover, it allows for a direct translation to a vectorial

subset sum variant. Denote by hi the columns of H, then (h1, . . . , hn, s) defines a subset sum
instance over Fn

2 , i.e., we are looking for a small subset of the hi that sums to s over Fn
2 .

Information Set Decoding (ISD) algorithms now solve this problem by first applying a
dimension reduction technique, which yields an instance with decreased n, r and smaller
solution weight. Then an adaptation of the BCJ subset sum algorithm over F2 is applied
to solve this reduced instance. Since the dimension reduction technique, in contrast to the
subset sum algorithm, does not require any memory, every ISD algorithm inherits a naive
time-memory trade-off. That is, reduce the instance size sufficiently so that the latter applied
BCJ algorithm does not exceed the given memory. So far this simple interpolation to a full
dimension-reduction based ISD algorithm proposed by Prange in 1962 [Pra62], was the best
known trade-off strategy. Our adaptation now yields the first time-memory trade-offs for
advanced ISD algorithms improving their performance asymptotically as well as in practice.

4.1.1 Related Work

Subset Sum. Any subset sum instance can be solved in time and memory Õ
(
2 n

2
)

via a
meet-in-the-middle algorithm [HS74]. Schroeppel and Shamir [SS81] then showed how to
reduce the memory complexity to Õ

(
2 n

4
)
. Later, their technique formed the basis for a series

of advanced time-memory trade-offs [DDKS12,Din18,DEM19].
The second key-ingredient for most subset sum trade-offs [EM20,DEM19,BCJ11,HJ10]

is the so-called representation technique introduced by Howgrave-Graham and Joux (HGJ)
in [HJ10]. In their work they constructed the first algorithm breaking the 2 n

2 time bound for
random subset sum instances by achieving running time 20.337n. In the cryptographic setting
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we usually encounter random instances, i.e., the vector a := (a1, . . . , an) is chosen uniformly
at random and the target is set to t = ⟨a, e⟩ for a randomly chosen solution vector e ∈ {0, 1}n
of Hamming weight n

2 . Howgrave-Graham and Joux then split the solution e = e1 + e2 with
ei ∈ {0, 1}n of weight n/4. Now, there exist multiple, namely

(n/2
n/4
)
, such representations of

e, i.e., different combinations e1, e2 that sum to e. The core observation is that it suffices
to find a single of these representations to recover the solution. This representation is then
constructed using a search-tree imposing restrictions on the exact form of the solution (similar
to Wagners k-tree algorithm [Wag02]) so that in expectation one representation satisfies all
restrictions. Becker, Coron and Joux (BCJ) [BCJ11] improved the running time to 20.291n by
choosing ei ∈ {−1, 0, 1}n to increase the amount of representations. Later Bonnetain, Bricout,
Schrottenloher and Shen (BBSS) [BBSS20] further extended the digit set to ei ∈ {−1, 0, 1, 2}n
yielding a time and memory complexity of 20.283n.

Information Set Decoding. ISD algorithms are the fastest known algorithms to solve
general instances of the syndrome decoding problem and form the basis in assessing the security
of code-based schemes. Introduced originally by Prange [Pra62], the class was extended by
several improved algorithms over the years [Dum91, Ste88, MMT11, BJMM12, MO15]. All
these works improve the running time by using more advanced subset sum techniques to solve
the reduced instance after dimension reduction, which simultaneously increases the memory
requirements. Surprisingly, there has been very limited work on time-memory trade-offs for
ISD algorithms. Karpman and Lefevre [KL22] recently constructed advanced time-memory
trade-offs for the special case of decoding ternary codes based on a subset sum trade-off
strategy known as Dissection [DDKS12]. Further, a work by Wang et al. [WL15] extends an
early ISD algorithm from Stern [Ste88] by the Dissection approach. However, this trade-off is
entirely outperformed by the previously mentioned implicit trade-offs of more advanced ISD
procedures.

4.1.2 Our Contribution

Subset Sum. As a first contribution we give a generalized description of the BCJ algorithm,
that combines previous interpretations from [BBSS20,EM20]. This description then forms the
basis for one of our main contributions which are new time-memory trade-offs for the random
subset sum problem. Our constructions yield significantly improved running times for every
fixed memory M ≥ 20.091n, which corresponds to more than two-thirds of the meaningful
memory parameters. Recall that M = 20.283n memory is sufficient to instantiate the fastest
known algorithm with time complexity T = M . In Figure 4.1 we illustrate the performance
of our new trade-offs in comparison to previous works. For example, if the memory is
limited to 20.17n, we improve the running time from 20.51n down to 20.4n, corresponding to an
improvement by a factor of 20.11n.

From a technical side we allow the BCJ and BBSS construction to impose larger restrictions
on the representation-space, yielding an exponentially small success probability. We then
perform multiple randomized executions to compensate for the reduced probability. In this
context we introduce a novel strategy of reusing lower levels of the search-tree in subsequent
randomized executions to reduce the time complexity per iteration. In order to obtain
instantiations for small memory parameters and to further reduce the time complexity, we
integrate the Dissection framework [DDKS12] in our construction, inspired by the combination
of Wagners k-tree and Dissection in [Din18].
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Figure 4.1: Our new subset sum trade-offs in comparison to the previously best known time-memory
trade-offs. The solid line illustrates the minimum running time over the algorithms given in [HJ10,
BCJ11, Ess20, EM20, DEM19, DDKS12]. For a memory larger than 20.091n (20.093n resp.) our new
trade-offs are superior to previous approaches.

Information Set Decoding. We give the first non-trivial time-memory trade-offs for
advanced ISD algorithms by combining our trade-offs with the ISD algorithms by May-Meuer-
Thomae (MMT) [MMT11] and Becker-Joux-May-Meurer (BJMM) [BJMM12]. Overall this
yields asymptotic improved running times for every fixed memory. Moreover, for the MMT
algorithm we are able to improve the memory, while maintaining its running time.

On the practical side, we extend the fastest implementation of the MMT / BJMM algorithm
from [EMZ22] by our trade-off strategy observing memory and time improvements. Using
our optimized implementation we obtain a new record computation in decoding quasi-cyclic
codes (QC-3138) [ALL19] and re-break several old records, including the current record
for McEliece-like decoding, consuming less resources, i.e., time and memory. Hence, our
trade-off is the first asymptotic improvement of the MMT algorithm that transfers to the
implementation level. Eventually, using our newly obtained data-points in combination with
an estimation script [EB22] we extrapolate the hardness of suggested parameter sets for
code-based NIST PQC (alternate) candidates McEliece, BIKE and HQC, resulting in reduced
security estimates compared to previous works.

Outline. In Section 4.2 we set up necessary notation and cover some basics on the Dissection
technique. Subsequently, in Section 4.3 we give the generalized description of the BCJ
algorithm, which is then used as a basis to build our new trade-offs in Section 4.4. Eventually,
in Section 4.5 we give the asymptotic and practical results of our decoding application including
security estimates for code-based NIST PQC candidates.
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4.2 Preliminaries

All logarithms are base 2. We define H(x) := −x log(x)− (1− x) log(1− x) to be the binary
entropy function with H−1 its inverse on [0, 1

2 ]. Extending this definition, we also use the
2-way entropy function defined as g(x, y) := −x log(x)− y log(y)− (1− x− y) log(1− x− y).
We simplify binomial and multinomial coefficients via Sterling’s formula as(

n

αn

)
≃ 2nH(α) and

(
n

αn, βn, ·

)
≃ 2ng(α,β),

where
( n

αn,βn,·
)

:=
( n

αn,βn,(1−α−β)n
)
. We use standard landau notation, with Õ-notation

suppressing poly-logarithmic factors and write A = Õ (B) as A ≃ B. Our asymptotic
complexity statements are all to be understood up to poly-logarithmic factors, even though
we sometimes drop the Õ for convenience.

For a vector x ∈ Fn
2 we denote by wt(x) its Hamming weight. Additionally we denote by

⟨x, y⟩ the inner product of two vectors x, y.
All our algorithms target the random subset sum problem defined as follows, even if we

might omit the term random sometimes.

Definition 9 (Random Subset Sum Problem). Let a := (a1, . . . , an) ∈ Z2n be drawn uniformly
at random. For a random e ∈ {0, 1}n with wt(e) = n

2 , let t := ⟨a, e⟩. The random subset
sum problem is given (a, t) find any e′ ∈ {0, 1}n satisfying ⟨a, e′⟩ = t. We call any such e′ a
solution. and (a, t) an instance.

Our definition of the subset sum problem asks for a solution in {0, 1}n. However, algorithms
like the BCJ algorithm approach the problem in a divide-and-conquer manner, which requires
solving sub-instances with solutions in a different domain D. These sub-instances are usually
solved via a meet-in-the-middle strategy, however, we employ more memory efficient strategies.

Schroeppel-Shamir and Dissection

While a standard meet-in-the-middle can solve a subset sum instance with solution in a
set D in time and memory |D| 12 [HS74], the algorithm by Schroeppel and Shamir [SS81]
achieves the same time complexity while improving the memory complexity to |D| 14 . The
Dissection framework introduced in [DDKS12] offers instantiations with less memory in form
of a continues time-memory trade-off starting from the Schroeppel-Shamir algorithm. Besides
the Schroeppel-Shamir algorithmm our constructions make use of another instantiation of
this framework, a so-called 7-Dissection. A 7-Dissection runs in time |D|4/7 and uses memory
|D|1/7. Moreover, with more memory its time complexity can be gradually decreased until it
reaches the complexity of the Schroeppel-Shamir algorithm. We summarize this in the following
lemma. For more details on the dissection framework the reader is referred to [DDKS12].

Lemma 2 (7-Dissection, [DDKS12]). Let 1
7 ≤ λ ≤ 1

4 . The 7-Dissection algorithm finds all
solutions e ∈ D to a random subset sum instance in expected time |D|

2(1−λ)
3 and expected

memory |D|λ.

4.3 The generalized BCJ Algorithm

In this section we give a general description of the BCJ algorithm [BCJ11] for solving the
random subset sum problem. This description forms the basis for our new trade-offs presented
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in the following section. We advise the reader to follow Figure 4.2. In our exposition we
assume a certain familiarity of the reader with the representation technique, otherwise we
refer to [HJ10,BCJ11] for an introduction.
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Figure 4.2: Generalized tree construction of the BCJ Algorithm in depth 4. Shaded areas on the right
of a list L indicate that for all elements v ∈ L the inner product ⟨a, v⟩ matches a predefined value cv
(resp. t) on those bits.

Basic idea

To construct a solution e of the subset sum problem the BCJ algorithm splits e in the sum of
two addends, i.e.,

e = z1 + z2 .

Here the zi are chosen from a set, such that there exist multiple different representations of
the solution, i.e., different tuples that sum to e. The goal is then to examine a respective
fraction of the space of the z1, z2 to find one of these representations.

From ⟨a, e⟩ = ⟨a, z1 + z2⟩ = t mod 2n we have by linearity

⟨a, z1⟩ = t− ⟨a, z2⟩ mod 2n. (4.1)

Note that the value of ⟨a, z1⟩ is not known. However, by considering only those z1 which
fulfill ⟨a, z1⟩ = cz1 mod 2ℓ for some fixed integer cz1 we are able to impose a constraint on
the search space. Here ℓ := ℓ1 + ℓ2 + ℓ3 is an optimization parameter of the algorithm, with
the ℓi’s being positive integers. Moreover, since each representation of e fulfills Equation (4.1)
the value of cz2 := ⟨a, z2⟩ = t− cz1 mod 2ℓ is fully determined.

The construction of the z1 and z2 then works recursively. Therefore, they are split again
in the sum of two addends

z1 = y1 + y2 and z2 = y3 + y4 ,

and we fix the values ⟨a, y1⟩ and ⟨a, y3⟩ to some constraints cy1 mod 2ℓ1+ℓ2 and cy3 mod
2ℓ1+ℓ2 . Note that this again determines the inner product of the remaining addends for any
representation (y1, y2) of z1 and (y3, y4) of z2 as

cy2 := ⟨a, y2⟩ = cz1 − cy1 mod 2ℓ1+ℓ2 and cy4 := ⟨a, y4⟩ = cz2 − cy3 mod 2ℓ1+ℓ2
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The recursion continues once more by splitting the yi = x2i−1 + x2i and introducing four
additional modular constraints cx2i−1 mod 2ℓ1 . These modular constraints together with the
cyi ’s determine the values of inner products cx2i := ⟨a, x2i⟩ mod 2ℓ1 , since we have

cz2 := t− cz1 mod 2ℓ

cy2i := czi − cy2i−1 mod 2ℓ1+ℓ2 , i = 1, 2
cx2i := cyi − cx2i−1 mod 2ℓ1 , i = 1, 2, 3, 4

(4.2)

Eventually, the xi’s are split in a meet-in-the-middle fashion, i.e.,

xi = (w2i−1, 0n/2) + (0n/2, w2i),

giving only a single representation of each xi.
The algorithm now starts by enumerating all possible values for the wi in the base lists Li.

Then two lists are merged at a time in a new list by only considering those elements which
fulfil the current constraint modulo 2ℓ1 , 2ℓ1+ℓ2 , 2ℓ or 2n respectively (compare to Figure 4.2).
After the level-i list construction only those elements are kept whose coordinates follow a
predefined distribution Di, while all others are discarded. The choice of these distributions
mainly determines the existing amount of representations and ultimately the performance of
the algorithm. We give the pseudocode of the procedure in Algorithm 8.

Algorithm 8: BCJ Algorithm
Input : a ∈ (Z2n)n, t ∈ Z2n

Output : e ∈ Fn
2 with ⟨a, e⟩ = t mod 2n

1 Choose optimal ℓ1, ℓ2, ℓ3 and Di, i = 0, 1, 2, 3
2 Enumerate

L2i−1 = {w2i−1 | w2i−1 ∈ D0 × 0n/2}
L2i = {w2i | w2i ∈ 0n/2 ×D0}, i = 1, . . . , 8

3 Choose random cz1 ∈ Fℓ
2, cy1 , cy3 ∈ Fℓ1+ℓ2

2 , cx1 , cx3 , cx5 , cx7 ∈ Fℓ1
2

4 Set remaining constraints according to Equation (4.2)
5 Compute (and filter)

L
(1)
i = {xi | ⟨a, xi⟩ = cxi

mod 2ℓ1 , xi = w2i−1 + w2i}

from L2i−1, L2i, i = 1, . . . , 8 , then filter such that L
(1)
i ⊆ D1

L
(2)
i = {yi | ⟨a, yi⟩ = cyi mod 2ℓ1+ℓ2 , yi = x2i−1 + x2i},

from L
(1)
2i−1, L

(1)
2i , i = 1, . . . , 4 , then filter such that L

(2)
i ⊆ D2

L
(3)
i = {zi | ⟨a, zi⟩ = czi

mod 2ℓ, zi = y2i−1 + y2i},

from L
(2)
2i−1, L

(2)
2i , i = 1, 2 , then filter such that L

(3)
i ⊆ D3

L = {e | ⟨a, e⟩ = t mod 2n, e = z2i−1 + z2i}

from L
(3)
1 , L

(3)
2 , then filter such that L ⊆ {0, 1}n

return e ∈ L

69



Complexity

Let the expected list sizes before filtering on level i be Li and let the probability of any
element of a level-i list surviving the filter be qi. Since the level-1 lists are constructed from
the Cartesian product of the level-0 lists by enforcing a modular constrained on ℓ1 bits we
have

L1 = (L0)2

2ℓ1
.

Analogously the level-2 lists are constructed from the filtered level-1 lists by enforcing a
modular constrained on ℓ1 + ℓ2 bits. However, since the last ℓ1 bits are already fixed to some
value in the previous step we only enforce a new constraint on ℓ2 bits, which results in

L2 = (q1 · L1)2

2ℓ2
.

Analogously we obtain

L3 = (q2 · L2)2

2ℓ3
and L4 = (q3 · L3)2

2n−ℓ
.

The construction of each unfiltered list can be performed via hashing in time linear in the
list’s sizes giving an expected time complexity of

T = max
i

(Li) .

Since we need to store only filtered lists and the filtering can be performed on-the-fly the
memory complexity becomes M = maxi(qi · Li).

Correctness

Obviously the constraint’s sizes ℓ1, ℓ2 and ℓ3 cannot be chosen arbitrarily large if one repre-
sentation of the solution should survive all imposed constraints. On the other hand we need
to ensure that multiple representations do not lead to the construction of duplicate elements
in intermediate lists to ensure a proper list distribution. This leads to further restrictions
on the size of ℓ1, ℓ2 and ℓ3, called saturation constraints in [BBSS20] or simply lower bounds
in [EM19].

In [BBSS20] this is formalized by ensuring that each list after filtering at every level is not
larger than the size of the set filtered for, reduced by the total enforced constraint. Since by
the randomness of the instance the elements are expected to distribute uniformly, it follows
that the lists will not contain duplicate elements with high probability. The sets for which
we filter on level i are Di, i = 1, 2, 3, 4. Note that the choice of the sets Di, i ̸= 4 can be
optimized, while the set D4 has to describe the valid set of solutions, which is the set of binary
vectors of length n.

Hence, to guarantee that there are no duplicates present in the level-1, level-2 and level-3
lists we need to ensure that

q1 · L1 ≤
|D1|
2ℓ1

and q2 · L2 ≤
|D2|

2ℓ1+ℓ2
and q3 · L3 ≤

|D3|
2ℓ

(4.3)

Next let us write the probabilities qi in terms of representations and distributions. There-
fore, let 2ri denote the amount of different representations of any element from Di+1 as the
sum of two elements from Di. Then we have

qi+1 = |Di+1| · 2ri

|Di|2
, (4.4)
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describing the probability that a random sum of two elements from Di forms a representation
of any element from Di+1.

Recall that we construct level-1 elements xi = (w2i−1, w2i−1) ∈ D0 × D0 = D1 in a
meet-in-the-middle fashion from level-0 elements wj , which implies L0 =

√
|D1|. As this gives

only a single representation of any level-1 element, we have r0 = 0, which leads to q1 = 1,
i.e., for this choice of D0 there is no filtering on level one. It follows that the first saturation
constraint from Equation (4.3) is always fulfilled since

q1 · L1 = (L0)2

2ℓ1
= |D1|

2ℓ1
.

The second constraint of Equation (4.3) gives

q2 · L2 = |D2| · 2r1

|D1|2
· (L0)4

22ℓ1+ℓ2

!
≤ |D2|

2ℓ1+ℓ2
⇔ r1 ≤ ℓ1.

Analogously we get from the last saturation constraint

q3 · L3 = q3 ·
(q2)2 · (L1)4

24ℓ1+2ℓ2+ℓ3
= 22r1+r2 · |D3|

24ℓ1+2ℓ2+ℓ3

!
≤ |D3|

2ℓ
⇔ 2r1 + r2 ≤ 3ℓ1 + ℓ2.

Eventually, to find exactly one representation of the solution in the final list we need to ensure
that q4 · L4 = 1, which yields

q4 · L4 = q4 · (q3)2 · (q2)4(L1)8

2n+7ℓ1+3ℓ2+ℓ3
= 24r1+2r2+r3 · |D4|

2n+7ℓ1+3ℓ2+ℓ3

!= 1

⇔ 4r1 + 2r2 + r3 = 7ℓ1 + 3ℓ2 + ℓ3, (4.5)

since we have |D4| = 2n, as D4 is the set of binary vectors of length n.

Instantiation

The description of the general BCJ algorithm gives several degrees of freedom, including
the choice of sets Di, i = 1, 2, 3 and the size of the constraints ℓ1, ℓ2, ℓ3. The original BCJ
algorithm restricts all Di’s to include only vectors with coordinates in {0,±1}. The purpose
of including −1’s is simply to increase the number of representations. Since the final goal is
to construct a binary vector, minus one entries are supposed to cancel out with one entries
in the addition. Thus, the distribution D3 is chosen as vectors of length n with exactly
ω3 := n/4 + α3 one entries and m3 := α3 minus one entries for some small α3, which has to
be optimized. The distribution D2 is then composed similarly as vectors of length n with
ω2 := ω3/2 + α2 one entries and m2 := m3/2 + α2 minus one entries, where again α2 minus
ones are supposed to cancel out. Analogously the level-1 distribution is chosen as vectors of
length n with ω1 := ω2/2 + α1 one entries and m1 := m2/2 + α1 minus one entries, expecting
α1 cancellations. An overview of this choice of distributions is given in Table 4.1. The size of
these sets is

|Di| =
(

n

ωi, mi, ·

)
≃ 2g( ωi

n
,

mi
n )n,

while the number of representations is given as

2ri−1 =
(

ωi

ωi/2

)(
mi

mi/2

)(
n− ωi −mi

αi−1, αi−1, ·

)
≃ 2ωi+mi+ρi ,
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D4 D3 D2 D1

BCJ ωi
1
2

1
4 + α3

1
8 + α3

2 + α2
1
16 + α3

4 + α2
2 + α1

mi 0 α3
α3
2 + α2

α3
4 + α2

2 + α1

ωi
1
2

1
4 +α3−γ3

1
8 + α3−γ3

2 + α2−γ2
1
16 + α3−γ3

4 + α2−γ2
2 + α1−γ1

BBSS mi 0 α3
α3
2 + α2

α3
4 + α2

2 + α1

ci 0 γ3
γ3
2 + γ2

γ3
4 + γ2

2 + γ1

Table 4.1: Choices of Di made by BCJ and BBSS algorithm. The table states the proportion of
coordinates equal to 1 (ωi), −1 (mi) and 2 (ci). The proportion of zeros is 1− ωi −mi − ci. Set D0
has half the proportions of D1.

where ρi := g
(

αi
n−ωi−mi

, αi
n−ωi−mi

)
(n− ωi −mi).

Here the two binomial coefficients count the number of times the one and minus one
entries of an element from Di can be distributed equally over a sum of two elements. The
multinomial coefficient then counts the number of possibilities how the minus one entries can
cancel out.

Note that the algorithm splits D1 into D0 ×D0, where D0 is the set of vectors of length
n/2 containing exactly ω1/2 ones and m1/2 minus ones. This leads to all Di only including
balanced elements, i.e., elements which contain an equal amount of ones (resp. minus ones)
on their first and second half of the coordinates. However, this affects the sizes of the Di and
the amount of representations only by a polynomial factor, which is subsumed in the landau
notation.

Eventually, the BCJ algorithm chooses ℓ1 = r1 and ℓ2 = r2 − r1, which yields ℓ3 = r3 − r2.
A numerical optimization of the αi results in a time complexity of 20.291n (originally reported
as 20.292n) for the BCJ configuration.

Bonnetain et al. [BBSS20] then showed that a more flexible choice of ℓ1 and ℓ2 and
correspondingly adapted ℓ3 allows to decrease the time complexity to 20.289n. They also
showed that extending the digit set of the Di to {0,±1, 2} allows to further decrease the time
complexity to 20.283n, yielding the best known time complexity for the random subset sum
problem.

The BCJ algorithm achieves optimal time complexity for a depth of the search-tree of
four. However, in general the optimal depth varies with the application. We therefore give for
completeness and later reference the complexity and saturation constraints for variable depth
in Section 4.6.

4.4 Our new Subset Sum Trade-Off

The (generalized) BCJ algorithm from the previous section already inherits some time-memory
trade-off potential. That is, one can try to optimize the choice of the ℓi with respect to the
memory usage, since the larger the ℓi the smaller the list’s sizes. However, the overall size of
the ℓi’s is bounded by the restriction that the last list should contain a representation of the
solution.

On a high level our new trade-off works by relaxing this restriction, i.e. we do not require
the last list to contain a solution. This allows to balance the lists more memory-friendly.
We then perform multiple randomized executions of the algorithm to ensure that we find a
solution overall. However, let alone this is not sufficient to obtain our improvements. The

72



main runtime advantage of our improved trade-off comes from our observation that we can
reuse parts of the tree in subsequent randomized executions, reducing the cost per iteration.
A second improvement stems from our use of the Dissection framework [DDKS12] for the
construction of the level-1 lists.

Note that if we change some bit-constraints in the tree (the values of cv in Figure 4.2) not
necessarily all levels are affected. That means we do not need to re-compute all lists of the
tree, but only those which depend on the changed constraints. Now, if the computation of
each list had the same complexity, this strategy would not yield an improvement. However,
by adapting parameters accordingly and exploiting the involved filtering, we can guarantee
that the creation of frequently reconstructed lists (from already existing lists) is much cheaper
than a reconstruction of the whole tree. This partial reconstruction strategy in combination
with relaxing the correctness constraint from Equation (4.5) allows us to obtain significant
improvements for rather high memory parameters M ≥ 20.169n.

From there on the base lists, which are so far a meet-in-the-middle split of the first level
domains start dominating the memory. The only possibility for the algorithm to decrease the
size of those lists is to choose a set D1 with smaller size on level 1. For the BCJ algorithm this
means including less −1 entries, until ultimately no −1 entries are included in the enumeration.
In this case the base lists require a memory of

( n/2
n/32

)
≃ 20.169n. From there the list sizes are

as small as possible and we can not obtain instantiations for less memory. We circumvent this
problem by exchanging the meet-in-the-middle strategy for exhaustive examination of the
level-1 domain by the 7-Dissection algorithm. We find that apart from offering instantiations
for smaller memory parameters this gives also time improvements as the optimization can
choose a more optimal, usually larger set D1 (implying larger D0) without exceeding the
memory limit.
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Figure 4.3: Our new trade-off in depth 4. Dashed boxes frame different subtrees Ti, which are rebuild
2ti times. The level-1 lists are constructed using the 7-Dissection algorithm.
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Adaptation of the BCJ Algorithm

We advise the reader to follow Figure 4.3. Let T be the full tree and Ti, i = 1, 2, 3 the
subtrees only including the lists from level i onwards. We denote by 2ti the number of times
we rebuild the subtree Ti from the (already existing) lists of the previous level.

We start by changing only the upper ℓ3 bits of the modular constraint cz1 which requires
recomputing only the subtree T3, since the level-i lists for i ≤ 2 do not depend on these
bits. Since there are only 2ℓ3 choices for those bits we have t3 ≤ ℓ3. If 2ℓ3 iterations are not
sufficient to find the solution we start modifying the upper ℓ2 bits of the modular constraints
cy1 , cy2 , cz1 mod 2ℓ2 . This implies again that t2 ≤ 3ℓ2. Still, for every different choice of those
bits we recompute the subtree T3 another 2t3 times for different choices of the upper ℓ3 bits.
If 23ℓ2+ℓ3 iterations are still not sufficient to find a solution, we eventually start modifying
the lower ℓ1 bits of the chosen modular constraints. Again for each choice of lower bits we
reconstruct the tree T2 and T3 several times. Furthermore, as there are seven constraints that
can be freely chosen we have t1 ≤ 7ℓ1

Finally, instead of computing the level-1 lists via a meet-in-the-middle algorithm we now
use the 7-Dissection algorithm.

The pseudocode of our modified BCJ trade-off is given in Algorithm 9.

Complexity. The memory complexity stays as before with the only difference that the
memory requirement of the base lists is now substituted by the memory requirement M7D of
the 7-Dissection algorithm, i.e.,

M = max(M7D, q1L1, q2L2, q3L3, q4L4).

To balance the memory requirement we instantiate the 7-Dissection algorithm with M7D =
|D1|max( 1

7 ,λ′) memory where |D1|λ
′ = maxi(qiLi).

The analysis for the time complexity is also similar to before, with the essential difference
that the three subtrees are now computed differently many times.

A single construction of subtree T1 can be performed in time

T1 = max(T7D,L1,L2,L3,L4),

where T7D is the time it takes to compute the level-1 lists via the 7-Dissection algorithm. Recall
that instantiated with |D1|δ memory, the 7-Dissection runs in time T7D = |D1|max

( 2(1−δ)
3 , 1

2

)
(compare to Lemma 2). The subtrees T2 and T3 can then be computed in time

T2 = max(q1 · L1,L2,L3,L4) and T3 = max(q2 · L2,L3,L4),

as they can be computed from the stored and already filtered level-1 respectively level-2 lists.
Now the total time complexity becomes

T = max(2t1 · T1, 2t1+t2 · T2, 2t1+t2+t3 · T3),

as subtree Ti is rebuild 2t1+...+ti many times.

Correctness. Most of the correctness follows from the correctness of the BCJ algorithm
and the 7-dissection algorithm. Note that we instantiate the 7-Dissection with at least |D1|

1
7

memory, which is the minimum requirement given by Lemma 2.
The main difference to before is that we relaxed the restriction given in Equation (4.5), such

that the last list is not guaranteed to contain a solution anymore. However, we compensate
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Algorithm 9: BCJ Trade-Off
Input : a ∈ (Z2n)n, t ∈ Z2n

Output : e ∈ {0, 1}n with ⟨a, e⟩ = t mod 2n

1 Choose optimal ℓ1, ℓ2, ℓ3 and Di, i = 1, 2, 3, let r := r3 + 2r2 + 4r1
2 repeat 2t1 := 2max(7ℓ1−r,0) times
3 Choose random cz1 ∈ Fℓ

2, cy1 , cy3 ∈ Fℓ1+ℓ2
2 , cx1 , cx3 , cx5 , cx7 ∈ Fℓ1

2
4 Set remaining constraints according to Equation (4.2)
5 Compute

L
(1)
i = {xi | ⟨a, xi⟩ = cxi

mod 2ℓ1 , xi ∈ D1, },
via 7-Dissection, i = 1, . . . , 8

6 repeat 2t2 := 2max(7ℓ1+3ℓ2−r,0)−t1 times
7 Choose randomly the upper ℓ2 bits of cz1 , cy1 , cy3 mod 2ℓ1+ℓ2

8 Update cz2 , cy2 , cy4 according to Equation (4.2)
9 Compute

L
(2)
i = {yi | ⟨a, yi⟩ = cyi

mod 2ℓ1+ℓ2 , yi ∈ D2, yi = x2i−1 + x2i},

from L
(1)
2i−1, L

(1)
2i , i = 1, . . . , 4

10 repeat 2t3 := 2max(7ℓ1+3ℓ2+ℓ3−r,0)−t1−t2 times
11 Choose randomly the upper ℓ3 bits of cz1

12 Update cz2 according to Equation (4.2)
13 Compute

L
(3)
i = {zi | ⟨a, zi⟩ = czi

mod 2ℓ, zi ∈ D3, zi = y2i−1 + y2i},

from L
(2)
2i−1, L

(2)
2i , i = 1, 2

L = {e | ⟨a, e⟩ = t mod 2n, e ∈ D4, e = z2i−1 + z2i},

from L
(3)
1 , L

(3)
2

if |L| > 0 then
14 return e ∈ L

for this by multiple randomized constructions of the final list. In contrast to completely
independent executions of the algorithm, which would select all constraints uniformly at
random, we only randomize the constraints affecting certain subtrees. However, note that
under the standard assumption that the representations distribute independently and uniformly
over all constraints, any set of constraints has the same independent probability of leading
to a representation of the solution. Now, since we change at least one constraint for every
reconstruction of the final list, we can treat the iterations as independent.

In order to ensure that over all iterations we find at least one representation, the final list’s
size accumulated over all its reconstructions must be at least one, which leads to (compare to
Equation (4.5))

q4 · L4 · 2t1+t2+t3 ≥ 1
⇔ 4r1 + 2r2 + r3 + t1 + t2 + t3 ≥ 7ℓ1 + 3ℓ2 + ℓ3.
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Note that this constraint is fulfilled for our choice of

t1 = max(7ℓ1 − r, 0)
t2 = max(7ℓ1 + 3ℓ2 − r, 0)− t1

t3 = max(7ℓ1 + 3ℓ2 + ℓ3 − r, 0)− t1 − t2,

where r := r3 + 2r2 + 4r1 and the maximum is needed since we need to build each subtree at
least once.

Configuration of our Trade-Off

In terms of distributions we adapt the choice of the original BCJ algorithm, specified in
Table 4.1. We then optimize the parameters αi, ℓi, i = 1, 2, 3 numerically. We optimize such
that the time is minimized, while simultaneously ensuring that the saturation constraints are
satisfied and a given memory limit of M = 2λn is not exceeded.

The resulting trade-off curve is depicted in Figure 4.1. We observe that our trade-off
outperforms all existing approaches for M ≥ 20.093n. Prior to our work, this interval was
covered by a diverse landscape of different trade-offs including [HJ10,BCJ11,Ess20,EM20,
DEM19, DDKS12]. For M < 20.093n a trade-off given in [Ess20] based on a memory-free
algorithm by Esser-May [EM20] becomes superior to our procedure.

Extending the digit set. We also adopted the choice of distributions made by the BBSS
algorithm [BBSS20] (see Table 4.1). We find that the refined choice of the Di gives an overall
slight improvement, interpolating smoothly to their 20.283n algorithm. The resulting trade-off
curve is depicted in Figure 4.1 as well, which remains superior to [EM20,Ess20] as long as
M ≥ 20.091n.

4.5 Application to Decoding Linear Codes
A linear code C ⊂ Fn

2 is a k-dimensional subspace of Fn
2 and can be efficiently described

via a parity check matrix H ∈ F(n−k)×n
2 , such that C = {c ∈ Fn

2 | Hc = 0}. Decoding an
error-prone codeword y := c + e to c is equivalent to recovering e from the so-called syndrome
s := Hy = H(c + e) = He. This leads to the following definition of the syndrome decoding
problem.

Definition 10 (Syndrome Decoding Problem). Let H ∈ F(n−k)×n
2 be the parity check matrix

of a code of length n and dimension k, with constant code-rate R := k
n . Given a syndrome

s ∈ Fn−k
2 and an integer ω the syndrome decoding problem asks to find a vector e ∈ Fn

2 of
Hamming weight wt(e) = ω satisfying He = s.

Note that the problem admits a unique solution as long as ω ≤ ⌊d−1
2 ⌋, where d is the

minimum distance of the code, i.e., the minimum Hamming distance between two codewords.
We call the setting with unique solution half distance decoding, while for ω ≤ d we refer to
full distance decoding. In general the time complexity increases with ω, such that we only
consider the cases where ω is equal to those upper bounds. Further, random linear codes
are known to achieve a minimum distance that is equal to the Gilbert-Varshamov bound
of d ≈ H−1(1 − k

n)n, i.e., the minimum distance is a function of the rate R := k
n and the

code-length n. We now maximize the complexity in our asymptotic analysis over all constant
rates R to obtain a runtime formula which only depends on n.
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The best known algorithms to solve the syndrome decoding problem are Information
Set Decoding (ISD) algorithms. In the full and half distance setting these algorithms have
exponential time and memory complexity of the form Õ (2cn) for some constant c depending
on the algorithm. On the other hand, cryptographic applications usually use a a sublinear
weight, i.e., ω = o(n). In these cases the running time of ISD algorithms is subexponential
of the form Õ (2cω) for some constant c. Moreover, it was shown [TS16b] that in this case
all known ISD algorithms converge to the same running time, i.e., they obtain the same
constant c. However, in practical experiments advanced ISD algorithms were shown to provide
significant speedups [BLP08,EMZ22].

We therefore first analyse our trade-offs in the full and half distance decoding setting,
which allow to easily verify their superiority since they obtain improved constants c. We then
study the practical effect of our trade-offs by providing an optimized implementation. Finally,
we extrapolate the hardness of cryptographic schemes using our obtained data points.

Information Set Decoding

Information Set Decoding algorithms first apply a permutation matrix P to the columns
of the parity check matrix. This allows to redistribute the weight on the error since the
permuted instance H′ := HP has as valid solution e′ := P−1e, since HP(P−1e) = s. Then
H′ is transformed into semi-systematic form via Gaussian elimination modelled via the
multiplication with an invertible matrix Q

QH′(P−1e) =
(

In−k−ℓ H1
0 H2

)
(e1, e2) = (e1 + H1e2, H2e2) = Qs = (s1, s2), (4.6)

where we write e′ := P−1e = (e1, e2) ∈ Fn−k−ℓ
2 × Fk+ℓ

2 with ℓ an optimization parameter of
the algorithm. Let us further assume that the permutation distributes the weight on e′ such
that wt(e1) = ω − p and wt(e2) = p, for some value p to be optimized, too.

Now Equation (4.6) yields a (dimension) reduced syndrome decoding instance in form
of the equation H2e2 = s2 with weight-p solution e2 ∈ Fk+ℓ

2 . Usually, e2 is not a unique
solution to this reduced instance. The algorithm therefore computes all solutions x to this
smaller instance and checks if the corresponding e1 = s1 + H1x has weight ω− p. In this case
P(e1, x) forms a solution to the original syndrome decoding instance. If no solution is found,
the algorithm is repeated for another random permutation.

Complexity. Let us briefly argue about the complexity of such a procedure. The probability
of distributing the weight on e′ as desired is

q :=
(n−k−ℓ

ω−p

)(k+ℓ
p

)(n
ω

) . (4.7)

Hence, we expect that after q−1 random permutations one of them distributes the weight as
desired. If now the cost to retrieve all weight-p solutions to the reduced instance for any of
those permutations is TS, the total complexity becomes

T = Õ
(
q−1 · TS

)
.

In a nutshell different ISD algorithms differentiate in how they retrieve the solutions to
the reduced instance. Usually they consider the reduced instance as a vectorial subset sum

77



instance, where the solution encodes a size-p subset of the columns of H2 that sums to s2.
Then they make use of advanced algorithms for subset sum, such as the BCJ algorithm, to
retrieve the solutions to that instance. It is not hard to see, that instead of working over Z2n ,
the generalized BCJ algorithm outlined in Section 4.3 and, hence, also our improved trade-off
from Section 4.4, work analogously over Fn

2 .

4.5.1 Improved ISD Trade-Offs

The May-Meurer-Thomae (MMT) ISD algorithm [MMT11] originally uses the BCJ construc-
tion in depth-2 to retrieve the solutions to the reduced instance. In the following we give
an improved version of the MMT algorithm based on our new subset sum trade-off from
Section 4.4. Our version improves the overall memory complexity and yields a better trade-off
curve, i.e., we achieve runtime improvements for every fixed memory.

To make use of our generalized trade-off description (in depth 2) we need to define
appropriate sets D0, D1 and D2. Then to retrieve the running time we calculate the amount
of existing representations and optimize the parameter ℓ1. The pseudocode of our improved
MMT algorithm is given in Algorithm 10.

Algorithm 10: New MMT Trade-Off
Input : H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , w ∈ N

Output : e ∈ Fn
2 , He = s

1 Choose optimal ℓ, ℓ1, p
2 let r1 = log

( p
p/2
)

3 πℓ1 : Fℓ
2 → Fℓ1

2 , πℓ1(x1, . . . , xℓ) = {x1, . . . , xℓ1}
4 repeat
5 choose random permutation matrix P

6 H̄ =
(

In−k−ℓ H1
0 H2

)
= QHP s̄ = (s1, s2) = Qs

7 repeat 2ℓ1−r1 times
8 Choose random t ∈ Fℓ1

2
9 Compute

L
(1)
1 = {z1 | πℓ1(H2z1) = t, z1 ∈ D1} , via Schroeppel-Shamir

L
(1)
2 = {z2 | πℓ1(H2z2 + s2) = t, z2 ∈ D1} , via Schroeppel-Shamir

10 Compute L = {e2 | H2e2 = s2, e2 = z1 + z2} from L
(1)
1 , L

(2)
2

11 for e2 ∈ L do
12 e1 = H1e2 + s1
13 if wt(e1) ≤ ω − p then
14 return P (e1, e2)

Complexity

We let D2 be the set of vectors from Fk+ℓ
2 with weight p, as it defines our solution set.

The MMT algorithm now chooses D1 as vectors from Fk+ℓ
2 with weight p/2. Finally D0 is
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the set of vectors from F
k+ℓ

2
2 and weight p/4, i.e., a meet-in-the-middle split of D1, hence

|D0| =
√
|D1|.The size of D1 is

|D1| =
(

k + ℓ

p/2

)
,

while the amount of representations of one element from D2 as sum of two elements from D1
is

2r1 =
(

p

p/2

)
≃ 2p.

Observe that the binomial coefficient counts the possibilities to distribute half of the ones
of the target vector over the first addend, while the other half must then be covered by the
second addend. Now, to find one representation of each solution to the reduced instance in
the final list we need to ensure

ℓ1
!= r1.

Our trade-off from Section 4.4 now allows for ℓ1 > r1 and compensates by repeating the
procedure. Note that in depth-2 we have no further saturation constraints, nor can we make
use of reconstructing different levels differently many times. The time complexity for finding
all solutions to the vectorial subset sum problem then becomes

TS = 2ℓ1−r1 ·max(
√
|D1|, |D1|/2ℓ1 , |D1|2/2ℓ+ℓ1)

The memory complexity is equal to the level-0 and level-1 lists, since elements of the final
list can be checked on the fly for being a solution. Moreover, by using the Schroeppel-Shamir
algorithm for the construction of the level-1 lists we can reduce the memory required for
storing the level-0 lists from |D0| =

√
|D1| to

√
|D0| = |D1|1/4 (see Section 4.2), which yields

M = max(|D1|1/4, |D1|/2ℓ1).

4.5.2 Asymptotic Behavior of new Trade-off

For the asymptotic classification of our algorithmic improvement let us first consider the
half distance setting, i.e., ω := H(1− k

n) · n
2 . Here our MMT variant improves the memory

complexity by almost a square-root down to 20.0135n from 20.0213n of standard MMT, while
maintaining the same time complexity of T = 20.05364n. The optimal parameters for our MMT
variant in this case are

ℓ = 0.0278n, ℓ1 = 0.0091n and p = 0.0064n,

where the found worst case rate is k = 0.45n as for standard MMT. We now further optimized
the time complexity of our trade-off under a memory limitation of M ≤ 2λn for decreasing
λ. Figure 4.4 shows the complete trade-off curves for both MMT variants – the original and
our improved version. We observe that our trade-off outperforms the original trade-off for all
memory parameters.

In the full distance setting we obtain a similar improvement. Here our improved MMT
algorithm improves the memory complexity down to 20.0375n from previously 20.053n, while
achieving the same time complexity of 20.112n. Again we obtain runtime improvements over
standard MMT for any fixed memory.
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Figure 4.4: Comparison between the implicit (solid) and our new trade-off (dashed) for the MMT and
BJMM algorithm. Complexity uses known worst case rates of the algorithm in the full distance (left)
and half distance setting (right).

Even though, the MMT algorithm is not the asymptotically fastest ISD algorithm, so
far none of its known asymptotic improvements [BJMM12, MO15, BM18] did transfer to
the implementation level. This makes the MMT algorithm the preferred choice for record
computations [ALL19] as well as security estimates [EMZ22].

BJMM algorithm. However, we also analyzed the algorithm by Becker-Joux-May-Meurer
(BJMM) [BJMM12], which in contrast to the MMT algorithm uses slightly different sets Di.
That is, the vectors on each level have a slightly increased weight. Then in the F2-addition
of those vectors some weight is assumed to cancel to still obtain a vector of weight p. The
different possibilities, how the weight can cancel, increase the amount of representations
and lead to an increased optimal tree-depth of three. This increased tree-depth allows us
to make use of our subtree reconstruction technique yielding an improved trade-off curve
also shown in Figure 4.4. We observe that the refined choice of the Di gives the algorithm
a possibility to balance the list sizes if memory is not limited. For that reason our strategy
yields improvements only for limited memory in the case of the BJMM algorithm.

4.5.3 Practical Results and Security Estimates

We adapted the MMT / BJMM implementation from [EMZ22] to our new trade-off strategy.
Interestingly, besides reducing the memory requirements we also obtain practical running
time improvements, which stem from less, usually costly memory accesses.

We were able to solve several instances provided at decodingchallenge.org [ALL19],
which were either unsolved or broken using more time and memory. Most notably, we obtained
a new record computation in the quasi-cyclic setting, which follows the parameter selection of
the BIKE and HQC schemes.

New record computation

Precisely, we solved the QC-3138 instance with code parameters (n, k, ω) = (3138, 1569, 56)
with an estimated bit complexity of 66.7 (respectively 60.7 if counted in 64-bit register
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operations) in only 2.23 CPU years. We estimated the expected time to solve this instance on
our cluster, based on the processed permutations per second, to about 9.47 CPU years. The
previous best implementation from [EMZ22] would need an expected amount of 30.31 CPU
years, i.e., our implementation is about 3.2 times faster on this instance.

We also analysed the performance of our implementation on the next instance QC-3366
with parameters (n, k, ω) = (3366, 1683, 58), which has an estimated bit security of 68.7. We
obtain an expected running time of 30.2 CPU years, which corresponds to an improvement
by a factor of 5.7.

Furthermore we re-broke the previous QC-2918 record instance with parameters (n, k, ω) =
(2918, 1459, 54) two times in just 224 CPU days, almost precisely hitting its expectation,
which is about 6.9 times faster than the previous best implementation.

On McEliece like medium-sized instances we obtain a speedup by a factor of more than
2. We re-broke the current record instance McEliece-1284 using parameters (n, k, ω) =
(1284, 1028, 24) in X.X (expected 11.06) CPU years, where the initial record computation was
performed in 22.04 (expected 26.28) CPU years, on similar hardware. Similarly, we estimated
the next record instance to consume about 74.68 CPU years, improving from the previous
estimate of 156.6 CPU years.

Security Estimates.

Next we investigate the impact of our improvement on the security of cryptographic sized
instances. Therefore, we first adapted the estimation scripts from [EB22] to match our
implementation, which allows us to precisely estimate the bit-complexity of given instances.
Following previous works [EB22,BBC+19,EMZ22] we consider different memory access cost
models. A memory access cost tries to model the practically faced memory access timings,
by penalizing the algorithm for a high memory usage. Precisely, an algorithm with time
complexity T and memory complexity M is assumed to have cost T ·f(M), where f determines
the penalty. We consider the established models of constant, logarithmic and cube-root access
costs, which correspond to f(M) = 1, f(M) = log M and f(M) = 3√M .

Now we extrapolate the time to solve an instance of proposed parameters from our obtained
record computations. Therefore, we scale the time of our largest experiment in the respective
setting by the difference in the bit-complexity of our experiment and the suggested parameters.

Methodology Example. Let us give a brief example of that methodology. Take the
HQC category 1 parameter set (n, k, ω) = (35338, 17669, 132), in the constant memory access
setting. This instance achieves a bit complexity of 144.7 according to our estimator, while
our QC-3138 record has a bit complexity of 66.7 and took us about 2.24 CPU years to
compute. We, therefore, extrapolate the time for breaking the HQC 128-bit parameters to
2.24 · 2144.7−66.7 ≈ 279.16 CPU years.

Since the commonly addressed security categories 1, 3 and 5 relate their security to the
security of AES-128, -192 and -256, we also estimated the time complexity of breaking AES
on our cluster. Therefore, we benchmarked the number of AES encryptions our cluster is
able to perform per second from which we obtained the expected time to break AES with
respective key size.

BIKE / HQC. Table 4.2 states the security margin (in bits) the corresponding parameter
set has over breaking AES. Precisely the table states log TScheme

TAES
. Here, TScheme is the estimated

time to break the schemes parameters and TAES the estimated time to break the corresponding
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Quasi-Cyclic Category 1 Category 3 Category 5

constant:

BIKE message −0.65 (3.09) −0.59 (3.09) 0.26 (3.23)
key 0.73 (3.15) −1.07 (3.20) 2.13 (3.74)

HQC −1.84 (3.08) 1.19 (3.09) −0.86 (3.09)

logarithmic:

BIKE message −0.36 (3.22) −0.21 (3.25) 0.84 (3.26)
key 1.24 (3.18) −0.10 (3.21) 3.50 (3.24)

HQC −1.51 (3.23) 1.61 (3.26) −0.38 (3.28)

cube-root:

BIKE message 0.37 (4.10) 0.77 (4.43) 1.99 (4.69)
key 1.89 (3.88) 0.79 (4.21) 4.60 (4.43)

HQC −0.67 (4.29) 2.71 (4.63) 0.90 (4.85)
Table 4.2: Bit-difference in security of BIKE/HQC and AES with respective key-length considering
different memory access cost.

AES instantiation on our cluster. The number in parentheses states the improvement over a
similar analysis performed in [EMZ22], i.e., one obtains their result as a sum of both numbers.

We observe that our time-memory trade-off, despite saving on memory, actually lowers the
bit-security estimates of BIKE and HQC by about 3 to 5 bits. Note that, this is more than
the improvement of representation-based ISD algorithms like MMT over early algorithms like
Stern and Dumer on these instances [EB22].

Further, most instances provided quite exactly this amount as a security margin, i.e., any
further improvement most likely leads to the necessity of a parameter adaption. Since our
algorithm has a reduced memory complexity we obtain larger gains when considering higher
memory access cost models.

In the case of BIKE we distinguish message and key security as both settings allow for
slightly different speedups [ABB+17].

McEliece. In Table 4.3 we state the obtained security margins for the round 3 McEliece
parameter sets, using the same extrapolation methodology. Since in the McEliece setting
ISD algorithms tend to use very high amounts of memory we also consider memory-limited
settings. In those we restrict the memory consumption of the algorithm to not exceed 280 or
260 bits respectively. We reduce the security estimates for McEliece by about 1 to 6 bits and
obtain the best results in memory-limited settings, where our new time-memory trade-offs
can play its strength. Again the number in brackets indicates by how much we reduced the
previous estimate from [EMZ22].

Note that under cube-root memory access cost none of the optimal algorithmic configura-
tions exceeds 260 bits of memory.
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McEliece Category 1
n = 3488

Category 3
n = 4608

Category 5a
n = 6688

Category 5b
n = 6960

Category 5c
n = 8192

constant:
unlimited −0.82 (0.91) −26.10 (1.24) −24.04 (0.86) −24.73 (0.93) 5.14 (0.96)
M ≤ 280 0.29 (1.25) −23.95 (2.43) −13.65 (1.98) −13.36 (2.49) 21.18 (2.19)
M ≤ 260 2.63 (2.17) −19.85 (0.73) − 9.07 (5.21) − 8.58 (4.78) 26.43 (6.27)

logarithmic:
unlimited 0.84 (0.93) −24.15 (1.04) −21.60 (0.90) −22.26 (0.97) 7.85 (0.99)
M ≤ 280 1.54 (1.32) −22.65 (2.24) −12.40 (1.94) −12.11 (2.48) 22.47 (2.17)
M ≤ 260 3.46 (2.09) −19.18 (0.85) − 8.32 (4.86) − 7.81 (4.41) 27.21 (5.95)

cube-root:
8.94 (1.43) −13.79 (1.52) − 1.57 (2.39) − 0.72 (2.10) 35.43 (2.79)

Table 4.3: Bit-difference in security of Classic McEliece and AES with respective key-length considering
different memory access cost.

4.6 Generalization to arbitrary depth d

Note that in general we have

Li+1 = (qi · Li)2

2ℓi
,

where ℓi is the additional bitwise constraint introduced on level i. The time and memory
complexity are then given as before. The saturation constraints extend to

qi · Li ≤
|Di|

2ℓ1+...+ℓi
for i = 2, . . . , d− 1,

where d is the depth of the tree. Together with the definition of the filtering probability given
in Equation (4.4), we can rewrite the saturation constraints for each level i as

i∑
j=1

(2i−j − 1)ℓj ≥
i∑

j=1
2i−j · rj for i = 1, . . . d− 2,

where there exist 2rj different representations of any element from Dj+1 as a sum of two
elements from Dj . Finally, the requirement of finding one representation of the solution in
the final list is expressed via the condition

qd · Ld = 1,

which similar to the saturation constraints rewrites to
d−1∑
j=1

(2d−j − 1)ℓj =
d−1∑
j=1

2d−j−1 · rj . (4.8)
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5 A Faster Algorithm for Finding
Closest Pairs in Hamming Metric

We study the Closest Pair Problem in Hamming metric, which asks to find the pair with
the smallest Hamming distance in a collection of binary vectors. We give a new randomized
algorithm for the problem on uniformly random input outperforming previous approaches
whenever the dimension of input points is small compared to the dataset size. For moderate
to large dimensions, our algorithm matches the time complexity of the previously best-
known locality sensitive hashing based algorithms. Technically our algorithm follows similar
design principles as Dubiner [Dub10] and May-Ozerov [MO15]. Besides improving the
time complexity in the aforementioned areas, we significantly simplify the analysis of these
previous works. We give a modular analysis, which allows us to investigate the performance
of the algorithm also on non-uniform input distributions. Furthermore, we give a proof of
concept implementation of our algorithm which performs well in comparison to a quadratic
search baseline. This is the first step towards answering an open question raised by May
and Ozerov regarding the practicability of algorithms following these design principles.

The content of this chapter is the result of a collaboration with Andre Esser
and Robert Kübler. It previously appeared as A Faster Algorithm for Finding
Closest Pairs in Hamming Metric in IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2021) and
is reproduced here with permission.

5.1 Introduction

Finding closest pairs in a given dataset of binary vectors is a fundamental problem in theoretical
computer sciences with numerous applications in data science, machine learning, computer
vision, cryptography, and many others.

Image data for example is often represented via compact binary codes to allow for
efficient closest pair search in applications like similarity search in images or facial recognition
systems [CLSF10, LLZZ15, SBBF11]. The usage of binary codes also allows decoding the
represented data to common codewords. Here, the most efficient algorithms known for
decoding such random binary linear codes also heavily benefit from improved algorithms for
the Closest Pair Problem [MO15, BM18]. Another common application lies in the field of
bioinformatics, where the analysis of genomes involves closest pair search on large datasets to
identify most correlated genetic markers [MDC05,MSL+07].

To be more precise, the Closest Pair Problem asks to find the pair of vectors with the
minimal Hamming distance among n given binary vectors. While the general version of this
problem does not make any restrictions on the distribution of input points, several settings
imply a uniform distribution of dataset elements [BM18,MDC05,MSL+07,MO15]. Usually,
in such settings, there is a planted pair, which attains relative distance ω ∈ [0, 1

2 ], which
has to be found. This uniform version is also known as the light bulb problem [Val88]. The
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problem can be solved in time linearly in the dataset size1 as long as the dimension of vectors
is constant [Ben80,KM95]. As soon as the dimension is non-constant an effect occurs known
as curse of dimensionality, which lets the problem become much harder.

The most common framework to assess the problem is based on locality-sensitive hashing
(LSH), whose research was initiated in the pioneering work of Indyk and Motwani [IM98].
Roughly speaking, a locality-sensitive hash function is more likely to hash points that are
close to each other to the same value, rather than points that are far apart. To solve the
Closest Pair Problem leveraging an LSH family one chooses a random hash function of the
family and computes the hash value of all points in the dataset. In a next step, one computes
the pairwise distance only for those pairs hashing to the same value. This process is then
repeated for different hash functions until the closest pair is found. The initial algorithm by
Indyk-Motwani achieves a time complexity of nlog2( 2

1−ω
). In general a time lower bound of

n
1

1−w is known for LSH based algorithms [Dub10,MNP06]. In [Dub10] Dubiner also gives an
abstract idea of an algorithm achieving this lower bound. Later May and Ozerov [MO15] gave
the first concrete algorithmic description following similar design principles, also achieving
the mentioned lower bound. Additionally, current data-dependent hashing schemes [AR15],
where the hash function depends also on the actual points in the dataset, improve on the
initial idea by Indyk-Motwani and also match the time lower bound of [Dub10,MNP06].

In the uniform setting Valiant [Val12] was able to circumvent the lower bound by leveraging
fast matrix multiplication and hence breaking out of the LSH framework to give an algorithm
that runs in time n1.63poly(d). Remarkably, the complexity exponent of Valiant’s algorithm
does not depend on the relative distance ω at all. Later this bound was improved to n1.58poly(d)
by Karpa et al. [KKK16] and simplified in an elegant algorithm by Alman [Alm19] achieving
the same complexity.

All mentioned algorithms have in common, that they assume a dimension of d = c(n) log(n),
where c(n) is at least a big constant, the results by [AR15,Dub10,Val12] for example take

1
c(n) = o(1) . Here, the algorithm by May-Ozerov forms an exception by being applicable
for any c(n) ≥ 1

1−H( ω
2 ) , where H(·) denotes the binary entropy function. Nevertheless, the

mentioned lower bound is only achieved for c(n) approaching infinity. Recently, Xie, Xu and
Xu [XXX19] proposed a new algorithm based on decoding the points of the data set according
to some random code, exploiting that close vectors are more likely to be decoded to the same
word. Their algorithm is also applicable for any c(n) that allows to bound the number of
pairs attaining relative distance ω to a constant number with high probability. The authors
are able to derandomize their approach and, thus, obtain the fastest known deterministic
algorithm for small constants c(n). However, if one also considers probabilistic procedures,
their method is inferior to the one by May-Ozerov.

5.1.1 Our Contribution

We design a randomized algorithm, which achieves the best-known running time for solving
the Closest Pair Problem on uniformly random input, when the dimension d is small, which
means for small constants c(n). Additionally, our algorithm matches the running time of the
best known LSH algorithms for larger values of c(n) and still matches the time lower bound
for LSH based schemes if 1

c(n) = o(1). To quantify we give in Figure 5.1 the achieved runtime
exponent for c(n) ∈ {1.2, 2, 4} of our algorithm in comparison to May-Ozerov. As indicated
by the figure, our approach performs also exceptionally well for large closest pair distances,
1 here we ignore polylogarithmic factors in the dataset size
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where common LSH based techniques usually fail [EWF12]. Moreover, we show that for large
distances our algorithm is indeed optimal.
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Figure 5.1: Time complexity exponent ϑ as a function of the relative distance ω of the closest pair for
different dimensions. The running time is of the form nϑ · poly(d), where the dashed line represents
May-Ozerov’s algorithm and the solid line depicts the exponent of our new algorithm. The dotted line
gives the maximal ω for which the algorithm by May-Ozerov is still applicable.

Technically our algorithm follows similar design principles as [Dub10,MO15]. At its core,
these algorithms group the elements of the given datasets recursively into buckets according
to some criterion, which fulfills properties that are similar to those of locality-sensitive hash
functions. As the buckets in the recursion are decreasing in size, at the end of the recursion
they become small enough to compute the pairwise distance of all contained elements naively.

In contrast to previous works, we exchange the used bucket criteria, which allows us to
significantly simplify the algorithms’ analysis as well as improve for the mentioned parameter
regimes. Also our approach is applicable for any c(n), thus we are able to remove the restriction
c(n) ≥ 1

1−H( ω
2 ) .

Following May-Ozerov and Dubiner, we study the bichromatic version of the Closest Pair
Problem, which takes as input two datasets rather than one and the goal is to find the closest
pair between those given datasets. Obviously, there exists a randomized reduction between
the Closest Pair Problem and its bichromatic version, but our algorithm can also be easily
adapted to the single dataset case. However, May and Ozerov require the elements within
each dataset to be pairwise independent of each other, as a minor contribution we get rid of
this restriction, too.

Also, we investigate the algorithms’ performance on different input distributions. Therefore
we give a modular analysis, which allows for an easy exchange of dataset distribution as well
as the choice of bucketing criterion. We also give numerical upper bounds for the algorithm’s
complexity exponent on some exemplary input distributions. These examples suggest that
the chosen criterion is well suited as long as the distance between input elements concentrates
around d

2 (as in the case of random input lists), while being non-optimal as soon as the
expected distance decreases.

We also address an open research question regarding the practical applicability of algorithms
following the design of [Dub10,MO15] raised by May and Ozerov. As their algorithm inherits
a huge polynomial overhead in time and space, they left it as an open problem to give a more
practical algorithm following a similar design. While our analysis first suggests an equally high
overhead, we are able to give an efficient implementation of our algorithm, which requires in
addition to the input dataset only constant space. Also, our practical experiments show that
most of the overhead of our algorithm is an artifact of the analysis and can be circumvented
in practice so that our algorithm performs well compared to a quadratic search baseline.
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The rest of the paper is organized as follows: In the subsequent section, we introduce
the necessary notation and state the exact definition of the Closest Pair Problem under
consideration. In section 3, we then give a detailed description of our new algorithm and
establish a proof of its running time as well as its correctness. In the following section 4,
we investigate the performance of our algorithm on different input distributions. Finally,
in section 5, we give practical improvements of the algorithm and runtime results of our
implementation compared to a quadratic search baseline.

5.2 Preliminaries

5.2.1 Notation

For a, b ∈ N, a ≤ b we denote [a, b] := {a, a + 1, . . . , b − 1, b}. In particular, let [b] := [1, b].
For a vector v ∈ Fd

2 and I ∈ [d] let vI be the projection of v onto the coordinates indexed
by I, i.e. for v = (v1, v2, . . . , vd) and I = {i1, i2, . . . , ik} we have vI = (vi1 , . . . , vik

) ∈ Fk
2.

We denote the uniform distribution on Fd
2 as U

(
Fd

2

)
. We define f(n) = Õ (g(n)) :⇔ ∃i ∈

N : f(n) = O
(
g(n) · logi(g(n))

)
, i.e. the tilde additionally suppresses polylogarithmic factors

in comparison to the standard Landau notation O.
Furthermore, we consider all logarithms having base 2. Define the binary entropy function

as H(x) = −x log(x) − (1 − x) log(1 − x) for x ∈ (0, 1), and additionally H(0) = H(1) := 0.
Using this together with Stirling’s formula n! = Θ

(√
2πn

(
n
e

)n) we obtain
( n

ωn

)
= Θ̃

(
2H(ω)n

)
.

We additionally define H−1 : [0, 1]→ [0, 1
2 ] to be the inverse of the left branch of H.

Lemma 3. Let v1, . . . , vn ∼ U
(
Fd

2

)
independent and M ∈ Fn×n

2 an invertible matrix. Then
for v′

1
...

v′
n

 := M ·

v1
...

vn


it also holds that v′

1, . . . , v′
n ∼ U

(
Fd

2

)
are independently and uniformly distributed.

Corollary 1. For v, w, z ∼ U
(
Fd

2

)
independent, v + z, w + z ∼ U

(
Fd

2

)
are also uniform and

independent.

Proof. We have v + z
w + z

z

 :=

1 0 1
0 1 1
0 0 1

 ·
v

w
z


Since the matrix is invertible we can apply Lemma 3.

5.2.2 Closest Pair Definition

In this work, we consider the Bichromatic Closest Pair Problem in Hamming metric. Here,
the inputs are two lists of equal size containing elements drawn uniformly at random from Fd

2
plus a planted pair, whose Hamming distance is ωd for some known ω. More formally, we
state the problem in the following definition. To allow for easy comparison to the result of
May-Ozerov, we follow their notation using the dimension as the primary difficulty parameter.
Thus we let the list sizes be n := 2λd, which means λ = 1

c(n) , where d = c(n) log n.
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Definition 11 (Bichromatic Closest Pair Problem). Let d ∈ N, ω ∈
[
0, 1

2

]
and λ ∈ (0, 1]. Let

L1 = (vi)i∈[2λd], L2 = (wi)i∈[2λd] ∈
(
Fd

2

)2λd

be two lists containing elements uniformly drawn
at random, together with a distinguished pair (x, y) ∈ L1 × L2 with wt(x + y) = ωd. We
further assume that for each i, j the vectors vi and wj are pairwise stochastically independent.
The Closest Pair Problem CPd,λ,ω asks to find this closest pair (x, y) given L1, L2 and the
weight parameter ω. We call (x, y) the solution of the CPd,λ,ω problem.

First, note that λ ≤ 1 is not a real restriction since for λ > 1 the lists must contain
duplicates, which can be safely removed, giving us a problem instance with λ ≤ 1. We also
consider the Closest Pair Problem on input lists whose elements are distributed according to
some distribution D different from the uniform one used in Definition 11. To indicate this, we
refer to the CPd,λ,ω over distribution D. Note that in this case, the meaningful upper bound
for λ is the entropy of D.

Technically speaking, it is also not necessary to know the value of ω, as the time complexity
of appropriate algorithms to solve the CPd,λ,ω problem is solely increasing in ω. Thus if ω is
unknown, one would apply the algorithm for each ωd = 0, 1, 2, . . . until the solution is found,
which results at most in polynomial overhead.

It is well known, that any LSH based algorithm solving the problem of Definition 11 with
non-negligible probability needs at least time complexity |L1|

1
1−ω = 2

λd
1−ω [Dub10,MNP06].

However, this lower bound assumes the promised pair to be uniquely distinguishable from
all other pairs in L1 × L2. Obviously, if the relation of ω and λ lets us expect more than
the promised pair of distance ωd in the input lists, an algorithm solving the Closest Pair
Problem needs to find all (or at least a non-negligible fraction) of these closest pairs.2 Such
scenarios for example frequently occur when the solution to the CPd,λ,ω problem actually
is a solution to some different problem [MO15, Hir16, BDGL16, GKH17], which enables a
distinction from other closest pairs. Hence, if the input lists contain E closest pairs the
optimal time complexity becomes

Ω̃
(
max(2

λd
1−ω , E)

)
Let (v, w) ∈ L1 × L2 \ {(x, y)} be arbitrary list elements. If the elements are chosen

independently and uniformly at random, as stated in Definition 11 we expect E to be of size

E
[
|E|
]

= (|L1 × L2| − 1) · Pr [wt(v + w) = ωd] + 1︸︷︷︸
from (x,y)

=
(
22λd − 1

)
·
( d

ωd

)
2d

+ 1

= Θ̃
(
2(2λ+H(ω)−1)d

)
,

and, thus, the optimal time complexity to solve the CPd,λ,ω problem becomes

Topt = Ω̃
(
max

(
2

λd
1−w , 2(2λ+H(ω)−1)d

))
. (5.1)

5.3 Our new Algorithm
Our algorithm groups the input elements according to some criterion into several buckets,
each one representing a new closest pair instance with smaller list size. We then apply this
2 Note that in such a scenario the searched (x, y) is probably not the pair with the smallest Hamming

distance, however, we still refer to elements attaining Hamming distance ωd as closest pairs.
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bucketing procedure recursively until the buckets contain few enough elements to eventually
solve the Closest Pair Problem represented by them via a naive quadratic search algorithm,
the exhaustive search.

As a bucketing criterion we choose the weight of the vectors after adding a randomly
drawn vector z from Fd

2. Thus, each bucket is represented by a vector z and only those
elements v are added to the bucket, which satisfy wt(v + z) = δd, where δ is determined later.

corresponds to
relative weight δ

x

k = d
r

2λd

d

. . . . . .

y . . . . . .

. . . . . .

+
z(1

)
1

+z
(1)

2

+z (1)N ...

x

y

. . . . . .

. . . . . .

+
z

(2
)

1

+z
(2)

2
+z (2)N

...
x

y

. . .

. . .

Figure 5.2: We start off on the left side of the illustration with the two input lists L1, L2 containing
the closest pair (x, y). Going right, in each iteration of the algorithm, N different z(j)

i are randomly
chosen and all of the list elements are tested if they fulfill the bucketing criterion. The crosshatched
pattern indicates the parts where the bucket criterion is fulfilled, i.e. the list vectors differ from z(j)

i in
δk positions.

More precisely in each recursive iteration, our algorithm works only on equally large blocks
of the input vectors and not on the full d coordinates, i.e. the weight condition is only checked
on the current block. This is a technical necessity to obtain independence of vectors in the
same bucket on fresh blocks. Let us formally define the notion of blocks.

Definition 12 (Block). Let d, r ∈ N with r | d and i ∈ [r]. Then we denote the i-th block of
[d] as

Bd
i,r :=

[
(i− 1)d

r
+ 1, i

d

r

]
.

Note that [d] = ⊎
i∈[r] Bd

i,r and
∣∣∣Bd

i,r

∣∣∣ = d
r for each i ∈ [r]. For a leaner notation and since the

role of d does not change in the course of this paper, we omit the index d in the following,
thus we write Bi,r := Bd

i,r.

In each iteration, we choose the number N of buckets in such a way that with overwhelming
probability the closest pair lands in at least one of the buckets. Hence, our algorithm creates
a tree with branching factor N with the distinguished pair being contained in one of the
leaves. The deeper we get into the tree, the smaller and, hence, the easier the closest pair
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instances get. An algorithmic description of the whole procedure is given in pseudocode in
Algorithm 11.

Algorithm 11: Closest-Pair(L1, L2, ω)

Input : lists L1, L2 ∈
(
Fd

2

)2λd

, weight parameter ω ∈
[
0, 1

2

]
Output : list L containing the solution (x, y) ∈ L1 × L2 to the CPd,λ,ω

1 begin
2 Set r, P, N ∈ N, δ ∈

[
0, 1

2

]
properly and define k := d

r

3 for P permutations π do
4 ▷ permutation on the bit positions Stack S := [(π(L1), π(L2), 0)]
5 L← ∅
6 while S is not empty do
7 (A, B, i)← S.pop()
8 if i < r then
9 for N randomly chosen z ∈ Fk

2 do
10 A′ ← (v ∈ A | wt

(
(v + z)Bi+1,r

)
= δk)

11 B′ ← (w ∈ B | wt
(
(w + z)Bi+1,r

)
= δk)

12 S.push((A′, B′, i + 1))

13 else
14 for v ∈ A, w ∈ B do
15 ▷ Naive search if wt(v + w) = ωd then
16 L← L ∪ {(v, w)}

The following theorem gives the time complexity of our algorithm to solve the CPd,λ,ω.

Theorem 2. theoremmainthm Let ω ∈
[
0, 1

2

]
and λ ∈ [0, 1]. Then Algorithm 11 solves the

CPd,λ,ω problem with overwhelming success probability in expected time 2ϑd(1+o(1)), where

ϑ =

(1− ω)
(

1−H
(

δ⋆− ω
2

1−ω

))
for ω ≤ ω⋆

2λ + H(ω)− 1 for ω > ω⋆ ,

with δ⋆ := H−1(1− λ) and ω⋆ := 2δ⋆(1− δ⋆).

The case distinction can intuitively be explained as follows: As long as the number of
pairs with distance ωd in the input lists is small enough the algorithm is optimal for a choice
of δ such that the lists at the leaves of the tree become polynomial in size. However, if too
many closest pairs exist in the input lists, enforcing polynomial size of the leaf nodes lets
the probability of the solution being contained in one of them drop immensely. Thus to still
ensure the algorithm having success in finding the solution an enormous branching factor
would be required. Hence, instead the choice of δ is adapted, which leads to larger leaf nodes
and in total to a time complexity that is linear in the number of closest pairs, which matches
the lower bound from Equation (5.1).

We establish the proof of Theorem 2 in a series of lemmata and theorems. Note that any
bucketing algorithm heavily depends on two probabilities specific to the chosen bucketing
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criterion. First, the probability that any element falls into a bucket, which we call p in the
remainder of this work. This probability is mainly responsible for the lists’ sizes throughout
the algorithm. The second relevant probability, which we call q describes the event of both,
x and y, falling into the same bucket, where (x, y) is the solution to the CPd,λ,ω problem.
This is the probability of (x, y) surviving one iteration meaning that q determines the success
probability of the algorithm. In summary, for our choice of bucketing criteria, we get

p := Pr
z

[
wt((v + z)Bi,r ) = δk

]
for any v ∈ Fk

2 and

q := Pr
z

[
wt((x + z)Bi,r ) = wt((y + z)Bi,r ) = δk

]
,

(5.2)

where k = d
r is the block width. If we assume that the ωd differing coordinates of x and y

distribute evenly into the r blocks, i.e. wt((x + y)Bi,r ) = ωk for each i, these probabilities are
independent of i for δk fixed. This property is ensured for at least one of the P permutations
in Algorithm 11 with overwhelming probability, as we will see in the proof of Theorem 2.

We determine the exact form of q and p later. First, we are going to prove the follow-
ing statement about the expected running time of Algorithm 11 in dependence on both
probabilities.

Theorem 3. Let q and p be as defined in Equation (5.2), ω ∈
[
0, 1

2

]
, λ ∈ [0, 1] and r = λd

log2 d
.

Then Algorithm 11 solves the CPd,λ,ω problem in expected time

max
(

q−r,
2λd · pr−1

qr
,

(
2λd · pr

)2

qr

)1+o(1)

with a success probability overwhelming in d.

Proof. First, we are going to prove the statement about the time complexity.
The algorithm maintains a stack, containing list pairs together with an associated counter.

In every iteration of the loop in line 6, one element is removed from the stack and if the
counter i associated with this element is smaller than r, N additional elements (A′, B′, i + 1)
are pushed to the stack in line 12. Let us consider the elements on the stack as nodes in a
tree of depth r, where all elements with associated counter i are siblings on level i of the
tree. Also, depict the elements pushed to the stack in line 12 as child nodes of the currently
processed node (A, B, i). Then the total number of elements with associated counter i pushed
to the stack is bounded by the number of nodes on level i in a tree with branching factor N ,
which is N i.

Next, let us determine the lists’ sizes on level i of that tree. Therefore, let the expected
size of lists on level i be Li. As these lists are constructed from the lists of the previous level
by testing the weight condition in line 10 and 11, it holds that

Li = Li−1 · Pr
[
wt((v + z)Bi,r )) = δk

]
:= Li−1 · p ,

where i > 0 and by construction L0 = |L1|. By substitution we get

Li = |L1| · pi , for i = 0, . . . , r.

Now, we are able to compute the time needed to create the nodes on level i of the tree.
Observe that for the creation of a level-i node we need to linearly scan through the larger
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lists of a node on level i− 1 to check the weight conditions. Thus, to construct all N i nodes
of level i we need a total time of

Ti = Õ
(
Li−1 ·N i

)
= Õ

(
|L1| · pi−1 ·N i

)
,

for each 0 < i ≤ r. Eventually, the list pairs on level r are matched by a naive search with
quadratic runtime resulting in

Tr+1 = Õ (N r · E[|Ar| · |Br|]) ,

where Ar, Br describe the lists of a level-r node.
The expected value of the product, now, depends on the chosen input distribution. We

next argue that for the given input distribution we have

E[|Ar| · |Br|] = O
(
E[|Ar|] · E[|Br|]

)
= O(L2

r) .

To see this, first note that for v, w, z independent and uniform, v + z and w + z are also
independent and uniform according to Corollary 1. This in turn implies

Pr
[
wt((v + z)Bi,r )) = δk, wt((w + z)Bi,r )) = δk

]
= Pr

[
wt((v + z)Bi,r )) = δk

]
· Pr

[
wt((w + z)Bi,r )) = δk

]
=p2

since deterministic functions of independent random variables are still independent. This also
works for either v = x or w = y, but not for (v, w) = (x, y). In this case, however, we have
Pr
[
wt((x + z)Bi,r )) = δk, wt((y + z)Bi,r )) = δk

]
= q by definition. With this insight, we can

express E[|Ai| · |Bi|] in terms of E[|Ai−1| · |Bi−1|] for each i via

E[|Ai| · |Bi| | Ai−1, Bi−1] =
∑

v∈Ai−1, w∈Bi−1
(v,w) ̸=(x,y)

Pr
[
wt((v + z)Bi,r ) = δk, wt((w + z)Bi,r ) = δk

]

+ Pr
[
wt((x + z)Bi,r )) = δk, wt((y + z)Bi,r )) = δk

]
= (|Ai−1| · |Bi−1| − 1)p2 + q

≤ |Ai−1| · |Bi−1| · p2 + 1 ,

Applying the Law of total Expectation we obtain

E[|Ai| · |Bi|] = E[E[|Ai| · |Bi| | Ai−1, Bi−1]] ≤ E[|Ai−1| · |Bi−1|] · p2 + 1 (5.3)

Successive application of Equation (5.3) yields

E[|Ar| · |Br|] ≤ E[|L1| · |L2|] · p2r + r = 22λdp2r + r = O(L2
r) (5.4)

Finally, the algorithm is repeated for P different permutations on the bit positions of
elements in L1, L2. In summary, the expected time complexity to build all list becomes the
sum of the Ti multiplied by P , thus, by choosing N := d

q and P = (d + 1)r+1 we get
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T ′ = P ·
r+1∑
i=1

Ti ≤ (d + 1)r+1 ·
(

r∑
i=1

N i · |L1| · pi−1 + (|L1| · pr)2 ·N r

)

= (d + 1)r+1 ·
(

r∑
i=1

|L1| · di

q
·
(

p

q

)i−1
+ (|L1| · pr)2 · dr

qr

)

≤ (d + 1)2r+1 ·
(

r · |L1| · pr−1

qr
+ (|L1| · pr)2

qr

)

= max
(2λd · pr−1

qr
,

(
2λd · pr

)2

qr

)1+o(1)
,

where the inequality follows from the fact that p
q ≥ 1 since

q = Pr
[
wt((x + z)Bi,r ) = wt((y + z)Bi,r ) = δk

]
≤ Pr

[
wt((x + z)Bi,r ) = δk

]
= p ,

and the final equality stems from the fact that |L1| = 2λd and r = o( λd
log d) as given in the

theorem.
Note that T ′ disregards the fact that no matter how small the lists in the tree become,

the algorithm needs to traverse all

T ′′ = Õ (N r) = Õ
((

d

q

)r)
nodes of the tree. Hence, the expected time complexity of the whole algorithm is

T = max(T ′, T ′′) ,

which proves the claim.
Let us now consider the success probability of the algorithm. Therefore, we assume that

the chosen permutation distributes the weight on x + y such that in every block of length
r the weight is equal to ωd

r , which we describe as a good permutation. The probability of a
random permutation π distributing the weight in such a way is

Pr [good π] = Pr
[
wt
(
π(x + y)Bi,r

)
= ωd

r
, for i = 1, . . . , r

]

=

( d
r

ωd
r

)r
(d

ω

) ≥ (d

r
+ 1

)−r

.

Thus, the probability of at least one out of (d + 1)r+1 chosen permutations being good is

p1 := Pr [at least one good π]
= 1− (1− Pr [good π])(d+1)r+1

= 1−
(

1−
(

d

r
+ 1

)−r
)(d+1)r+1

≥ 1− e−d .
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The algorithm succeeds, whenever there exists a leaf node in the tree, containing the
distinguished pair (x, y). As every node in the tree is constructed based on its parent, it
follows that all nodes on the path from the root to that leaf need to contain (x, y). By
definition the probability of x and y satisfying the bucket criterion at the same time (thus for
the same z) is q and since we condition on a good permutation, q is equal for every considered
block. Let us define indicator variables Xj for the first level, where Xj = 1 iff the j-th node
contains (x, y). Observe that the Xj for independent choices of z are independent. Thus,
clearly the number of trials until (x, y) is contained in any node on level one is distributed
geometrically with parameter q. Hence, the probability of the solution being contained in at
least one node on the first level is

p2 := Pr [∃(A, B, 1) ∈ S : (x, y) ∈ A×B]

= 1− (1− q)N = 1− (1− q)
d
q ≥ 1− e−d .

Now, imagine the pair being contained in some level-i node. Considering that node, we have
with the same probability p2 again that at least one child contains the solution, and the same
argument holds until we reach the leaves. Also, by the independent choices of z the events
remain independent which implies that the probability of (x, y) being contained in a level-r
list is pr

2. In summary, the success probability is

Pr [success] = p1 · pr
2 ≥ (1− e−d)r+1 ≥ 1− r + 1

ed
≥ 1− d

ed
.

The proof of Theorem 3 already shows, how different distributions may affect the complexity
of the algorithm by changing the expected value E[|Ar| · |Br|]. This influence on the algorithms
complexity by different input distributions is further investigated in Section 5.4.

In the next two lemmata, we will proof the exact forms of q and p to conduct the run
time analysis.

Lemma 4. Let k ∈ N, δ ∈ [0, 1]. If x ∈ Fk
2 and z ∼ U(Fk

2) then

Pr
z

[wt(x + z) = δk] =
(

k

δk

)(1
2

)k

.

Proof. Since z ∼ U(Fk
2), the probability is∣∣∣{z ∈ Fk

2 | wt(x + z) = δk}
∣∣∣∣∣Fk

2
∣∣ .

To compute the numerator, note that wt(x + z) = δk means that x and z differ in δk out of k

coordinates, for which there are
( k

δk

)
possibilities. Using

∣∣∣Fk
2

∣∣∣ = 2k, the lemma follows.

Before we continue, let us make a small definition.

Definition 13. Let k ∈ N and x, y ∈ Fk
2. Then we define D(x, y) ⊆ [k] to be the set of

coordinates where x and y differ, i.e.

D(x, y) := {i ∈ [k] | xi ̸= yi}.

Furthermore, let S(x, y) := [k] \D(x, y) be the set of coordinates where they are the same.
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Now we derive the exact form of the probability q of a pair with difference ωk falling into
the same bucket.

Lemma 5. Let k ∈ N, δ ∈ [0, 1]. If x, y ∈ Fk
2 with wt(x + y) = ωk and z ∼ U(Fk

2). Then

Pr
z

[wt(x + z) = wt(y + z) = δk] =
(

ωk
1
2ωk

)(
(1− ω)k(
δ − ω

2
)

k

)(1
2

)k

.

Proof. Let
A := {z ∈ Fk

2 | wt(x + z) = wt(y + z) = δk}.

In analogy to Lemma 4, the probability we search for is |A|
|Fk

2 |
= |A| ·

(
1
2

)k
.

In the following, let ωx := wt(x + z) and analogously ωy := wt(y + z). Now observe that
every coordinate zi of z with i ∈ S(x, y), so belonging to the set of equal coordinates between
x and y, either contributes to both ωx and ωy does not affect either one of them. Let us define
the amount of the zi’s with i ∈ S(x, y) that contribute to the weight as a := |S(x, y)∩D(x, z)|.

Now consider the zi’s with i ∈ D(x, y). Clearly, any such zi contributes either to ωx or to
ωy. Thus, let us define the number of those zi with i ∈ D(x, y) that contribute to ωx as bx :=
|D(x, y) ∩D(x, z)| and analogously those which contribute to ωy as by := |D(x, y) ∩D(y, z)|.
Obviously we have

bx + by = |D(x, y)| = ωk (5.5)

On the other hand we are only interested in those z for which ωx = ωy = δk, which yields the
two equations

ωx = a + bx = δk (5.6)
ωy = a + by = δk (5.7)

All three equations together yield the unique solution

bx = by = ωk

2 and a =
(

δ − ω

2

)
k .

This shows the following: If z ∈ A, it is necessary that z differs from x (analogously y) in
exactly

- ω
2 k out of ωk coordinates of D(x, y) and

-
(
δ − ω

2
)

k out of (1− ω)k coordinates of S(x, y).

Thus, because we can freely combine both conditions, in total there are

|A| =
(

ωk
ω
2 k

)(
(1− ω)k(
δ − ω

2
)

k

)

different values for z, finishing the proof.

Now we are ready to prove Theorem 2 about the time complexity of Algorithm 11 for
solving the CPd,λ,ω problem. For convenience we restate the theorem here.
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Proof. First let us give the exact form of log p and log q using Stirling’s formula to approximate
the binomial coefficients in Lemma 4 and 5. By setting the block width k = d

r we get

log q = (1− ω)
(

H
(δ − ω

2
1− ω

)
− 1

)
d

r

(
1 + o(1)

)
and

log p =
(
H(δ)− 1

)d
r

(
1 + o(1)

)
.

Now, let us reconsider the running time given in Theorem 3 as

T = max
( 1

qr︸︷︷︸
(a)

,
2λd · pr−1

qr︸ ︷︷ ︸
(b)

,

(
2λd · pr

)2

qr︸ ︷︷ ︸
(c)

)1+o(1)
,

where r = λd
log2 d

.
We now show that the running time for all values of δ ≥ δ⋆ := H−1(1 − λ) is solely

dominated by (c). Observe that we have (c) ≥ (b), whenever

2λd · p2r ≥ pr−1

⇔ H(δ) ≥ 1− λr

r + 1

⇔ δ ≥ H−1
(
1− λ

1 + 1
r

)
→ H−1(1− λ) = δ⋆ ,

since 1
r = o(1). Also we have (c) ≥ (a) for the same choice of delta, as

22λd · p2r ≥ 1
⇔ δ ≥ H−1(1− λ) = δ⋆ .

Thus, for all choices of δ ≥ δ⋆ the running time is (Tδ)(1+o(1)) with

ϑ⋆(δ) := log Tδ

d
= 2(λ + H(δ)− 1) + (1− ω)

(
1−H

(δ − ω
2

1− ω

))
.

Now, minimizing ϑ⋆ yields a global minimum at δmin = 1
2(1−

√
1− 2ω) attaining a value

of
ϑ⋆(δmin) = 2λ + H(ω)− 1 .

As we are restricted to values for δ which are larger than δ⋆ solving δmin ≥ δ⋆ for ω yields

δmin ≥ δ⋆

⇔ ω ≥ 2δ⋆(1− δ⋆) = ω⋆ .

This proves the claim of the theorem whenever ω > ω⋆. For all other values of ω we simply
choose δ = δ⋆, which yields

ϑ = ϑ⋆(δ⋆) = (1− ω)
(

1−H
(δ⋆ − ω

2
1− ω

))
for ω ≤ ω⋆

as claimed.
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Now to boost the expected running time 2ϑd(1+o(1)) of the algorithm to actually being
obtained with overwhelming probability we use a standard Markov argument. Let X denote
the random variable describing the running time of the algorithm. Then the probability that
the algorithm needs more time than 2

√
dE[X] to finish is

Pr
[
X ≥ 2

√
d · E[X]

]
≤ E[X]

2
√

d · E[X]
= 2−

√
d ,

or equivalently the algorithm finishes in less time than 2
√

dE[X] = 2ϑd(1+o(1)) with overwhelm-
ing probability. Also, a standard application of the union bound yields that the intersection
of the algorithm finishing within the claimed time and the algorithm having success in finding
the solution is still overwhelming.

The theorem shows that whenever ω > ω∗ our algorithm obtains the optimal time
complexity for uniformly random lists as given in Equation (5.1). Additionally, our algorithm
reaches the time lower bound for locality-sensitive hashing based algorithms for all values of
ω, whenever the input list sizes are subexponential in the dimension d, which is shown in the
following lemma.

Lemma 6. Let ω ∈
[
0, 1

2

]
, and ϑ as defined in Theorem 2. Then we have

lim
λ→0

ϑ

λ
= 1

1− ω
.

Proof. Note that for λ converging zero, δ⋆ = H−1(1 − λ) approaches 1
2 . This implies

ω⋆ := 2δ⋆(1− δ⋆) = 1
2 and hence for all choices of ω we have

ϑ = (1− ω)
(

1−H
(

δ − ω
2

1− ω

))
.

Now, for this choice of ϑ, May and Ozerov [MO15, Corollary 1] already showed the statement
of this lemma, by applying L’Hoptial’s rule twice.

For convenience we restate all parameter choices of Algorithm 11 for solving the CPd,λ,ω

in the following overview:

r = d

log2 d
, P = (d + 1)r+1, k = d

r

N = d

q
, where q =

(
ωk
1
2ωk

)(
(1− ω)k(
δ − ω

2
)

k

)(1
2

)k

δ =
{

δ⋆ for ω ≤ 2δ⋆(1− δ⋆)
1
2(1−

√
1− 2ω) else

, with δ⋆ := H−1(1− λ)

(5.8)
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5.4 Different Input Distributions

In this section, we show how to adapt the analysis of Algorithm 11 to variable input distribu-
tions. Therefore, we first reformulate Theorem 3 in Corollary 2 for the case of considering the
CPd,λ,ω over an arbitrary distribution D. As already indicated in the proof of Theorem 3, this
reformulation depends on the expected value E of the cost of the naive search at the bottom
of the computation tree, which is highly influenced by the distribution D. Then, we show how
to compute E and how to upper bound it effectively. Finally, we give upper bounds for the
time complexity of the algorithm to solve the CPd,λ,ω over some generic distributions. These
examples suggest that the algorithm is best suited for distributions D, where the weight of
the sum v + w of elements v, w ∼ D concentrates at d

2 .3
Let us start with the reformulation of the theorem.

Corollary 2. Let D be some distribution over Fd
2, q and p be as defined in Equation (5.2),

ω ∈
[
0, 1

2

]
, λ ∈ [0, 1] and r = λd

log2 d
. Also let E = E[|A| · |B|] for A and B in line 15 of

Algorithm 11 (where the expectation is taken over the distribution of input lists and the random
choices of the algorithm). Then Algorithm 11 solves the CPd,λ,ω problem over D in time

max
(

q−r,
2λd · pr−1

qr
,
E
qr

)1+o(1)

with success probability overwhelming in d.

Proof. The proof follows along the lines of the proof of Theorem 3, by observing that
Tr+1 = N r · E and the expected time complexity is again amplified to being obtained with
overwhelming probability by using a Markov argument similar to the proof of Theorem 2.

In the next lemma, we show how to upper bound the value of E .

Lemma 7 (Expectation of Naive Search). Let D be some distribution over Fd
2, ω ∈

[
0, 1

2

]
,

λ ∈ [0, 1] and r = λd
log2 d

. Also let E = E[|A| · |B|] for A and B in line 15 of Algorithm 11
when solving some instance of the CPd,λ,ω over D (where the expectation is taken over the
distribution of input lists and the random choices of the algorithm). Then we have

E ≤ 22λd
r∏

i=1
αi + 4r · 2λd · pr

where αi := Pr
v,w∼D

[
wt((v + z)Bi,r ) = δk, wt((w + z)Bi,r ) = δk

]
.

Proof. Given in Section 5.6.

While Lemma 7 gives an upper bound on the required expectation, it is not very handy.
In the next lemma, we show how to further bound this expectation and how it affects the
running time of the algorithm.

3 This behavior seems quite natural as in this case, the solution is most distinguishable from random input
pairs.
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Lemma 8 (Complexity for Arbitrary Distributions). Let D be some distribution over Fd
2,

r := λd
log2 d

, ω ∈
[
0, 1

2

]
and λ ∈ [0, 1]. Also let E = E[|A| · |B|] for A and B in line 15 of

Algorithm 11 when solving some instance of the CPd,λ,ω over D (where the expectation is
taken over the distribution of input lists and the random choices of the algorithm). Then
Algorithm 11 solves the CPd,λ,ω over D in time

max
(

q−r,
2λd · pr−1

qr
,
2εd

qr

)1+o(1)
,

where

ε = 2λ− min
i∈[r]

γ∈[0,1]

(1− γ)
(

1−H
(

δ − γ
2

1− γ

))
− r · log pi,γk

d

with pi,γk := Pr
[
wt((v + w)Bi,r ) = γk

]
.

Proof. Given in Section 5.6.

Note that if it further holds that for v ∼ D each of the r blocks of v is identically
distributed we can further simplify the term of ε from Lemma 8. In this case, we have
pr

i,γk ≤ Pr [wt(v + w) = γd] := pγd, thus we get

ε = 2λ− min
γ∈[0,1]

(1− γ)
(

1−H
(

δ − γ
2

1− γ

))
− log pγd

d
.

Now if we are given an arbitrary distribution D we can maximize ε according to γ. Then
we can similar to the proof of Theorem 2 derive a value for δ minimizing the overall time
complexity.

We performed this maximization and optimization numerically for some generic input
distributions. We considered distributions, where the weight of input vectors is distributed
binomially, chosen according to a Poisson distribution or fixed to a specific value. This means,
first a weight is sampled according to the chosen distribution and then a vector of that weight
is selected uniformly among all vectors of that weight.

The running time of Algorithm 11 for solving the CPd,λ,ω over the considered distributions
seems to be only dependent on the expected weight of vectors contained in the input lists.
That means the time complexity for input lists containing random vectors whose weight is
either fixed to γd or binomially or Poisson distributed with expectation γd is equal. This
can possibly be explained by the low variance of all these distributions, which implies a high
concentration around this expected weight.

We see in Figure 5.3, that the value for ω, from where on the complexity becomes quadratic
in the lists sizes shifts to the left. This behavior stems from the fact, that the expected
weight of a sum of elements is no longer d

2 , but roughly 2γ(1− γ)d. What also stands out
is, that the complexity for ω = 0 is no longer linear in the lists sizes. The reason for this is
that the probability of random pairs falling into the same bucket and the probability of the
closest pair falling into the same bucket converge for decreasing weight of input list elements.
This indicates that for input distributions with smaller expected weight a different bucketing
criterion might be beneficial. We pose this as an open question for further research.
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Figure 5.3: Time complexity exponents as a function of the weight of the closest pair for different
input list distributions, where the expected weight of input elements is equal to 0.1d, 0.2d, 0.3d, 0.4d,
0.5d from left to right.
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Figure 5.4: Runtime results in seconds in logarithmic scale (y-axis) as the function of the distance ω of
the closest pair (x-axis) on random input lists of size 210. The dotted, dashed and dash-dotted lines
indicate the runtime results for the different bucketing strategies used. The straight horizontal line is
the time used by a naive quadratic search.

101



0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

100

weight ω

ru
nt

im
e

in
s

d = 32

0 0.1 0.2 0.3 0.4 0.5

weight ω

d = 64

0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

100

weight ω

ru
nt

im
e

in
s

d = 128

0 0.1 0.2 0.3 0.4 0.5

weight ω

d = 256

ε = 0 ε = 1 ≤ δk

Figure 5.5: Runtime results in seconds in logarithmic scale (y-axis) as the function of the distance ω of
the closest pair (x-axis) on random input lists of size 215. The dotted, dashed and dash-dotted lines
indicate the runtime results for the different bucketing strategies used. The straight horizontal line is
the time used by a naive quadratic search.

5.5 Practical Experiments

In this section, we give experimental results of the performance of a proof of concept im-
plementation of our new algorithm. These experiments verify the performance gain of our
algorithm over a naive quadratic search approach. We also verify the numerical estimates of
the algorithm’s performance on different input distributions from the previous section and
give some practical related improvements to our algorithm. Our implementation is publicly
available at https://github.com/FloydZ/NNAlgorithm.

Before discussing the benchmark results let us first briefly describe some of the practical
improvements we introduced in our implementation, which differ from the description in
Section 5.3. We implemented a true depth-first search rather than the iterative description
given previously. The iterative description just allowed for a more convenient analysis. Thus,
our algorithm needs to store only the lists of a single path from the root to a leaf node at any
time. Also, as all lists of subsequent levels are subsets of previous ones, we do not create r
different lists. We rather rearrange the elements of the input list such that elements belonging
to the list of the subsequent level are consecutive, making it sufficient to just memorize the
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range of elements that belong to the next level list. This way, we only need to store the input
list plus two integer markers for each level.

Also, it turns out that in practice often a small depth of the tree (not exceeding 8 in our
experiments) is already sufficient to achieve good runtime results. Regarding the branching
factor N of the tree, we achieve optimal results either for values close to its expectation
1
q as given by the analysis or values being significantly smaller. The case of using a very
small branching factor can be seen as a pruning strategy, similar to the one used in lattice
enumeration algorithms for shortest vector search [ANSS18]. Additionally, we benchmarked
three different strategies for the weight criteria:

1. Strictly enforcing a weight of δk in each block, as described in our algorithm.

2. Allowing for a small deviation ±ε around δk.

3. Allowing for weights of at most δk.

Additionally, we introduced a threshold for the size of the lists in the tree from where the
computation of further leaves is aborted and naive search is used instead.
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Figure 5.6: Runtime results in seconds in logarithmic scale (y-axis) as the function of the distance ω
of the closest pair (x-axis) on input lists of size 210 containing random elements of weight γd. The
densely dashed line (U) indicates the runtime on uniformly random lists.
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Figure 5.4 shows the runtime results for the different bucket criteria on small input
lists of size 210 containing random elements. Here, each data point was averaged over 50
measurements. The experimental results clearly indicate a significant gain over the quadratic
search approach. The less significant gain for small dimension d is due to the reduced amount
of possible blocks or equivalently the low depth of the computation tree, which lets the
algorithm not reach its full potential. In the case of small input lists, we observe that a
bucketing strategy that allows a deviation of ε = 1 from δk is beneficial for most values of d.

Figure 5.5 shows the same experiments performed on larger input lists of size 215. Besides
a more significant improvement over the naive search, we can observe that the bucketing
criterion that uses δk as an upper bound becomes more beneficial for nearly all values of ω
and d.

Eventually, Figure 5.6 shows the experimental runtime results on input lists, whose
elements are drawn from a different input distribution, analyzed in Section 5.4. Here the
distribution is the uniformly random distribution over vectors of weight γd. One can observe
that for growing d the shape of the graph resembles the theoretical results from Figure 5.3.

5.6 Proofs for General Distributions
In this section we give the proofs for the lemmata regarding the performance of our algorithm
on different input distributions, which were omitted in the main body of the paper.

Proof of Lemma 7 Similar to the proof of Theorem 3, let us bound E[|Ai| · |Bi|] in terms
of E[|Ai−1| · |Bi−1|], E[|Ai−1|] and E[|Bi−1|] for each i.

E[|Ai| · |Bi| | Ai−1, Bi−1] =
∑

v∈Ai−1\{x}
w∈Bi−1\{y}

Pr
[
wt((v + z)Bi,r ) = δk, wt((w + z)Bi,r ) = δk

]
︸ ︷︷ ︸

=:αi

+
∑

v∈Ai−1

Pr
[
wt((v + z)Bi,r ) = δk, wt((y + z)Bi,r ) = δk

]
︸ ︷︷ ︸

≤p

+
∑

w∈Bi−1

Pr
[
wt((x + z)Bi,r ) = δk, wt((w + z)Bi,r ) = δk

]
︸ ︷︷ ︸

≤p

+ Pr
[
wt((x + z)Bi,r )) = δk, wt((y + z)Bi,r )) = δk

]
≤ αi · |Ai−1| · |Bi−1|+ p · (|Ai−1|+ |Bi−1|+ 1)

and hence E[|Ai| · |Bi|] ≤ αi ·E[|Ai−1| · |Bi−1|] + p · (E[|Ai−1|] +E[|Bi−1|] + 1). Again, applying
this equation successively, we obtain

E = E[|Ar| · |Br|] ≤ 22λd
r∏

i=1
αi + 4 ·2λd ·

r∑
i=1

i−2∏
j=0

αr−j

 pr−i+1 ≤ 22λd
r∏

i=1
αi + 4r ·2λd ·pr .

Proof of Lemma 8 Taking the result for E from Lemma 7 and plugging into the run
time formula from Corollary 2 we get that the CPd,λ,ω problem over D can be solved with
probability overwhelming in d in time

max
(

q−r,
2λd · pr−1

qr
,
E
qr

)1+o(1)
≤ max

(
q−r,

2λd · pr−1

qr
,
22λd∏r

i=1 αi

qr

)1+o(1)
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since the right summand 4r·2λd·pr

qr of E
qr is asymptotically smaller than the second entry in

the max, i.e. 2λd·pr−1

qr . Thus, is suffices to find an easier upper bound for the first summand
S := 22λd∏r

i=1 αi. Remembering αi = Pr
[
wt((v + z)Bi,r ) = δk, wt((w + z)Bi,r ) = δk

]
we

receive

S ≤ 22λd ·
(

max
i∈[r]

αi

)r

= 22λd ·

max
i∈[r]

k∑
j=0

qi,j · Pr
[
wt((v + w)Bi,r ) = j

]r

≤ 22λd+o(d) ·
(

max
i∈[r], j∈[k]∪{0}

qi,j · Pr
[
wt((v + w)Bi,r ) = j

])r

= 22λd+o(d) ·
(

max
i∈[r], γ∈[0,1]

qi,γk · Pr
[
wt((v + w)Bi,r ) = γk

])r

,

where qi,γk = Pr
[
wt((v + z)Bi,r ) = δk, wt((w + z)Bi,r ) = δk | wt((v + w)Bi,r ) = γk

]
. Lemma 5

lets us rewrite this probability as

qi,γk =
(

γk
1
2γk

)(
(1− γ)k(
δ − γ

2
)

k

)(1
2

)k

≤ 2
−
(

1−H
(

δ− γ
2

1−γ

))
(1−γ)k

.

We end up with

S ≤ 2
2λd+r· max

i∈[r], γ∈[0,1]
−
(

1−H
(

δ− γ
2

1−γ

))
(1−γ)k+log pi,γk+o(d)

= 2

(
2λ+ max

i∈[r], γ∈[0,1]
−
(

1−H
(

δ− γ
2

1−γ

))
(1−γ)+ r

d
·log pi,γk

)
d+o(d)

= 2

(
2λ− min

i∈[r], γ∈[0,1]

(
1−H

(
δ− γ

2
1−γ

))
(1−γ)− r

d
·log pi,γk

)
d+o(d)

with pi,γk := Pr
[
wt((v + w)Bi,r ) = γk

]
, which proves the claim.
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6 Legendre PRF (multiple) key attacks
and the power of preprocessing

Due to its amazing speed and multiplicative properties the Legendre PRF recently finds
widespread applications e.g. in Ethereum 2.0, multiparty computation and in the quantum-
secure signature proposal LegRoast. However, its security is not yet extensively studied.

The Legendre PRF computes for a key k on input x the Legendre symbol Lk(x) =
(

x+k
p

)
in some finite field Fp. As standard notion, PRF security is analysed by giving an attacker
oracle access to Lk(·). Khovratovich’s collision-based algorithm recovers k using Lk(·) in
time √p with constant memory. It is a major open problem whether this birthday-bound
complexity can be beaten.

We show a somewhat surprising wide-ranging analogy between the discrete logarithm
problem and Legendre symbol computations. This analogy allows us to adapt various
algorithmic ideas from the discrete logarithm setting.

More precisely, we present a small memory multiple-key attack on m Legendre keys
k1, . . . , km in time √mp, i.e. with amortized cost

√
p/m per key. This multiple-key attack

might be of interest in the Ethereum context, since recovering many keys simultaneously
maximizes an attacker’s profit.

Moreover, we show that the Legendre PRF admits precomputation attacks, where the
precomputation depends on the public p only – and not on a key k. Namely, an attacker
may compute e.g. in precomputation time p

2
3 a hint of size p

1
3 . On receiving access to

Lk(·) in an online phase, the attacker then uses the hint to recover the desired key k in
time only p

1
3 . Thus, the attacker’s online complexity again beats the birthday-bound.

In addition, our precomputation attack can also be combined with our multiple-key
attack. We explicitly give various trade-offs between precomputation and online phase. E.g.
for attacking m keys one may spend time mp

2
3 in the precomputation phase for constructing

a hint of size m2p
1
3 . In an online phase, one then finds all m keys in total time only p

1
3 .

Precomputation attacks might again be interesting in the Ethereum 2.0 context, where
keys are frequently changed such that a heavy key-independent precomputation pays off.

The content of this chapter is the result of a collaboration with Alexander
May. It previously appeared as Legendre PRF (multiple) key attacks and the
power of preprocessing in Computer Security Foundations Symposium (CSF) and
is reproduced here with permission.

6.1 Introduction

6.1.1 Motivation

Blockchain technology received enormous attention over the past years by enabling secure,
decentralized payments and multi party computations. One of the most famous and powerful
implementation of this technology is the Ethereum Blockchain. The newly proposed Ethereum
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2.0 protocol [Fou20a,Fou20b] tries to increase throughput for validating transactions in order
to become competitive with modern credit card transaction systems.

Throughput is increased by moving away from the energy-consuming Proof-of-Work
approach to a Proof-of-Stake. As opposed to Proof-of-Work, in Proof-of-Stake a user’s voting
power is not tied to its computing power, but to the stake he owns. If the Legendre PRF
does not provide sufficient security, a malicious user u may let another user ū with Legendre
key k̄ download and validate transactions. User u then recovers ū’s secret key k̄ in order to
maliciously claim ū’s reward.

More recent Legendre PRF applications are in multi-party computation [GRR+16], and
in designing quantum secure signatures [BD20].

6.1.2 Related work on Legendre PRF security

Let p be a prime and x ∈ Fp. We call x a quadratic residue in the finite field’s multiplicative
group F∗

p, if there exists an y ∈ F∗
p with y2 = x. We define the Legendre symbol

(
x

p

)
=


0 if x = 0
1 if x is a quadratic residue
−1 else.

It is well-known that
(

x
p

)
= x

p−1
2 mod p. The multiplicativity of the Legendre symbol follows

directly.
Choose a key k ∈ Fp. Then the Legendre PRF, as proposed by Damgård [Dam88], is the

function Lk : Fp → {−1, 0, 1} with

Lk(x) =
(

x + k

p

)
.

Therefore, the Legendre PRF satisfies for all i ∈ Fp

Lk(x + i) =
(

x + k + i

p

)
= L0 (x + k + i) .

Conversely, if Lk(x + i) = L0(y + i) for sufficiently many i, then we can conclude that
y = x+k mod p. Thus, finding x, y satisfying the identity Lk(x+ i) = L0(y + i) for sufficiently
many i gives us a way to compute k = y − x mod p. We call (x, y) ∈ Fp × Fp a collision
between the two functions Lk(·) and L0(·) if Lk(x + i) = L0(y + i) for all 0 ≤ i < ⌈3 log p⌉.
We show in our work that, assuming Legendre PRF security, enforcing the identity at ⌈3 log p⌉
points is sufficient to guarantee that a collision (x, y) yields the secret key k = y − x.

Notice that evaluation of L0(·) is possible using the public p only, whereas evaluation of
Lk(·) requires oracle access. Oracle access realization is the usual cryptographic attack model
for PRFs – which is for conservative reasons quite strong, and not always satisfied in practical
applications.

Khovratovich [Kho19] defined a memoryless algorithm with Lk(·) oracle access for re-
covering a Legendre key k within the typical birthday-type time bound Õ(√p), where the
Õ-notation suppresses factors polynomial in log p. In the less strong attack model without ora-
cle access, but only M ≤ p

1
4 evaluations of Lk(·) on known points, Beullens, Beyne, Udovenko,

Vitto [BBUV20] and Kaluderovic, Kleinjung, Kostic [KKK20] proposed an algorithm with
inferior time complexity O(p log2 p/M2).
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It was left as an open problem, whether the √p bound can be beaten with classical
algorithms. We answer this question in the affirmative, when we either allow for (more
expensive) precomputations that do not require Lk(·) oracle access, and/or allow for amortized
cost per key in multiple-key attacks.

On quantum computers, Russell and Shparlinski [RS04] showed that k can be recovered
in polynomial time given oracle access to a quantum embedding of Lk(·) that can be asked in
superposition – a very strong and in practical settings sometimes questionable attack model.

6.1.3 Oracle-access based Attack Model

Our results can be seen as a generalization of Khovratovich’s memory-less algorithm [Kho19]
that also uses Lk(·) oracle access. Most practical scenarios that we are aware of however do
not provide such a strong attack model.

E.g. in Ethereum 2.0 the so-called Proof-of-custody for user u with secret key k works as
follows. User u downloads periodically public data mi, hashes to h(mi) ∈ Fp, and publishes
the bit Lk(h(mi)). After a certain time period, all users reveal their secret key k. User u
can claim a reward on data mj only if all bits Lk(h(mi)) verify correctly for all published
mi within this time period. Hence, an attacker obtains evaluations of Lk(·) only on random
known points h(mi), rather than points of his choice.

A similar attack scenario applies for the LegRoast signature scheme [BD20] that is based
on the MPC-in-the-head paradigm [IKOS09]. Here, a user u’s public key is an n-bit string
(Lk(x1), . . . , Lk(xn)), where k is u’s secret key, and the xi are public and randomly chosen in
Fp. Again, an attacker obtains evaluations of Lk(·) on random known points xi.

The setting, where an attacker obtains PRF evaluations on known (random) points is
called known plaintext attack in the literature. Many practical PRF applications, e.g. also
for AES, only allow for known plaintext attacks. Nevertheless, for PRFs the well-established
standard security notion is a chosen plaintext attack (CPA) that allows an attacker to query
Lk(·) on points adaptively chosen by himself, i.e., an attacker receives Lk(·) oracle access.

Since PRFs are widely applied in practice in various scenarios, it is crucial to establish
security even against the stronger CPA type. In fact, our algorithms directly use adaptive
CPA queries, e.g. for achieving small memory consumption. Thus, our cryptanalytic results
are of interest to study the security of Ethereum 2.0 and LegRoast, but do not directly lead
to an attack on these.

6.1.4 Our contributions

Legendre PRF vs dlog

Let us first discuss the analogy between attacking the Legendre PRF via collisions and
collision-based discrete logarithm algorithms. Let G be a discrete logarithm group of order q
with generator g, and let h = gk′ be a discrete logarithm instance. By finding (x, y) such that
hgx = gy, we compute the discrete logarithm k′ = y − x mod q, analogous to the Legendre
setting.

Just as Lk(x+i
p ) = L0(y+i

p ), for sufficient many i, the identity hgx = gy is asymmetric in
the sense that only the left-hand size depends on the secret discrete logarithm k′, whereas the
right-hand side can be computed solely based on the group specification. This asymmetry is
used in precomputation attacks on the discrete logarithm as introduced in Mihalcik [Mih10]
Lee, Cheon, Hong [LCH11] and Bernstein, Lange [BL12], where one performs a (rather large)
precomputation that depends on the group only, and outputs a (rather small) hint. Upon
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receiving a discrete logarithm instance, one then determines the unknown k′ more quickly
using the hint. Various tradeoffs are possible, e.g. within precomputation time Õ(q 2

3 ) one
can compute a hint of size Õ(q 1

3 ). Upon receiving h = gk′ , the hint then allows to determine
k′ in time only Õ(q 1

3 ).

Legendre Precomputation Attack

As already pointed out, in the Legendre setting the identity Lk(x+i
p ) = L0(y+i

p ) offers a
similar asymmetry. The identity’s right-hand side depends on p only and thus allows for
precomputation, whereas computation of the left-hand side requires Lk(·) oracle access. Hence,
it might not come as a surprise that we obtain a similar Legendre key precomputation attack.
Analogous, we may spend Õ(p 2

3 ) time to compute a hint of size Õ(p 1
3 ). Upon receiving access

to Lk(·), we then compute the secret k using only Õ(p 1
3 ) queries to Lk(·).

Not only does our precomputation attack break the √p-bound for recovering Legendre
keys – in the online phase, once we have precomputed our hint. Our attack also accounts for
scenarios that only offer limited number of Lk(·)-queries. Similar to the discrete logarithm
setting, we get for Legendre keys various tradeoffs between precomputation, key recovery
phase and success probability.

Legendre Multiple-Key Attack

In the discrete logarithm setting, it was first noticed by Kuhn and Struick [KS01] using
ideas from Escott, Sager, Selkirk, Tsapakidis [ESST99] that m discrete logarithm instances
h1 = gk′

1 , . . . , hm = gk′
m can be solved memory-less more efficiently than naively applying

Pollard’s Õ(√p)-algorithm m times. Namely, Kuhn and Struick showed that reusing the data
structure for h1, the discrete logarithm of h2 can be found slightly more efficient, and so on.
In total, all m discrete logarithm instances can be computed in time O(√mp).

Again, the multiple-key discrete logarithm setting transfers to the Legendre PRF world.
Namely, we are able to extend Khovratovich’s Õ(√p)-algorithm — the Legendre variant
of Pollard — to a multiple-key attack on m key simultaneously. To this end, we use some
graph-based techniques that were introduced by Fouque, Joux, Mavromati [FJM14]. As result,
we obtain an attack on m Legendre keys k1, . . . , km using oracle access to Lk1(·), . . . , Lkm(·)
that recovers all m keys in total time Õ(√mp).

Our total time in turn implies that the amortized cost per Legendre key is only Õ(
√

p/m),
again beating the √p-bound.

Legendre Multiple-Key Attack with Precomputation

In the discrete logarithm setting, Corrigan-Gibbs and Kogan [CK18] showed that multiple-key
attacks can be combined with precomputation, again allowing for various tradeoffs. We
also transfer this combination to the Legendre key setting. This implies e.g. an attack
that uses precomputation time Õ(mp

2
3 ) to build a hint of size Õ(m2p

1
3 ). Upon access to

Lk1(·), . . . , Lkm(·), one then computes all m keys in total time only Õ(p 1
3 ).

Notice that in the multiple-key setting a large precomputation pays off in the sense that
its cost amortizes over all keys. This explains why the multi-key precomputation setting is
especially attractive for recovering Legendre keys.
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Conclusion: Our attacks do not directly apply to Ethereum 2.0, since they require Legendre
PRF oracle access Lk(·), that is typically not provided in a blockchain scenario. Nevertheless,
precomputation as well as multiple-key attacks seem to be highly relevant in the Ethereum
2.0 context, where Legendre keys are frequently changed such that heavy key-independent
precomputations pay off to optimize success probability in a (short) online key-dependent
attack phase. Moreover, the more keys an attacker recovers in an online phase, the larger is
his reward. Therefore, amortization of attack costs over many keys also pays off.

In the light of our novel Legendre PRF precomputation attacks one might consider —
rather than the previous p

1
2 -security level provided by Khovratovich’s algorithm — a more

conservative lower p
1
3 -security level. Using this third-root bound, the 256-bit prime p used

by Ethereums 2.0 still provides a high security level (of at least 85-bit), even against attacks
with Lk(·) oracle access.

More Dlog-like Attacks and Limitations

We would like to notice that other collision-based discrete logarithm algorithms also transfer
to the Legendre setting. This includes Pollard’s Lambda method [Pol78] for secrets within a
certain range, as well as the Esser-May method [EM20] for secrets with low Hamming weight.
However, we felt that these attacks are less relevant in the Legendre key setting, in which
we are not aware of any application with Legendre keys in a certain range, or with small
Hamming weight.

Moreover, we would like to point out that despite the similarities between the discrete
logarithm problem and the Legendre PRF, there also exists exist crucial differences that
introduce technical difficulties for directly transferring discrete logarithm algorithms. Namely,
the discrete logarithm setting provides us with a group structure that is heavily used in many
algorithms. As an example, Corrigan-Gibbs and Kogan [CK18] compute in their multiple-key
attack for some random r1, . . . , rm the value h = hr1 · . . . · hrm that has discrete logarithm
r1k′

1 + . . . + rmk′
m. Thus, in the discrete logarithm setting we easily obtain random linear

combinations of the k′
i. This property greatly simplifies the analysis of Corrigan-Gibbs and

Kogan’s algorithm.
As opposed to the discrete logarithm, for the Legendre PRF we do not have a group

structure. This implies that neither can we compute a multiple r1k1, r1 ∈ Fp using the oracle
Lk1(·), nor are we able to compute k1 + k2 using two oracles Lk1(·) and Lk2(·).

The missing group structure poses some additional technical problems, when we transfer
in the subsequent chapters the above-mentioned discrete logarithm algorithms to the Legendre
PRF setting. Nevertheless, we always succeed to design alternative algorithms that provide
analogous complexity results.

Related Work and Open Problems

Our work is not the first that uses collision-finding techniques in the context of precomputation
without having a group structure. E.g. Coretti, Dodis, Guo and Steinberger [CDGS18] and
later Akshima, Cash, Drucker and Wee [ACDW20] designed precomputation attacks and
lower bounds for salted hash functions. They showed that the salting technique is a good
defense against the efficacy of precomputations for hash function collisions.

We are quite confident that the lower bounds of Corrigan-Gibbs and Kogan [CK18] from
the discrete logarithm setting in generic groups also transfer to our Legendre PRF setting,
when using only our limited set of allowed operations. However, we feel that such an artificially
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limited generic Legendre PRF model would only provide misleading security guarantees. As
opposed to many discrete logarithm groups, where we only have generic attacks, the Legendre
PRF setting seems to offer a richer mathematical structure. E.g. the attacks of Beullens,
Beyne, Udovenko, Vitto [BBUV20] and Kaluderovic, Kleinjung, Kostic [KKK20] exploit the
Legendre symbol’s multiplicativity to reduce the number of Lk(·) oracle calls. Unfortunately,
we have to leave it open whether similar techniques can be applied in our setting.

Since we are purely focusing on key-recovering attacks, one might also wonder whether
there exist more efficient Legendre PRF distinguishers. Given the wide analogy between
discrete logarithm and Legendre PRF attacks, it is tempting to adapt e.g. the more efficient
DDH-like distinguisher of Corrigan-Gibbs and Kogan [CK18] to the Legendre PRF setting.
We failed to construct distinguishers with better efficiency than our key-recovery attacks, and
we leave their existence as an open problem.

Our paper is structured as follows. In Section 6.2 we provide some basic definitions for
properly defining collision-based random walk algorithms in the Legendre PRF setting. Our
Legendre precomputation attack is given in Section 6.3. For didactic reasons, we then first
generalize in Section 6.4 our precomputation attack to the multiple-key setting, since both
algorithms share a similar analysis. Eventually, in Section 6.5 we provide our multiple-key
attack without precomputation.

6.2 Legendre PRF Basics

All logarithms in this paper are base 2. Let p be prime, and let (x
p ) be the Legendre symbol

of x in Fp. Since (x
p ) = x

p−1
2 mod p, the Legendre symbol can be computed in time O(log3 p),

polynomial in the bit-size of p.
For ease of notation, throughout the paper we suppress all run time factors that are

polynomial in log p, by hiding them in soft-Oh notation, e.g. 3p log2 p = Õ(p). We call any
function inverse that grows faster than a polynomial in log p negligible, denoted negl(p). We
call success probability 1− negl(p) overwhelming.

For a key k ∈ Fp the original Legendre PRF [Dam88] is defined as the function

L̄k : Fp → {−1, 0, 1}, x 7→
(

x + k

p

)
.

Obviously, if y = x + k then L̄0(y) = L̄k(x). In order to use collision-based algorithms,
we would like to conclude that conversely L̄0(y) = L̄k(x) implies y = x + k. To this end, we
define a function Lk with sufficiently large range R.

Definition 14 (Legendre point). Define r = ⌈3 log p⌉ and R = {−1, 0, 1}r. We set

Lk : Fp → R, x 7→
((

x + k

p

)
, . . . ,

(
x + k + r − 1

p

))
.

We denote by L := L0 the key-independent function, and we define the set of all Legendre
points as P = {L(y) | y ∈ Fp} ⊂ R.

Notice that L(x) ∈ {−1, 1}r unless x = 0 or x > p− r. For simplicity, let us for a moment
exclude these border cases. Under the assumption that L̄k is a PRF, it is not hard to see that
the r-bit range L : Fp → {−1, 1}r is a secure PRG (pseudorandom number generator).
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In fact, Damgård suggested such a Legendre pseudorandom generator in [Dam88]. There-
fore, for a random seed x the output L(x) is supposed to be pseudorandom. There is strong
theoretical and practical evidence [Per92,Dav33,Bac91,RS04,BBUV20,KKK20] that the dis-
tribution of L(x) is even statistically close to uniform in {−1, 1}r. For simplicity of exposition,
we heuristically assume such a uniform distribution. A failure of our heuristic would open the
door for Legendre symbol distinguishing attacks.

Heuristic 1 (Uniformity). Let x ∈ {1, 2, . . . , p− r} be chosen uniformly at random. Then
L(x) is uniformly distributed in {−1, 1}r. That is for all fixed c ∈ {−1, 1}r we have Pr[L(x) =
c] = 1

2r .

In the subsequent sections, we define random walks over the set P = {L(x) | x ∈ Fp} of
Legendre points. Notice that P is not equipped with a group structure, as opposed to the
discrete logarithm setting.

The following Lemma 9 implies that |P | = p with overwhelming probability. This in turn
implies that collisions of our random walks result in recovery of the secret Legendre PRF key
k.

Lemma 9. Let Lk : Fp → {−1, 0, 1}⌈3 log p⌉. Under Heuristic 1, with overwhelming probability
all argument pairs x, y with y ̸= x + k satisfy L(y) ̸= Lk(x). Hence, with overwhelming
probability

L(y) = Lk(x) ⇒ y = x + k.

Proof. Let r = ⌈3 log p⌉, and let k ∈ Fp be chosen uniformly at randomly. First, consider the
case of argument pairs x, y such that at exactly one of L(y), Lk(x) is in {−1, 0, 1}r \ {−1, 1}r.
That is, either L(y) or Lk(x) contains a zero entry. Then obviously L(y) ̸= Lk(x). Second,
consider the case that L(y), Lk(x) both contain zeros. By Definition 14, every Legendre point
can have at most one zero. Since y ̸= x + k the zero entries of L(y), Lk(x) must be in different
positions, again implying L(y) ̸= Lk(x).

Thus, we may w.l.o.g. assume argument pairs x, y with L(y), Lk(x) ∈ {−1, 1}r. Since k is
uniformly at random, by Heuristic 1 the Legendre point Lk(x) = L(k + x) is also uniformly
at random. Therefore,

Pr [L(y) = Lk(x) | y ̸= x + k] = 1
2r

= 1
2⌈3 log p⌉ ≤

1
p3 .

The number of pairs x, y with y ̸= x+k is upper-bounded by p(p−1), since we exclude Legendre
points with zero entries. Using Bernoulli’s inequality, all these x, y satisfy L(y) ̸= Lk(x) with
probability at least (

1− 1
p3

)p(p−1)
≥ 1− p(p− 1)

p3 ≥ 1− 1
p

.

6.3 Precomputation Attack

Let us first give a high-level description of our Legendre PRF precomputation attack, see
also Figure 6.1. In a nutshell, in the precomputation phase we perform sufficiently many
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Figure 6.1: Precomputation attack

key-independent random walks W1, . . . , Ws on the set of Legendre points P (Definition 14),
where we only store the walks’ endpoints. The endpoints serve as a hint for the online phase.

Upon receiving Lk(·) oracle access, we then compute in the online phase the Legendre key
k by letting a key-dependent random walk W k – defined via Lk(·) – collide with one of the
precomputed walks. We detect the collision using our stored endpoints.

6.3.1 Random Walks – Precomputation and Online

Let R = {−1, 0, 1}⌈3 log p⌉ and P = {L(y) | y ∈ Fp} ⊂ R (Definition 14). We define a random
function f : P → Fp. Notice that f is compressing. In practice, f may be instantiated
via some appropriate hash function. The function f helps us in a random walk W to map
Legendre points L(y) back to arguments y′ for the Legendre PRF. We define W on P as
follows.

Precomputation phase. Let y(1) ∈ Fp. Then W ’s starting point is L(y(1)) ∈ P . Next, W
computes y(2) = y(1) + f(L(y(1))) mod p and steps to its second point L(y(2)) ∈ P . In general,
W computes an arbitrary number of steps, where

y(i+1) = y(i) + f
(
L
(
y(i)
))

mod p for i ≥ 1 (6.1)

with random walk points L
(
y(i)
)
∈ P . Notice that W is key-independent, since it does not

involve oracle queries Lk(·). Thus, we can compute W in a precomputation phase solely based
on the public information p. Assume that we walk W for t/2 steps. Then we only store
the endpoint L(y(t/2)) and its argument y(t/2). The endpoint L(y(t/2)) allows us to detect
collisions between walks, whereas y(t/2) allows us to find the Legendre key. This procedure is
repeated with s different starting points y

(1)
1 , . . . , y

(1)
s .

Online phase. Now assume that we obtain Lk(·) oracle access. We want to compute in
an online phase the secret Legendre key k. To this end we perform a key dependent walk
W k as follows. Choose x(1) ∈R Fp and compute starting point Lk(x(1)). In general, for a key
dependent walk W k we calculate the next point as

x(i+1) = x(i) + f
(
Lk

(
x(i)

))
mod p for i ≥ 1 (6.2)

with random walk points Lk

(
x(i)

)
∈ P.
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6.3.2 Colliding Walks solve Legendre.

Assume that a key-independent walk W collides with a key-dependent walk W k. I.e., there
exist arguments y(i), x(j) with colliding points

L(y(i)) = Lk(x(j)).

Using Lemma 9, we immediately conclude from such a collision that

k = y(i) − x(j) mod p. (6.3)

Moreover, we want to show that once two chains of points from P computed in walks W, W k

collide, they stay in the same points, i.e.

L(y(i)) = Lk(x(j))⇒ L(y(i+1)) = Lk(x(j+1)).

To this end let us assume L(y(i)) = Lk(x(j)). We already know that this implies y(i) =
x(j) + k mod p. Using Equation (6.1), we obtain

y(i+1) = y(i) + f
(
L
(
y(i)
))

= x(j) + k + f
(
L
(
x(j) + k

))
mod p.

This in turn implies

L
(
y(i+1)

)
= L

(
x(j) + k + f

(
L
(
x(j) + k

)))
= Lk

(
x(j) + f

(
Lk

(
x(j)

)))
= Lk

(
x(j+1)

)
.

It remains to show that we can efficiently find arguments y(i), x(j) with colliding points
L(y(i)), Lk

(
x(j)

)
. Since from the first colliding point on both walks stay in the same points,

walk W k eventually reaches W ’s endpoint. Let L(y(t/2)) = Lk(x(j)) denote this endpoint.
The corresponding arguments y(t/2), x(j) reveal the Legendre secret key k via Equation (6.3).

The resulting precomputation attack Pre-Legendre is described in Algorithm 12. Using
the parameter choice s = t = p

1
3 in the following Theorem 4, we achieve precomputation in

time Õ(p 2
3 ) using a hint of size Õ(p 1

3 ), whereas the online phase runs in time Õ(p 1
3 ) with

constant success probability ϵ = Ω(st2/p) = Ω(1).

Theorem 4. Assume that we are given oracle access to a Legendre PRF Lk(·) : Fp → P .
Under Heuristic 1, for any s, t ∈ N with s2t ≤ p algorithm Prep-Legendre precomputes
in time Õ(st) a hint of size Õ(s), which allows to find k in online time Õ(t) with success
probability Ω

(
st2

p

)
.

Proof. Let us first consider correctness and success probability. If Pre-Legendre finds a
collision in line 12, then by Lemma 9 with overwhelming probability k is the correct Legendre
key. It remains to show that Pre-Legendre does not output FAIL too often.

We show that the success probability ϵ = Pr(FAIL) for finding a collision in line 12 of W k

with some precomputed walk Wℓ’s endpoint is Ω(st2/p). Hence, we obtain constant success
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Algorithm 12: Pre-Legendre
Input : p, Lk(·) : Fp → P with P = {L(y) | y ∈ Fp} ⊂ {0,±1}⌈3 log p⌉

Output : k ∈ Fp

1 begin
2 Choose s, t ∈ N s.t. st2 ≤ p. ▷ E.g. s, t = ⌈p 1

3 ⌉
3 Define random f : P → Fp.
4 for ℓ = 1, . . . , s ▷ Precomputation phase
5 do
6 Choose a random y

(1)
ℓ ∈ Fp.

7 Start in L(y(1)
ℓ ) a t/2-step walk Wℓ (Eq. 6.1)

y
(i+1)
ℓ = y

(i)
ℓ + f

(
L
(
y

(i)
ℓ

))
mod p

with points L
(
y

(i)
ℓ

)
∈ P.

8 Store (L(y(t/2)
ℓ ), y

(t/2)
ℓ ) in a list L sorted by first argument.

9 end
10 Choose a random x(1) ∈ Fp. ▷ Online phase
11 Start in Lk(x(j)) a t-step walk W k (Eq. 6.2)

x(j+1) = x(j) + f
(
Lk

(
x(j)

))
mod p

with points Lk

(
x(j)

)
∈ P .

12 if Lk

(
x(j)

)
= L(y(t/2)

ℓ ) with
(
L(y(t/2)

ℓ ), y
(t/2)
ℓ

)
∈ L then

13 return k = y
(t/2)
ℓ − x(j) mod p.

14 else
15 return FAIL.
16 end
17 end

probability for st2 = Ω(p), e.g. for the choice s = t = ⌈p 1
3 ⌉. Our analysis closely follows the

analysis from Corrigan-Gibbs and Kogan [CK18] for the discrete logarithm setting.
We first observe that the preprocessing walks W1, . . . , Ws with t/2-steps touch at most

st/2 Legendre points. Moreover, we show that on expectation these s walks touch at least
st/4 distinct points.

To prove this, let Xℓ be a random variable for the number of points touched by precom-
putation walk Wℓ, ℓ = 1, . . . , s. Further, let X = X1 + . . . + Xs ≤ st/2. We show in the
following that Pr[X ≥ st/4] ≥ 1

2 .
Using Bernoulli’s inequality and st2 ≤ p, every t/2-step walk touches the maximum

number t/2 of new point with probability at least

Pr
[
Xℓ = t

2

]
≥
(

p− st/2
p

) t
2

=
(

1− st

2p

) t
2
≥ 1− st2

4p
≥ 3

4 .

Therefore, every walk in the precomputation phase covers on expectation at least E[Xℓ] ≥
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3
4 ·

t
2 = 3

8 t new points. By linearity of expectation we have

E[X] =
s∑

ℓ=1
E[Xℓ] ≥

3
8st.

Using Markov’s inequality and X ≤ st/2, we obtain

Pr
[
X <

st

4

]
≤ Pr

[
st

2 −X ≤ st

4

]
≤

st
2 − E[X]

st
4

≤ 1
2 .

Therefore, Pr[X ≥ st/4] ≥ 1
2 as desired.

Let us assume in the following that X ≥ st/4 Legendre points are covered during
precomputation. Let E be the event that within the first t/2 steps of the t-step online walk
W k we hit one of the X covered points. Using 1− x ≤ e−x and 1− e−x ≥ x/2 for x ≤ 1, we
obtain

Pr[E] ≥ 1−
(

1− st

4p

)t/2
≥ 1− e

− st2
8p ≥ st2

16p
.

Notice that the event E implies that in the remaining t/2 steps of the online phase we must
hit some precomputed endpoint L(y(t/2)

ℓ ) in L. This implies success probability at least

ϵ = Pr[X ≥ st/4] · Pr[E] ≥ st2

32p
.

Thus, with probability ϵ we output the secret Legendre key k.
It remains to show the complexity statements. Precomputation takes time Õ(st) using

memory Õ(s). The online phase runs in time Õ(t).

Remark 1. We may amplify the success probability of Pre-Legendre arbitrary close to
1 by running more key-dependent walks with different starting points, while reusing the
precomputation structure. This is our strategy in the experimental Section 6.6.

6.4 Multiple-Key Precomputation Attack
The high-level idea of our precomputation attack on multiple keys is similar to our precompu-
tation attack on a single key from the previous Section 6.3, see also Figure 6.2.

Again, in a precomputation phase we run only key-independent walks W1, . . . , Ws, and
store their endpoints in a list L. The endpoints serve as a hint for the online phase.

Let us in the online phase attack Legendre keys k1, . . . , km, for which we obtain oracle
access to Lkℓ

(·), ℓ = 1, . . . , m. Using these oracles we define key-dependent walks W kℓ
that

with high probability collide into some precomputed walk Wi. As in Section 6.3, collisions
from W kℓ

are detected via hitting some precomputed endpoint in L. A collision of W kℓ

enables us to recover kℓ using Equation (6.3).
The resulting procedure is given in Algorithm 13. For the choice s = m2p

1
3 and t = p

1
3 in

Theorem 5 we obtain precomputation time Õ(mp
2
3 ) and a hint of size Õ(m2p

1
3 ), whereas the

online phase finishes in time only Õ(p 1
3 ) for computing all m Legendre keys with constant

success probability.
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Figure 6.2: Multiple-key precomputation attack. Here W1, . . . , Ws denote key-independent and
W k1 , . . . , W km key-dependent random walks.

Theorem 5. Assume that we are given oracle access to m Legendre PRFs Lk1(·), . . . , Lkm(·) :
Fp → P . Under Heuristic 1, for any s, t ∈ N with st2 ≤ m2p algorithm Pre-Mult-Legendre
precomputes in time Õ

(
st
m

)
a hint of size Õ(s), which allows to find each kℓ, 1 ≤ ℓ ≤ m with

success probability ϵℓ = Ω
(

st2

m2p

)
in total online time Õ(t).

Proof. Let us first consider correctness and success probability. Here, we closely follow the
analysis from the proof of Theorem 4. If we output in line 15 of Pre-Mult-Legendre a key
kℓ then this key is correct by the discussion from Section 6.3.

It remains to show that the success probability ϵℓ for recovering key kℓ is sufficiently large.
We show that ϵℓ = Ω( st2

m2p
).

Let Xℓ be a random variable for the number of new points touched by the t
2m -step

precomputation walk Wℓ, ℓ = 1, . . . , s. Let X = X1 + . . . + Xs. Since Xℓ ≤ t
2m , we have

X ≤ st
2m . Using st2 ≤ m2p and Bernoulli’s inequality, every walk touches the maximal number

t
2m of new points with probability

Pr
[
Xℓ = t

2m

]
≥
(

p− st
2m

p

) t
2m

=
(

1− st

2pm

) t
2m

≥ 1− st2

4m2p
≥ 3

4 .

Thus, E[Xi] ≥ 3
4 ·

t
2m = 3t

8m and E[X] ≥ 3st
8m . Using Markov’s inequality we get

Pr
[
X <

st

4m

]
≤ Pr

[
st

2m
−X ≤ st

4m

]
≤

st
2m − E[X]

st
4m

≤ 1
2 .

This implies that with probability at least 1
2 our precomputation structure covers X ≥ st

4m
points. Assume in the following that X ≥ st

4m . Let Eℓ be the event that the key-dependent
walk W kℓ

hits within its first t
2m steps one of the X covered point. Then

Pr[Eℓ] ≥ 1−
(

1− st

4mp

) t
2m

≥ 1− e
− st2

8m2p ≥ st2

16m2p
.
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Algorithm 13: Pre-Mult-Legendre
Input : p, Lk1(·), . . . , Lkm(·) : Fp → P with P = {L(y) | y ∈ Fp} ⊂ {0,±1}⌈3 log p⌉

Output : {k1, . . . , km} ∈ Zm
p

1 begin
2 Choose s, t ∈ N with st2 ≤ m2p.
3 Define random f : P → Fp.
4 for ℓ = 1, . . . , s ▷ PRECOMPUTATION phase
5 do
6 Choose a random y

(1)
ℓ ∈ Fp

7 Start in L(y(1)
ℓ ) a t

2m -step walk Wℓ

y
(i+1)
ℓ = y

(i)
ℓ + f

(
L
(
y

(i)
ℓ

))
mod p

with points L
(
y

(i)
ℓ

)
∈ P.

8 Store (L(y( t
2m

)
ℓ ), y

( t
2m

)
ℓ ) in a list L sorted by first argument.

9 end
10 for ℓ = 1, . . . , m ▷ ONLINE phase
11 do
12 Choose random x

(1)
ℓ ∈ Fp.

13 Start in Lkℓ
(x(1)

ℓ ) a t
m -step walk W kℓ

x
(j+1)
i = x(j) + f

(
Lki

(
x

(j)
i

))
mod p.

with points Lkℓ

(
x

(j)
ℓ

)
∈ P .

14 if Lkℓ

(
x

(j)
ℓ

)
= L(y(t/2)

ℓ′ ) with
(

L(y( t
2m

)
ℓ′ ), y

( t
2m

)
ℓ′

)
∈ L then

15 return kℓ = y
(t/2)
ℓ′ − x

(j)
ℓ .

16 else
17 return FAIL ”kℓ“.
18 end
19 end
20 end

In the event Eℓ, we must hit by the discussion in section 6.3.2 in the remaining t
2m steps of

walk W kℓ
a precomputed endpoint in L. This in turn allows us to compute kℓ. Thus, we

succeed to compute kℓ with probability at least

ϵℓ = Pr
[
Xi ≥

st

4m

]
· Pr[Eℓ] ≥

st2

32m2p
= Ω

(
st2

m2p

)
.

It remains to show the complexity statements. The precomputation phase runs in time Õ( st
m)

using memory Õ(s). The online phase runs in time Õ(t).
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Remark 2. Theorem 5 guarantees constant success probability for each key kℓ if st2 = Ω(m2p).
If Pre-Mult-Legendre fails to find some kℓ, we may simply rerun the key-dependent walk
Wkℓ

with a fresh starting point. This is our strategy in the experimental Section 6.6.

6.5 Multiple-Key Attack (without Precomputation)
The strategy for our multiple-key attack substantially deviates from the algorithms in the
previous sections. Recall that in Sections 6.3 and 6.4 we computed in the precomputation
phase fixed length key-independent walks together with their endpoints as hint. In the online
phase we then let key-dependent walks collide into the precomputation walks, thereby detecting
collisions via endpoints.

In contrast, for our multiple-key attack without precomputation we solely compute key-
dependent walks, and therefore only consider collisions between key-dependent walks, see
also Figure 6.3. Our key-dependent walks are of variable length, and we stop them only if we
hit some set D ⊂ P of distinguished Legendre points. These distinguished points allow us to
detect collisions between two walks W ki

, W kj
that use Legendre keys ki, kj . Such a collision

in turn gives us a Legendre key relation for ki − kj . Upon having collected sufficiently many
of such relations, we eventually compute the Legendre keys.

The resulting algorithm recovers m Legendre keys k1, . . . , km in time Õ(√mp) using
optimal memory Õ(m). Notice that we already need memory Ω(m) to store all keys. Our
algorithm’s complexity Õ(√mp) should be compared with the naive approach that takes time
Õ(m√p) by running m-times Khovratovich’s Õ(√p) attack [Kho19].

6.5.1 High-Level idea

We run Θ(m) key-dependent walks W kℓ
using m oracles Lkℓ

(·), 1 ≤ ℓ ≤ m, and as opposed
to Sections 6.3 and 6.4 no key-independent walk. These walks give us Ω(m) mutual collisions.
Let us assume that two walks W kℓ

, W kℓ′ with different keys ki ̸= kj collide. Then there exist
x

(u)
ℓ , x

(v)
ℓ′ such that

Lki

(
x

(u)
ℓ

)
= Lkj

(
x

(v)
ℓ′

)
= L

(
x

(v)
ℓ′ + kj

)
.

Using Lemma 9, we conclude that

ki − kj = x
(v)
ℓ′ − x

(u)
ℓ mod p. (6.4)

Thus, every collision among two walks defines a relation as in Equation (6.4) between two
keys ki, kj .

Let us define an undirected graph G = (V, E) with |V | = m and an initially empty edge set
E. Every relation as in Equation (6.4) adds an edge {i, j} to E with label ℓij = x

(v)
ℓ′ −x

(u)
ℓ ∈ Fp.

Assume that we collected sufficiently many edges such that G gets connected, i.e. G contains
a spanning tree T . Take an arbitrary vertex i ∈ T corresponding to key ki. Compute ki in
time Õ(√p) using Khovratovich’s algorithm. Now, traverse T starting in vertex i. Let {i, j}
be the first traversal edge with label ℓij . Using the relation from Equation (6.4), we conclude
that kj = ki − ℓij . Thus, by traversing T we recover all m keys.

In our algorithm, we will not wait until G gets fully connected, since by the results of Erdös,
Renyi [ER60] this requires Ω(m log m) relations. Instead, we use from Erdös, Renyi [ER60]
that after Ω(m) relations, G has a so-called giant component VG ⊆ V , a connected set of
vertices that contains all but a (small) constant fraction of V . We compute a spanning tree T
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Figure 6.3: Multiple-key attack. D denotes a distinguished point set and W k1 , . . . , W k7 are key-
dependent random walks.

in this giant component VG, and recover by the above algorithm all keys within VG. We then
remove the known keys, and recursively run our algorithm on the remaining keys.

6.5.2 How to detect collisions

Recall that we have to address a technical collision-detection issue, since as opposed to our
algorithms from Sections 6.3 and 6.4 we do no longer collide into some precomputed structure.
Instead, our online walks mutually collide. In order to detect these collisions, we use the van
Oorschot-Wiener distinguished point strategy [vW99].

Let g = (g1, . . . , gr) ∈ P be a Legendre point. Fix a random d ∈ {0, 1}k with k ≤ r. Then
we call g distinguished if

(g1, . . . , gk) = d,

i.e., the Legendre point g starts on its first k coordinates with d. Under Heuristic 1, any
random Legendre point is distinguished with probability q = 2−k.

Now, we run every walk W kℓ
until it hits a distinguished point g, see Figure 6.3. We

then store this distinguished points g in a sorted list L. In our algorithm we choose q (and
therefore k ≈ log(1/q)) such that with good probability our walks have the desired lengths.
Assume now that two walks W ki

, W kj
with different keys ki ̸= kj collide. Then there exist

x
(u)
ℓ , x

(v)
ℓ′ such that

Lki

(
x

(u)
ℓ

)
= Lkj

(
x

(v)
ℓ′

)
,

from which we conclude via Equation (6.4) that

x
(u)
ℓ = x

(v)
ℓ′ + kj − ki.

Analogous to Section 6.3 we show that once W ki
, W kj

collide, they stay in the same Legendre
points, i.e.

Lki

(
x

(u+1)
ℓ

)
= Lkj

(
x

(v+1)
ℓ′

)
.
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This follows from
Lki

(
x

(u+1)
ℓ

)
= Lki

(
x

(u)
ℓ + f

(
Lki

(
x

(u)
ℓ

)))
= Lki

(
x

(v)
ℓ′ + kj − ki + f

(
Lki

(
x

(v)
ℓ′ + kj − ki

)))
= L

(
x

(v)
ℓ′ + kj + f

(
L
(
x

(v)
ℓ′ + kj

)))
= Lkj

(
x

(v)
ℓ′ + f

(
Lkj

(
x

(v)
ℓ′

)))
= Lkj

(
x

(v+1)
ℓ′

)
.

Hence, W ki
, W kj

must eventually hit the same distinguished point g = Lki
(x(u+c)

ℓ ) =
Lkj

(x(v+c)
ℓ′ ) ∈ L for some c ≥ 0. This allows us to derive a relation as in Equation (6.4).

This ends the high-level description of our algorithm. The resulting procedure Mult-
Legendre is described in Algorithm 14.

Theorem 6. Assume that we are given oracle access to m Legendre PRFs Lk1(·), . . . , Lkm(·) :
Fp → P . Under Heuristic 1, algorithm Mult-Legendre finds all k1, . . . , km in total time
Õ(√mp) with overwhelming success probability.
Proof. The correctness of Mult-Legendre follows from the discussion above. In the following
we show that in a single run of Mult-Legendre we obtain with overwhelming probability
1− negl(m) at least 98% of all keys.

In a nutshell, we first prove that with overwhelming probability 3m out of our 4m walks
W kℓ,i perform at least t

m steps. From this we conclude that we obtain at least 2m key relations
as in Equation (6.4), which in turn gives as a giant component in G that allows us to recover
at least 98% of our Legendre keys.

Let us first prove that at least a 3
4 -fraction of our random walks have length at least t

m .
Notice that all walks either hit a distinguished point, or run into a self loop. We detect
potential self loop in line 11, hence we may assume w.l.o.g. that all walks end in a distinguished
point.

Let Xℓ,i be an indicator variable that takes value 1 iff walk W kℓ,i has length at least t
m .

We hit a distinguished point with probability 2−k ≤ q. This implies

Pr[Xℓ,i = 1] ≥ (1− q)
t

m =
(

1− m

5t

) t
m

≥ 1− 1
5 = 4

5 .

Let X = ∑m
ℓ=1

∑4
i=1 Xℓ,i. Then the expected number of walks with length at least t

m is at
least E[X] ≥ 16

5 m. Let µ = 16
5 m. Using the Chernoff bound Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2, we

obtain
Pr[X ≤ 3m] ≤ e− m

160 .

Hence, with overwhelming probability 1− negl(m) we obtain at least 3m + 1 walks of length
at least t

m . In the following analysis, we consider those online walks with minimum length
t
m . We define an indicator variable Yℓ,ℓ′ that takes value 1 iff walks W kℓ,i and W kℓ′ ,i′ for any
i, i′ ∈ {1, 2, 3, 4} collide. Using t2 ≥ mp, we obtain

Pr[Yℓ,ℓ′ = 1] ≥ 1−
(

p− t
m

p

) t
m

= 1−
(

1− t

mp

) t
m

≥ 1− e
− t2

m2p ≥ t2

2m2p
≥ 1

2m
.
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Algorithm 14: Mult-Legendre
Input : p, Lk1(·), . . . , Lkm(·) : Fp → P with P = {L(y) | y ∈ Fp} ⊂ {0,±1}⌈3 log p⌉

Output : {k1, . . . , km} ∈ Zm
p

1 begin
2 Choose t = ⌈√mp⌉.
3 Define random f : P → Fp.
4 Set q = m

5t and k = ⌈log(1/q)⌉.
5 Choose a random d ∈ {0, 1}k.
6 Let D = d× {0, 1}r−k ⊂ P .
7 for ℓ = 1, . . . , m do
8 for i = 1, . . . , 4 do
9 Choose a random x

(1)
ℓ ∈ Fp.

10 Run from Lkℓ
(x(1)

ℓ ) a random walk W kℓ,i

x
(j+1)
ℓ = x

(j)
ℓ + f

(
Lkℓ

(
x

(j)
ℓ

))
mod p,

until W kℓ,i hits a distinguished point

gℓ = Lkℓ

(
x

(jℓ)
ℓ

)
∈ D.

if W kℓ,i takes more than 8 t
m steps then

11 go back to step 9. ▷ detect loop

12 Store
(
gℓ, ℓ, x

(jℓ)
ℓ

)
in list L.

13 end
14 end
15 Sort L by its 1st entry.
16 Define an undirected graph G = ({1, . . . m}, ∅).
17 for every

(
gℓ, ℓ, x

(jℓ)
ℓ

)
̸=
(
gℓ, ℓ′, x

(jℓ′ )
ℓ′

)
∈ L do

18 if ℓ ̸= ℓ′ then
19 Include in E edge {ℓ, ℓ′} with label x

(jℓ′ )
ℓ′ − x

(jℓ)
ℓ .

20 end
21 Compute G’s largest connected component VG = {v1, . . . vb} and a spanning tree T

of VG.
22 Compute kv1 with Khovratovich’s algorithm.
23 return kv1 , . . . , kvb

by traversing T .
24 Recursively call Mult-Legendre with the remaining keys

{k1, . . . , km} \ {kv1 , . . . , kvb
}.

25 end

Note that Yℓ,ℓ′ = 1 iff walks W kℓ,i, W kℓ′ ,i′ give us a relation on two Legendre keys. Thus,
in total we obtain at least Y := ∑

1≤ℓ<ℓ′≤3m+1 Yℓ,ℓ′ key relations. Therefore, the expected
number of relations is at least

E[Y ] ≥
(

3m + 1
2

)
· 1

2m
≥ 9

4m.
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Notice that a 1
m -fraction of the relations are useless, since they do not satisfy condition ℓ ̸= ℓ′

in line 18, i.e. they involve the same key. Moreover, Mult-Legendre may produce the
same edge {ℓ, ℓ′} several times. However, it is easy to see that the expected number of these
duplicates is constant. After subtracting these (in total constant many) useless relations, we
conclude via another Chernoff bound argument that Y ≥ 2m with overwhelming probability.

From the results of Erdös and Renyi [ER60] we know that graphs with m vertices and
cm := 2m > m

2 randomly chosen edges contain with overwhelming probability a connected
component of size at least(

1− 1
2c

∞∑
k=1

kk−1

k! (2ce−2c)k

)
m > 0.98m.

This eventually enables us to recover at least 98% of all Legendre keys in a single run of
Mult-Legendre.

It remains to show the running time for recovering all keys k1, . . . , km. Let us consider
the two for-loops that construct 4m walks. We repeat the inner loop, whenever we encounter
a walk that takes more than 8 t

m steps. This happens with probability at most

(1− q)
8t
m ≤ e− 8

5 ≈ 0.2.

Thus, in each iteration of our for-loops with probability at least 4
5 a walk hits a distinguished

point within 8 t
m steps and stops. Let Y be a random variable for the number of iterations in

both for-loops. Then E[Y ] ≤ 4m · 5
4 = 5m. By Markov’s inequality

Pr[Y ≥ 10m] ≤ 5m

10m
= 1

2 .

Hence, with probability at least 1
2 our walk construction is completed by running at most

10m iterations of length at most 8 t
m . This takes time at most Õ(t).

On walk completion, our list L contains 4m entries. Thus, G = (V, E) can be constructed
in time Õ(m). We run Depth First Search (DFS) on G to compute a DFS tree T of its giant
component in time O(|V |+ |E|) = O(m).

Khovratovich’s algorithm in line 22 runs in time Õ(√p), and a traversal of T can be done
in time O(m). Since m ≤ p, we have

m =
√

m ·
√

m ≤ √mp < t.

Thus, we obtain total run time Õ(t + m) = Õ(t) = Õ(√mp) of one iteration of Mult-
Legendre. As shown before, every iteration of Mult-Legendre recovers at least a 98%-
fraction of Legendre keys. Hence, we recover all Legendre keys in time

6.6 Experiments

Since our algorithms for computing the Legendre symbol involve the (natural) Heuristic 1
concerning uniformity of Legendre points, we check the validity of Heuristic 1 and therefore
the statements of Theorems 4 to 6 experimentally. To this end, we implemented all three
Legendre key algorithms Pre-Legendre, Pre-Mult-Legendre and Mult-Legendre and
analyzed the number of random walk steps as a function of the field size p.
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Figure 6.4: Number of random walk steps as a function of p on a double logarithmic scale. Comparison
of our algorithm Pre-Legendre, Pre-Mult-Legendre (m = p1/6) and Mult-Legendre (m = p1/3)
to analogous discrete logarithm algorithms. Each data point is averaged over 10 samples, corresponding
data points are interpolated by lines.

Let gkℓ be a discrete logarithm problem. For better comparison with our Legendre PRF
algorithms, we also implemented discrete logarithm algorithms in the same field Fp using
analogous key-independent and key-dependent walks

x(i+1) = gx(i) mod p, respectively x(i+1) = gkℓ · gx(i) mod p.

All benchmarks were performed on an Intel i7-8550U CPU @ 1.80GHz. Each data
point represents the average over 10 samples. Our code is publically available at https:
//github.com/FloydZ/prep-legendre.

The results are depicted in Figure 6.4. We see that our Legendre algorithms require as
many random walk steps as the corresponding discrete logarithm implementations. This
is what we expect under Heuristic 1. We therefore believe that precise estimations for the
number of random walk steps – including the constant hidden in the O-notation, as extensively
analyzed in the discrete logarithm literature (see Table 3 in [GWZ17] for an overview) – directly
translate to the Legendre PRF setting.

We experimentally validated the run time statements of our Theorems 4 to 6 as follows.

Pre-Legendre Using the parameter choice s = t = p
1
3 , we precomputed a hint of size

s = p
1
3 . In Figure 6.4, we depict the corresponding number of random walk steps in the online

phase on a logarithmic scale. By Theorem 4, we require online at most t = p1/3 random walk
steps to recover the Legendre key with constant success probability. In our experiments, we
repeated an unsuccessful t-step random online walk with a different starting point, until we
eventually found the Legendre key, see also Remark 1. Thus, we always succeeded at the cost
of a slightly increased running time. The interpolation line through our data points has a
slope of 0.34, showing that thereby we do not significantly sacrifice run time.
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Pre-Mult-Legendre We chose to attack m = p
1
6 with the parameter choice s = p

1
3 and

t = p
1
2 . That is, we again precomputed a hint of size s = p

1
3 . By Theorem 5, we require in

total only t = p
1
2 random walk steps to recover each key with constant success probability.

As in the experiments for Pre-Legendre, we also repeated in the multiple-key setting
unsuccessful walks with different starting points, until we eventually recovered the desired
key, see Remark 2. Thus, our data points in Figure 6.4 reflect the total online time to recover
all m = p

1
6 keys. The slope of the interpolation line is 0.52, again showing that we only

marginally sacrifice run time to recover all keys.

Mult-Legendre In the multiple-key setting without precomputation, we chose to attack
m = p

1
3 keys. By the proof Theorem 6, a single run of Mult-Legendre gives us at least 2m

Legendre key relations, from which we can recover those keys that lie in the giant component
of the graph G. Experimentally, we recover on average 3.46m relations. The collection step
of our key relations is supposed to finish in time Õ(√mp) = Õ(p 2

3 ), which is validated by the
slope 0.64 of our interpolation line.
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