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Abstract—We establish a general formula for the maximum
size of finite length block codes with minimum pairwise distance
no less than d. The achievability argument involves an iterative
construction of a set of radius-d balls, each centered at a
codeword. We demonstrate that the number of such balls that
cover the entire code space cannot exceed this maximum size. Qur
approach can be applied to codes i) with elements over arbitrary
code alphabets, and i:) under a broad class of distance measures.
Our formula indicates that the maximum code size can be fully
characterized by the cumulative distribution function of the
distance measure evaluated at two independent and identically
distributed random codewords. When the two random codewords
assume a uniform distribution over the entire code alphabet,
our formula recovers and thus naturally generalizes the Gilbert-
Varshamov (GV) lower bound. Finally, we extend our study to
the asymptotic setting.

I. INTRODUCTION

Given an arbitrary (possibly uncountable) code alphabet X’
and a general distance measure (possibly asymmetric or not
satisfying the triangle inequality), the determination of the
maximal size M (d) of a block code C C X" with pairwise
minimum distance no less than d and block length n < oo
has been a long-standing problem in information and coding
theory. In its applications, one can use M(d) to obtain an
upper bound of the expurgated error exponent [1] and also to
characterize the capacity of a graph [2]. Some well-known
bounds on M(d) include the linear programming upper
bound [3] and Gilbert-Varshamov (GV) lower bound [3]-[5].
Other famous upper bounds include the Singleton, Plotkin,
and Elias bounds [6]. However, these bounds are not tight
in general. Since finite-length bounds are usually difficult to
obtain, researchers have focused on asymptotic analyses in
which blocklength n tends to infinity. One then considers the
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limit of the code rate (1/n) log M;(d) subject to a normalized
distance constraint d/n > §. Many asymptotic bounds have
been derived; see, for example [3], [4], [7]-[13] and the
references therein.

A natural question then beckons. Can one derive a “meta-
result” concerning the maximum code size subject to a fixed
minimum distance M (d) that recovers some of the above-
mentioned bounds as special cases? In [14], using a graph-
theoretic framework, Motzkin and Straus derived such a result
which implies an exact formula for M (d) under the condition
that X is finite. See also a related result by Korn [15]. It is
then natural to ask if there exists an analogous result for more
general code alphabets, e.g., uncountable alphabets. This is
precisely the purpose of this paper.

Along this direction, we propose an iterative construction
of a set of balls, each centered at a codeword and of a fixed
radius d. We then show that the number of such balls that
cover the entire code space X™ cannot exceed the maximum
code size. Consequently, we prove that M, (d) for an arbitrary
code alphabet can be completely determined by the minimum
probability (over all distributions) that two i.i.d. random vec-
tors X" and X" are at distance less than d from each other,
ie.,

M) = — e
infp,., Pr [min{,u(X", X)), p(X7, X"} < d]
where (-, -) is the (possibly asymmetric) distance measure.
This formula not only can be used to recover and to naturally
generalize the GV bound, but also facilitates the evaluation of
the limiting behavior of (1/n) log M (nd) under the condition

that the relative minimum distance is at least 6.

The rest of the paper is organized as follows. The exact
formula for M (d) is presented in Section II. A family of
lower bounds to M (d) is presented in Section III; also
included here is the demonstration that the finite length GV
lower bound can be recovered from our formula. Extensions
to the asymptotic regime are studied in Section IV. Finally,
open problems are discussed in Section V.

II. MAXIMAL CODE SIZE ATTAINABLE UNDER A
MINIMUM PAIRWISE DISTANCE

We first introduce the notation used in this paper. An
(n, M)-code over X™ denotes a set of M vectors, each of
which belongs to X" [16]. A distance measure u(-,-) is a
real-valued function with domain X" x X'™ which satisfies

min

Zn pncxn 'u(:in7xn) if u” =" (1)

N(unavn) = Hmin £



Here, we do not require u(-,-) to be symmetric or satisfy the

triangle inequality but can be arbitrary as long as it admits its
minimum from a point to itself.

n (n,M,d)-code C denotes an (n,M)-code with the

minimum pairwise distance among codewords at least d, i.e.,

min " ™) > d. 2

&n,2neC and £ £xn pla",a") = 2

The maximal code size M, (d) subject to a pairwise minimum

distance d is given by

M (d) £ max{M € N: 3 (n, M,d)-code},

where N is the set of positive integers. For convenience, a
code that satisfies (2) is referred to as a distance-d code.
Throughout this paper, X" and X" denote two independent
random variables with a common distribution Px» over X™.

We now present a general formula for the maximum size
M (d) of distance-d codes over an arbitrary code alphabet
X (not necessarily countable) and general distance measure
K ('a )

Theorem 1: Fix an arbitrary code alphabet A’ and a distance

measure 1+, -) that satisfies (1). For all n > 1 and d > fmin,
we have
* 1
Mn (d) =" . o-n n n yvn ' (3)
inf Pr[ min{u(X", X™), p(X™, X™)} <d]

<
Proof: We first prove the validity of (3) under the as-
sumption that M} (d) < oco. Its extension to M*(d) = oo will
be done next.
Subject to the condition that M(d) is finite, the equality
in (3) can be proved in two steps. We first show that for every
distribution Pxn» over X", the following inequality holds:

1

Pr (X", X") <d 4
r[a(X",X") <d] > ()’ “)
where for convenience, we denote (2", z") =
min{p (2™, 2™), p(z™, &™)}; hence,
. e o 1
I}’gi Pr (X", X") <d] > () 5)

The proof is then completed by exhibiting a distribution Pxn«

that results in equality in (5); consequently, given that M *(d)
is finite, the infimum in (3) can be replaced by a minimum.

1) Achievability (Validation of (4) under finite M (d)): Fix

a distribution Px~ over X" and an arbitrarily small ¢ >

0. Let
a; = mnlgﬁ(ﬂ Pr[ X" € B(z")],
where B(z") = {#" € X" : (2", 2") < d}. Find an

element uf in X™ such that p; = Pr[X" € B(u})] <
a1 + €. Note that the existence of u} is guaranteed by
the definition of the infimum. Let

Pr[X" € B(z") \ Bu})].

a9 £ inf
xneX™\B(ul)

Find an element u} in X" \ B(u}) such that p, =
Pr[X™ € B(u}) \ B(u})] < az + e. We repeat this
procedure to obtain

A .
a; = inf

_ Pr[X" € B(z
zreX™\UIZ]

B(u?)

")\ Uz B(u))]

and an u} in X"\ UZ 18(

B(u] )\UZ 113’( ™ < a; —|—6 for i = 3,4,...,k
unt11 U, B(u?) covers the entire X", ie., A™ \
U?ZlB(u?) = () but X™\ Uk L B(u? ) # (. Two ob-
servations are made: 7) {ul,u2 ..., ul} is a distance-
d code and hence by the deﬁnition of M (d) and its
assumed finiteness, k < M/ (d) is a finite integer so
the above procedure is repeated at most M (d) times;
ii) Y pj = 1. Denoting D; £ B(ul') \ UiZ} B(u?)
and noting D; N D; = () for i # j and X" = U¥_, D;
(e, {D;}¥_, is a partition of X™), we can derive the
following chain of inequalities:

") with p; & Pr[X" €

X" ,X™) < d]
/n/n 1{i(z", 2™) < d} dPxn(2™) dPxn (z™)

= Z / / A"
:Z / / APy () d Py (27)
j=17D; /B(z")
k
j=1"Dj
k
=Y ap; )
j=1

") <d}dPxn(2") dPxn(z")

k
> (pj — e, (8)
i=1
’ k
= <Zp?> —c ©)
j=1
1
> % *1 € (10)
ZM;;(d)_E’ (11)

where 1{-} is the set indicator function; (6) holds
because

inf / dPyn (i)
2" €D; JB(zn)

= inf PrX™ € B(z")]
an €B(u)\UIZ; B(uy

> inf Pr[X™ € B(z") \ U)_, B(u})]
an €B(u)\UIZ; B(uy

> inf Pr [X" € B(z") \ U)_, B(u})]
zreXn\UIZ 1 B(up)

= a‘];

(7) follows from the definition of p;; (8) holds since
p; < aj + € (9) applies since Zle p; = 1; (10) is
a consequence of the Cauchy-Schwarz inequality;' and
the last inequality in (11) follows from &k < M (d).

The Cauchy-Schwarz inequality can be used to assert that 1 = (Z§:1 1
2 k k k
pj) < (23:1 12)(2;‘:1??) :kZ]’:lp?



The proof of (4) is completed by noting that the above
derivations hold for arbitrarily small e.

2) Converse (Equality of (5) under finite M} (d)): Let Pxn«
be the uniform distribution over a distance-d code C*
that achieves M (d). We then have

Prla(X™, X™) <d = Y [P (a")]

xneC*

1 1
" er

znecC*

where |C*| denotes the cardinality of C*.
The above two steps complete the proof of

. o om 1
nglEPr (X", X™) <d] = N d)”
subject to finite M (d).
When M (d) = oo, again, let C* denote an infinite distance-
d code that achieves M (d). Then, any finite subset S of C*
is a distance-d code. Using a derivation similar to that leading
to (12) gives that

Pra(X7, X"°) < d] = =,
S|
where Pxno is the uniform distribution over S. As |S| can be
made arbitrarily large,
11)25 Pr[a(X", X") <d] =0.
This completes the proof. ]

Some remarks concerning Theorem 1 are in order. First,
the theorem can be applied to an arbitrary code alphabet
and any distance measure satisfying (1). Its generality thus
extends the study of the maximal code size of distance-d codes
from the conventional finite code alphabets and the Hamming
distance to, for example, X = [0, 1) and the Euclidean distance
(cf. Example 1).

Secondly, the crux of the proof of Theorem 1 is the
observation that the entire space X™ can be covered by k
“open” balls of radius d with k < M (d),> where the radius
is defined via the distance fi(-,-). In addition, the selection
of the center ul* of the next ball B(ul') is chosen such
that p;, = Pr[X" € B(ul) \ U;;ﬁ[ﬁ’(u?)] is e-close to its
minimum possible value and therefore k£ can be made as large
as possible, ideally as close to M*(d) as possible.

Thirdly, as noted by Korn [15], when the code alphabet X™
is finite, the optimization problem infp_,, Pr[i(X™, X") < dJ
corresponds exactly to the minimization of the quadratic form
pAp’, where p is the row vector formed by listing the proba-
bility masses of Pxn» and A is the corresponding |X'|™ x |X|"
matrix with entries given by 1{z(2", ™) < d}. This quadratic
optimization problem was considered by Korn [15] in his study
of the maximization of Gallager’s lower bound for the zero-
error capacity of discrete memoryless channels (DMCs) [17].
The same solution can also be found in Motzkin and Straus’
work [14], where the order of the maximal complete graph
contained in a finite graph is considered. Here, instead of
iteratively removing one codeword from any two codewords

2Here “open” means a strict inequality is used to define the ball.

within distance d until the size of the set of candidate
codewords is reduced to M;(d) as suggested by Korn’s
technique in [15], we define a “proper” notion of progress
to iteratively add codewords to a distance-d code. Specifically,
we select a representative vector ]’ in some “e-neighborhood”

defined as {u™ € X" : Pr[X" € B(u") \ Uz;lB(uy)] <
infznexn Pr[X™ € B(z™) \ Uj;lb’(u?)] + €} for a given
distribution Pxn. This selection is repeated until the entire
code alphabet can be covered by the union of radius-d balls
centered at u;’s. The assumed finiteness of M) (d) ensures
that the iterative selection will terminate. Note that the proof
of Theorem 1 is not restricted to code alphabets that are finite
(cf. [14], [15]). In addition to being applicable to general
arbitrary code alphabets, it provides a different perspective of
the general formula in (3).

Lastly, we recall that finding the maximal distance-d code
size is equivalent to obtaining the zero-error capacity [18].
Consequently, Theorem 1 can be used to establish a general
formula for the zero-error capacity for arbitrary channels
as summarized below. This result complements the general
formula for the (vanishing error) capacity of arbitrary channels
considered by Verdd and Han in [19].

Definition 1 (Zero-error capacity): Let €1, be the maximum
code size that can be transmitted error-free (i.e., with exactly
zero error probability) over the channel Pyn x~. Then, the
zero-error capacity for a sequence of channels { Pyn|xn}o2;
is defined as 1

Co £ sup — logQ,,.
n>1 "N

Corollary 1 (General zero-error capacity): The zero-error
capacity for an arbitrary sequence of channels { Pyn|xn}n2q
(not necessarily with countable alphabets) can be expressed as

1 .
Cy =sup — - log inf Pr{u(X™, X™) =0], (13)

n>1 Pxn

where

1, @3TcY") Pr(Y"eT|X™=23i")
=PrY"¢T|X"=2z")=1;, (14)

0, otherwise.

p(E",z") £

When we particularize the infimum in (13) to product distri-
butions, we obtain that for DMCs with finite channel input
alphabet X' and finite channel output alphabet ) [15],

1 . N
Cop > —— loginf Pr Z Py x (y|X) Py x (y|X) >0
n Px =,

Note that when ) is finite, (14) implies that (2", ™) = 0 if
and only if there exists an y" such that the channel Py xn
maps both 2™ and z" to y™ with positive probabilities, i.e.,
Z™ and z™ are confusable [18].

III. IMPLICATIONS OF THE DISTANCE SPECTRUM
FORMULA FOR M} (d)

In this section, we further explore the implications of the
theoretical result presented in the previous section. Specifi-
cally, we show that the GV lower bound for discrete alphabets



can be recovered from (3) by letting Px» be a uniform
distribution over X™. An example in which the alphabet X
is continuous and hence uncountable is also provided.

An immediate consequence of Theorem 1 is that a family
of lower bounds to M (d) can be obtained by evaluating
Lxn(d) 2 1/Pr[min{u(X™ X"),u(X", X™)} < d] for
different distributions Px~. This implies even if we do not use
an optimal distribution Px~, we may still be able to obtain
good lower bounds to the optimal code size. In addition, the
converse proof of Theorem 1 shows that M (d) can actually
be achieved using a distribution which is uniform over an
appropriate subset of X (that is, over an optimal code). Thus,
L xn(d) based on uniform Px~ is an important family of lower
bounds to M (d).

In particular, the Gilbert-Varshamov (GV) lower bound [4]
can be recovered with a uniform distribution over all possible
codewords. As an example, consider a finite code alphabet X’
with |X| = @ and the Hamming distance measure u(-,-).
Let the components of X" = (X; Xo ... X,,) be ii.d.
and uniform over X'. This choice yields exactly the GV lower
bound G,,(d) [4]:

1
Pr[0 u(Xs, X;) < d

2 Go(d).

My (d) > Lxn(d) =

n

e 2 ,

Zi:o (Tzl)(Q - 1)1

The same observation has been stated by Kolesnik and

Krachkovsky in [20, pp. 1446].

Next, two examples are given, where the corresponding GV
lower bound G, (d) are obtained.

Example 1: Here we derive lower bounds to Mj(d) for

Euclidean distance p(-,-) and a bounded code alphabet X =

[0, 1). Taking Px2 to be the uniform distribution over X 2 and
letting Z; £ (X; — X;)? yields that for d > 0,

Pru(X? X?) < d) = Pr[Z1 + Z» < d?]
1 pd?—2
- / / F2(21) Fo(z2)dzs day,
0 0

where fz(z) = (% —1)1{0 < z < 1}, which implies

15)

3, d=

1.
2" (16
2, d=1. (16)

M;(d) = [Ga(d)] = [Lx2(d)] = {
Via a procedure suggested by the proof of Theorem 1, we can
actually obtain

_ 1.
8, d=1;

M;(d) >
2()—{2, d=1.

This indicates that there is room for improving the generalised
Gn(d) (i.e., Lxn(d) with respect to uniform Py~ over X?)
and the codeword selection procedure in the proof of The-
orem 1 could be further explored for finding a better lower
bound.

Example 2: In this example, we demonstrate a case that
M (d) can be exactly determined. Let the distance measure
be given by p(Z",z") = |kn (") — Kn(z™)], where " and
x™ are in {0,1}", and Kk, (2") £ 2,27 + 1, 12" 72+ ..+

2921 4+ is the binary representation of 2" = (x1 2 ... x,).
In other words, u(2™,2™) is the absolute difference between
two decimal numbers r,, (") and k,(z"™), and is a separable
distance measure [21, Def. 1].

Since k,(2™) is an integer in {0,1,2,...,
be easily seen that for d > 0,

* 277'

i = | 2.
where [-] is the ceiling function. Notably, one of the uni-
form X™’s that results in Lxn(d) = M} (d) has support
{0, [d],2[d],...,(M}(d)—1)[d]}, and there are exactly [d]
optimizers that can achieve M;(d). We then recall that (15)
has illustrated that G,,(d) can be regarded as a special case
of Lxn(d) with uniform X" over the entire X™. As such, we
derive

2" — 1}, it can

22n

(3[d] — D[d] + (2[d] — 1)(2" —2[d])’
for 0 < [d] <271

22n

22 4 ([d] - 2")(2" — [d] + 1)’
for 2"t < [d] < 2" —1;

1, for [d] > 2" —1,

showing that G,,(d) is strictly less than M (d) except when
[d] = 1 and [d] > 2™. This result confirms that the finite
length GV lower bound is not tight in general.

We close this example by noting that an upper bound U, (d)
for M (d) can also be provided based on Theorem 1. If there
exists a function U,,(d) such that

Un(d)> — 1 i
Pr [min{p(X™, X7), (X", X™)} < d

for all Px~’s, then

1
Un(d) > - :
infp,, Prmin{p(X™, X™), u(X", X")} < d]

— M2(d).
Now setting j = j(n,d) = 2"/[d], we derive

(X7 Ra(X7) B m}
2n

2n 2n

h and [;—] < ””gfn) < i;]l}
[31-1 i Ko (X i 2
-2 (e <))
> (711 (17)

where (17) again follows from the Cauchy-Schwarz inequality.
This gives an upper bound coinciding with M*(d)

Uula) =1 = | 25 | = 2120@.



IV. EXTENSIONS TO THE ASYMPTOTIC REGIME

We now extend the result in Theorems 1 to the asymptotic
regime in which the length n of the code goes to infinity. In
what follows, log denotes the natural logarithm. A distance
spectrum formula for the largest code rate R = log(M)/n
subject to a normalized minimum distance § = d/n can
be obtained on the basis of Theorem 1 in a straightforward
manner:

R3(9) 2 ~ log My (nd)

= sup (1logPr [IM(X”,X”) < 5}) . (18)
Pxn n n

The formula of R} (d) in (18) provides a quantitative charac-
terization of the largest code rate attainable for an (n, M, nd)-
code, based on which a first-order expression for the largest
asymptotic code rate attainable for a sequence of (n, M, nd)-
codes can be obtained when the normalized distance measure
is uniformly bounded.

Theorem 2: (Largest Asymptotic Code Rate) Fix an arbitrary
code alphabet X and a (sequence of) general distance measures
u(-, ) that satisfy the condition mentioned in Theorem 1 and
also satisfy

1
—p(z"™,2") < o0.

sup max (19)
’I’LZI i”,I”GX" n
Then,
limsup R} (0) = lim sup sup Jxn(0)
n—00 n—oo Pxn
and
liminf R} (6) = lim inf sup Jx= (9),
n—oo n—oo PX"
where

Jxn(8) £ inf sup {a@ 1 logE [eeﬂ(Xn’Xn)} } . (20
a<é geRr n

Proof: The proof can be found in Appendix A. In

particular, an upper bound on the second-order term of R} (J)

is also provided (cf. Lemma 2). [ |

The above theorem indicates that R (5) and

supp,, Jxn»(0) are asymptotically close. In fact, the
proof in Appendix A shows that

R;,(0) = sup Jxn(0)
Pxn

21

for every n. However, the proof of the upper bound (which
shows that the second-order term is O(1/4/n)) is significantly
more involved and requires delicate twistings of probability
distributions [22]. Using a large deviations technique, we can
slightly improve (21) by the addition of a logarithmic term.
For example, when X is binary and u(-,-) is the Hamming

distance measure,
1 logn
’ 2> * 2n

Although Jiang and Vardy [23, Thm. 1] have shown, by using
a graph-theoretic framework, that the achievable second-order
term in (22) is at least (logn)/n, which is slightly stronger

R:(6) > D (5

—I—@(i) asn — oo. (22)

than the term (logn)/(2n), Eq. (22) provides some additional
insight into the suboptimality of choosing X™ and X" with
i.i.d. components.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed an exact formula for the maxi-
mal size of distance-d codes for arbitrary alphabets and general
distance measures. The implications of the established formula
were discussed. The extension to the asymptotic regime was
also explored. Some natural directions for future work include:

¢ Understanding the structure of optimal or even “good”
distributions Px~ to give lower bounds on the optimal
code size. For example, based on our numerical experi-
ments, we know that the optimal distribution may not be
unique. Studying the binary Hamming distance for small
block lengths suggests that there may be an optimizer
whose marginals are uniform on each coordinate.

« Finding 4) a similar formula of the minimum code size
subject to a covering radius constraint (cf. [24]) and
i1) a formula of maximal code size under a minimum
multi-wise distance constraint (cf. [25]). The latter would
constitute a generalization of Turdn’s Theorem.

APPENDIX A
PROOF OF THEOREM 2

The theorem can be verified via the following two lem-
mas. The first lemma shows that for arbitrary distance
measures, R (d) is lower-bounded by supp,, Jx~(d). The
second lemma proves that R} (J) is upper bounded by
supxn Jxn(0) + @(%) when the normalized distance mea-
sure is uniformly bounded. Then, the two lemmas imply
Theorem 2.

Lemma 1: Fix an arbitrary code alphabet and an arbitrary
distance measure that satisfies (1). Then,

R} (8) > sup Jxn(d).

XN

(23)

Proof: This is a consequence of two observations that for
6 >0,

Pr HM(X",X") < 6} = Pr[Y > 0] = Pr[e?Y > 1]
< E[e”] £ My (9), (24)

where ¥ 2 nd — p(X™ X"), and that for § <

SE[u(X", X")],
Pr[Y > 0] < inf My (0) = inf My (0) = inf My (—0)
>0 R R

1 o n
= exp {—nsup (60 — —logE [e(’“(X X q)}
0eR n
=exp{—n-Jxn(0)}.

|
Lemma 2: Fix an arbitrary code alphabet and an arbitrary

distance measure that satisfies both (1) and (19). Then,
R;,(8) < sup Jxn (8) +O() (25)
XTL

for those § satisfying supp_,, Jx= () > 0.



Proof: Given that Pxn is the optimizer of sup yn» Jxn (9)
and following the notations used in the proof of Lemma 1,
we define the twisted distribution of Y as dPy) (y) =
e’ dPy (y)/ My (6). Then,

PI'[Y > 0] = / dPy(y) = / My(g*)e_a*ydpy(e*)
0 0

= MY(G*)/ eV dPyon (y), (26)
0
where 0* is the minimizer of infgcg My (6). Let W be a
nonnegative random variable with distribution dPy (y) =
dPye+ (y)/Pr[Y®) > 0]. Then, (26) can be rewritten as
Pr[Y > 0] = My (6*) - Pr[y(?) > o]/ eV APy ()
0
= My (%) - Pr[Y@) > 0] . E[e=?"].
Using the fact that E[Y'(?")] = 0 [26, Thm. 9.2], we obtain
1 _ AE[YD)Y
Pr[Y() > 0] = E2[(Y ()2
4) *
L _oxn(=07)
=4 |- 43 (27)

G )

where pxn(0) = %1ogE[ee“(Xn’Xn)]. Using Jensen’s in-

equality, i.e., E[e*Q*W] > e 0" EW] and
A
< M/_Z ly| APy (y)
< s g VEY O
1

— oA _0*
PI‘[Y(G*) > 0] n QOX"( )7

we conclude from all the above derivations that

Pr[Y > 0] > e ™ /x" (9
1_en(=07)
@ g
(heGre +3)

We completes the proof of (25) by remarking that with
probability one, (1/n)u(X™, X™) is not only bounded, but
uniformly upper bounded in the block length n, and so are
its moments and cumulants. Since a twisted random vari-
able generated from (1/n)u(X™, X™) must have the same
support as (1/n)u(X™ X™), its twisted moments as well
as twist cumulants are also uniformly bounded. Accordingly,
0\ (=6*) = O(1) and ¢’ (—6*) = O(1), based on which
(25) implies R () < supxn Jxn(8) + @(ﬁ). [ |
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