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A MOMENT-ITERATION METHOD
FOR APPROXIMATING THE
WAITING-TIME CHARACTERISTICS
OF THE GI/G/1 QUEUE

A. G. pE Kok

Nederlandse Philips Bedrijven B.V.
Center for Quantitative Method's
The Netherlands

In this paper, a moment-iteration method is introduced. The method is used
to solve Lindley’s integral equation for the GI/G/1 queue. From several forms
of this integral equation, we derive the first two moments of the waiting-time
distribution, the waiting probability, and the percentiles of the conditional wait-
ing time. Numerical evidence is given that the method yields excellent results.
The flexibility of the method provides the oppertunity to solve the G1/G/1
queue for all interarrival time distributions of practical interest. To show that
the moment-iteration method is generally applicable, we give some results for
an (s,5)-model with order-size-dependent lead times and finite production
capacity of the supplier.

1. INTRODUCTION

In this paper, we present a new practical method to compute approximations
for the delay probability and the average waiting time for the G1/G/1 queue.
In fact, an approximation for the waiting-time distribution is derived. The
method is based on an iterative scheme to approximate the first two or three
moments of the waiting time of an arbitrary arriving customer from Lindley’s
integral equation (cf. Kleinrock [7]). It turns out that the iterative method gives
excellent approximations for the notorious G1/D/1 queue and the D/G/1
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274 A. G. de Kok

practical solutions to problems that are unsolved at present (cf. De Kok [4,5]).
To illustrate the general applicability of the moment-iteration method, we
describe in Section 5 the (s, S)-inventory model with lead times depending on
the order size as studied in De Kok [5].

In the literature on the GI/G/1 queue, a lot of solution procedures are sug-
gested to find exact or approximate expressions for the delay probability and
the average waiting time.

Exact solutions to the GI/G/1 queue can be found in Neuts [9] and Seelen
[10] for the Ph/Ph/1 queue with phase-type interarrival times and phase-type
service times and in Bux [3] for the GI/E, /1 queue in which the service-time
distribution is a mixture of Erlangian distributions with the same scale param-
eters (cf. also Tijms [13]). The latter reference gives an excellent survey on exact
and approximate methods for queueing models, including the G1/G/1 queue.

Approximation methods aim at accurate approximations at low computa-
tional costs. However, most of these methods appear to be either dependent on
‘the type of interarrival and service-time distributions, such as the excellent
approximation for the D/G/1 queue of Fredericks [6), or dependent on the
traffic intensity p, such as the diffusion approximation by Whitt [17], which
applies for moderate and heavy traffic. The same holds for the approximations
given by Seelen and Tijms [11], which apply when the coefficients of variation
of both the interarrival time and the service time is less then 1. A robust
approximate solution method for the GI/G/c¢ queue is given by Van Hoorn and
Seelen [16], but implementation of this method is not straightforward as is the
case with the other approximation methods. The idea of iterating Lindley’s inte-
gral equation was employed by Ackroyd [1]. He uses signal-processing meth-
ods applied to the discretized waiting-time distribution.

The iterative method presented in this paper is based on a simple idea, is
easy to implement on a personal computer, and shows an overall excellent per-
formance. A weak point of the iterative method is that the time to compute the
approximations is highly dependent on the traffic load. As the traffic load
becomes very heavy (i.e., the delay probability gets close to 1), the iterative
method converges more slowly. For the case of heavy traffic (say p > 0.95), we
suggest the use of the diffusion approximation in Whitt {17) or the well-known
approximation in Kréamer and Langenbach-Belz [8].

The paper is organized as follows. In the next section, we describe the basic
moment-iteration method. In Section 3, this method is elaborated for the
GI/D/1 and GI/G/! queue with nondeterministic service times, respectively.
In Section 4, we present some numerical results and discuss the performance
of the approximations. In Section 5, we present another application of the
moment-iteration scheme.

2., THE MOMENT-ITERATION METHOD

In this section, we present the basic ideas behind the moment-iteration method.
We restrict ourselves to a description of the moment-iteration method based on
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the first two moments of the distribution that is approximated. First, we
describe the GI/G/1 queue in detail and introduce some notation.

We consider the standard GI/G/1 queue. Customers arrive according to a
renewal process, where the interarrival time has probability distribution func-
tion A(7). The service time of an arbitrary customer has probability distribu-
tion function B(f). The service times are independent of each other and
independent of the arrival process.

We assume that at epoch 0 the zeroth customer arrives having a service time
B,. Define for n = 1,

A, := the time between the arrival of the (n — 1)th customer and the nth
customer.

B, := the service time of the nth customer,

W, := the waiting time of the nth customer.

It is easily seen that
Wn = max(O, F'V;,,_l + B,, 1 An)s n=1. (2-1)

Under the assumption that the queue is in a stationary state, this recursive equa-
tion can be translated into Lindley’s integral equation. Also, this equation is the
starting point for our iterative method which approximates the following per-
formance characteristics of the GI/G/1 queue.

7, = lim P{W, > 0}, E[W] := lim E[W,].

n—oe
To assure that , and E[W] are properly defined, we assume that

p = E[B]/E{A] <1,

where the generic random variables A and B are distributed according to A(?)
and B(?), respectively.

Through Eq. (2.1), the waiting-time distribution of the nth arriving cus-
tomer is related to the waiting-time distribution of the {n — 1)th customer.
From this equation, we derive the following expression for P{W, > 0] and the
first two moments of W,:

P{W, >0} = fm [1 — Fi,_+8{1)] dA(1), 2.2)
0
E[W,] =f f (y — 1) dFy,_,+8(») dA(D), 2.3)
0 !

EIW;} =f f (y — 1) dFy,_,+8(¥) dA(1) 2.9
0 !



276 A. G. de Kok

Qne might cal.l t!'le Eqgs. (2.2-2.4) low-order versions of Lindley’s integral equa-
tion. The basic iteration scheme can be given as follows:

2.1. Moment-Iteration Algorithm

Steg)o (Initialization): Choose initial values for E[W,] and E[W¢§] (e.g., equal
to ). =

Step 1 (Iteration): Compute
E[W,., + B] = E[W,_,] + E[B].
E[(W,., + BY] = E[W}_|) + 2E[W,_,1E[B] + E[B?].

Fit tractable .distributions F_W" +5 and A to the probability distributions of the
random variables W,_, + B and A by matching the respective first two
moments. Compute

E[Wn]=j; j: (v — ) dFy,_+p(») dA(D), 2.5

E[W3] =j; f (¥ = 0 dFw, +s(y) dA(D). 2.6)

Step 2 (Convergence): If the maximum of
|E[(W,] — E[W,.,]| <E  and [E[W:] - E[W2.\]| <e
then stop; otherwise repeat Step 1.

Stop: Approximate E[W] by E[W,], E[W?] by E[W?] and P[W > 0} by

o0

P{W>0] =j; [1 — Fy,_+p()] dA(2).
In Section 3, we discuss how to fit tractable distributions to the first two
moments of W,_, + B and A. For these distributions, the integrals involved
are easy to corr{pute. Note that for all n = 1, E[W,] and E[W}?] are two-
momen} approximations for the first two moments of the waiting time of the
nth arriving customer. Since the stability condition p < 1 assures that for the
true W, and W we have that W, — W in distribution, it may be expected that
good approximations for the true E[W,] and E[W}?] will also converge.
Numerical experiments yield the following conjecture:

2.2. Convergence Conjecture

The two-moment-iteration algorithm always terminates in a finite number of
steps.

Also, numerical experiments reveal that the convergence of E[W,] and
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E[W?] is geometrical, which enables us to speed up convergence considerably
by extrapolation as follows.
In each step, we compute

O E[W,] — E[Wp1]
" T E[W,) — EWa2l’

L . EWW3) — EIWi)]
" T EW - EWLa]

It appears that 7,\" and 7. both converge to the same constant 7. Hence, in
a limiting sense the convergence of E[W,] and E [W?2] is geometrical. Using
this empirical finding, we replace E [W,] and E {W2]in Step2 by E [W3] and

E[(W§)?}, respectively, which are defined by
E(W,] — E[W,—,]

E[(W]] = E[W,.] +

I—T,ﬁl) ]
E[W?2] - E{Ww2i
E[(WJE)Z] = E[Wz_l] -+ [ nil _1’5[2) n l] .

Modifying the moment-iteration algorithm in this way ensures faster termina-
tion of the iteration.

We have not been able to prove this conjecture. The conjecture is sup-
ported by the following result. Instead of fitting a distribution using the first
two moments of the true distribution, we fit an exponential distribution to the
first moment of the true distribution in Step 1 of the iteration algorithm. Then
it can be shown that the moment-iteration algorithm terminates in a finite num-
ber of steps. In fact, the moment-iteration algorithm solves the following func-
tional equation:

x = (x + E[BDLS,((x + E[B)"),
where LS, denotes the Laplace-Stieltjes transform of A. Note that we have

assumed that in Step 1 the true interarrival distribution A{?) is used. Next, sub-
stituting

p = E[B] and o :=x(x + E[BD 7,
we obtain the following functional equation in the variable o.
o =LS,4(pn(1 —0)).

This is the well-known functional equation associated with the GI/M/1 queue,
which can be solved by iteration and where this iterative scheme converges
geometrically. It follows from these arguments that the moment-iteration algo-
rithm yields exact results for the GI/M/1 queue.

The proof of the conjecture should proceed along the same lines as above.
The difficulty lies in the degree of freedom one has in choosing the two-moment
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fit of the true distributions Fy;,_,.a(?) and A(?). The underlying functional
equation depends on this two-moment fit.

We note that in principle the algorithm can be modified to yield better
results through iteration of higher moments and fitting distributions to all these
moments. It is to be expected that computations become more intricate, apart
from the problem of finding tractable distributions that can be fitted. This extra
effort should be weighed against the desired accuracy. For an important set of
G1/G/1 queues, we have fitted tractable distributions to the first three moments
of W,_, + B. We shall discuss this three-moment iteration scheme in more
detail in the next section.

Finally, we remark that the method can be used to study the time-depen-
dent behavior of the GI/G/1 queue, where time should be interpreted as suc-
cessive arrival epochs. The algorithm starts off with an initial distribution of
the waiting time of the zeroth customer, ¢.g., the degenerate distribution with
probability mass 1 at zero corresponding to the zeroth customer arriving at an
empty system. Next the algorithm approximates the first two moments of the
waiting time of all arriving customers until stationarity is reached. Hence, the
algorithm can be used to gain insight in so-called relaxation times (cf. Blanc and
Van Doorn [2)), i.e., the time that elapses until stationarity is reached. It is clear
that there is a close relationship between these relaxation times and the param-
eter 7, which governs the geometric convergence.

In the next section, we give suggestions for implementation of the algo-
rithm for the cases of either deterministic service times or nondeterministic ser-

vice times.

3. IMPLEMENTATION OF THE ALGORITHM

To implement the algorithm, we should distinguish between two cases. In order
to make this distinction, we define ¢ and c2 as the squared coefficients of
variation of A4 and B, respectively. We distinguish between the case of ci=0
and the case of ¢3 > 0. Below we propose which distributions should be fitted
to Fy, ,+g(¢) and A(1) in Step 2.

Case I (c§ > 0); For the case of nondeterministic service times, we proceed as
follows. If the interarrival time is deterministic, we fit the exact distribution to
A(f), since this yields tractabie results. If ¢ > 0, then we fit mixtures of
Erlang distributions to the first two moments of W,_; + B as explained in
Tijms [13]. We also fit mixtures of Erlang distributions to E[A] and E[A%].
Using these mixtures, it is easy to obtain explicit expressions for the right-hand-
sides of Egs. (2.5) and (2.6).

Case 2 (c3 = 0): The approach outlined above failed to yield good approxima-
tions for the case of ¢} = 0, i.e., the service times are constant. Therefore,
proceed with more care. Let us reconsider Eq. (2.5). For deterministic service
times B, this equation can be rewritten as follows:

MOMENT-ITERATION METHOD 279

EIW,] = EIW,JA(B) + B — E[A] + fm (t — B) dA(t)
B

+ P{W,—y > Oif f (y — t + B)dFy,_,w, »0(¥) dA(1),
B vi-B

where
Fw, w,_»0(¥) 1= P{W,_, = y|W,_, >0}

The probability distribution function Fuw, ,|w, ,»o0 has no probability mass
at zero. Now it is reasonable to fit mixtures of Erlang distributions to
E[W,_;|W,—; > 0] and E[WZ2_,|W,_; > 0]. A similar analysis can be done for
Eq. (2.6). Hence, during each iteration step we compute successively approxi-
mations for E[W,], E[W?], PIW, > 0}, E[W,|W, > 0], and E[W2|W,>0].

For all possible cases, we have specified the two-moment iteration algo-
rithm. This leaves us with the question whether the approximations are of prac-
tical use. This question is answered in detail in the next section.

It should be emphasized that the performance characteristics of the GI/G/1
queue are sensitive to more than the first two or three moments of the
interarrival-time distribution (cf. Tijms [13]). Fortunately, the moment-iteration
scheme can easily be adapted to other tractable interarrival time distributions
than used above (e.g., uniform distribution, shifted exponential distribution,
discrete distributions, etc.).

In the next section, we discuss the quality of the approximations for the
delay probability and the expected conditional waiting time E[W|W > 0]
obtained with the moment-iteration method. We also give some results concern-
ing approximations for the waiting-time distribution.

4. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we report on our extensive numerical experiments to check the
quality and robustness of the approximations obtained. Towards this end, we
compared our approximations with the exact results as can be found in Seelen
et al. [12] and Tijms [13]. In the latter reference, the embedded Markov chain
method is given to compute the exact results for the GI/G/1 queue with phase-
type service times.

We consider the following cases. The traffic intensity p is varied as 0.2, 0.5,
0.8, and 0.95. The squared coefficient of variation ¢ is varied as 0, }, i, and
2. The expected service time is normalized at 1, the squared coefficient of vari-
ation of the service time cZ runs through the values 0, §, 4, and 2}. A coeffi-
cient of variation equalling O corresponds to the deterministic distribution.
When the coefficient of variation of the random variable considered equals 1,
1, or 1, we assume that the random variable is distributed according to an
Erlang distribution. When the coefficient of variation of the random variable
considered equals 2 or 21, we assumed that the random variable is distributed
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according to a hyperexponential distribution with balanced means (cf. Tijms
[13)).
For these sets of parameters, we computed the delay probability ., for

which the results are tabulated in Table 4.1, For all cases, we computed the

two-moment-approximation w,(2). If possible, we also computed a three-

moment approximation based on a three-moment iteration method. This three-

moment iteration method employs the property that if the squared coefficient

of variation of the approximated random variable W, + B (or W,|W, > 0in

the case of the G/D/1 queue) exceeds 3, we may be able to fit a so-called

K,-distribution to the first three moments of W, + B (W,|W, > 0). For more

details, we refer to Tijms [13]. The three-moment approximation is denoted by

x.,{3). The exact value of the delay probability is denoted by 7, (ex).

In Table 4.2, we display the computed approximations and the exact val-
ues for the expected conditional waiting time E (W|W > 0]. Similarly, as for
the delay probability =,,, we denote the two-moment approximation by W (2},
the three-moment approximation by W(3), and the exact value of the expected
conditional waiting time by W(ex).

The results in Tables 4.1 and 4.2 show the satisfactory performance of the
two-moment approximation. Only when c} gets large, say larger than 2, the
results should be used with care. The reason is simply that the performance
measures become increasingly sensitive to more than the first two moments of
the service times when ¢ gets large (cf. Tijms [13)). We note that our two-
moment approximations forP{# > 0} and E [W|W > 0] turned out to be exact
for the case of the GI/M/1 queue and the M/G/1 queue.

The three-moment approximations yield excellent results. However, in con-
trast with the two-moment iteration scheme, the three-moment iteration scheme
does not always converge. This is mostly caused by the fact that a three-
moment fit is not always possible. Typically, if a three-moment iteration is not
possible then the algorithm starts cycling in some sense. The implementation
of the algorithm detects whether cycling occurs; and if 50, then a two-moment
iteration scheme is used.

The computations are, as said before, simple but the number of iterations
involved is highly dependent on the traffic load: the number of iterations
increases as p increases. To a lesser extent, the number of iterations depends on
the coefficients of variation ¢ and c2: the number of iterations increases with
increasing ¢3 or c.

Since, from Eq. (2.2),

PIW, > y) =f [1 = Fu, ,+(t + )] dA(2),
0

the same approach, as used to compute an approximation for the delay prob-
ability P(W > 0}, can be applied to compute two-moment and three-moment

approximations to the waiting-time distribution.
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From the algorithm, one can compute two-moment and three-moment
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three-moment approximations for the o-percentiles are denoted by app(2) and
app(3), respectively. The exact results have been taken from Tijms [13]. Again,
the two-moment approximations are satisfactory and the three-moment approx-
imations are excellent.

It is well-known that the waiting-time characteristics of the G1/G/1 queue
are highly dependent on the form of the arrival-time distribution. Especially for
small values of p, it appears that the first two moments of the interarrival time
do not characterize the interarrival-time distribution sufficiently to obtain accu-
rate results if the fitted distribution is not the actual distribution. The moment-
iteration scheme can be easily adapted to other tractable distributions of the
interarrival times, such as finite discrete distributions, uniform and shifted
exponential distributions and all finite mixtures of Erlangian distributions. This
provides a means to do an extensive sensitivity analysis of the GI/G/1 queue.
This also gives the opportunity to analyze GI/G/1 queues different from
Ph/Ph/1 queues. Table 4.4 compares approximations for the U/E, /1 queue
with uniform interarrival times and Erlangian service times with exact results
obtained by Tijms [15]. It is assumed that p equal 0.5.

The results of Table 4.4 show again the excellent performance of the
moment-iteration method. It should be noted that the results for the U/E,/1
queue are obtained from a three-moment iteration, and the results for the
U/E4/1 and U/E;/1 queues are obtained from a two-moment-iteration.

In conclusion, the approximations in this paper are of good quality, robust,
and easy to implement. Computation times can become prohibitively long on
personal computers when p exceeds 0.95. Fortunately, in that case the heavy
traffic approximations for =, and E[W|W > 0] of Whitt [17] can be used. The
algorithm can give insight in the time-dependent behavior of the GI/G/1 queue.
The algorithm also provides great flexibility with respect to the choice of the
interarrival-time distribution. The basic idea can be applied to other classes of

TasLe 4.4. Performance of the Moment-Iteration Method
for the U/E,/1 Queue

a-Percentiles Conditional
Waiting Time

E{w,] pP{W,=0] 050 08 09 095 099

U/Ey/1  exact 0.278 0.6822  0.681 1367 1.862 2.355 3.501
approx.  0.274 0.6822  0.692 1.371 1.822 2.245 3.164
U/Es/1  exact 0.306 0.6764  0.719 1.489 2.047 2.603 3.892
approx.  0.312 0.6761  0.731 1.488 1.999 2.483 3.541
U/E,/1  exact 0.365 0.6655  0.803 1.737 2.425 3.109 4.693
approx.  0.365 0.6655  0.803 1.737 2.425 3.108 4.692
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problems. Further research has been conducted on GI/G/1 queues with finite
waiting time in De Kok [4]. In the next section, we describe an (s, S)-produc-
tion-inventory model where lead times depend on the production capacity.

5. APPLICATION OF THE MOMENT-ITERATION METHOD TO AN (s, S5)-
PRODUCTION-INVENTORY MODEL

In this section, we show that the moment-iteration method is applicable to other
problems, in addition to the GI/G/1 queue. We consider a production facility
with a warehouse. Customers arrive at the warehouse according to a Poisson
process and the demand per customer has some arbitrary distribution. The
demand of a customer is satisfied from stock on hand, otherwise it is back-
logged. The inventory is replenished according to an (s, S)-rule. As soon as an
order from the warehouse arrives at the production facility, production on
behalf of this order starts, unless the production facility is still busy producing
another order. In that case, the production of the new order starts as soon as
production of the preceding order has finished. The production time depends
on the production rate = and the order size . We assume that the production
time equals Q/=. Hence, the total production lead time equals O/« plus some
waiting time until the preceding production order has finished. The goal of the
manager of the production facility is to determine an (s, S)-rule, such that the
fraction of demand delivered directly from stock on hand equals some target
value §3.

It is important to note that the above-described model explicitly incorpo-
rates the finite production capacity of the production facility. In the literature
on (s, S)-models, one implicitly assumes that the production capacity of the
supplier is infinite. The only way to account for the finite production capac-
ity in these models is to overestimate the production lead time. The above
model shows the interaction between subsequent orders.

The analysis is based on the derivation of an equation that describes the
relation between subsequent production lead times (cf. Lindley’s integral equa-
tion for the GI/G/1 queue). Using the moment-iteration scheme, this equation
is approximately solved for the first two moments of the “effective” production
lead time. Next, we compute the (s, S)-rule that yields the target service level
for the “effective” production lead time (e.g., using the results from Tijms and
Groenevelt [14]). It is shown in De Kok [5] that the analysis yields excellent
results. It is also shown that (s,S)-rules determined under the assumption of
infinite production capacity yield poor results in terms of service levels. In Table
5.1, we show some results obtained in De Kok [3] to show the accuracy of the
moment-iteration method. We compare the performance in terms of service
level of the standard (s, S)-rule, which implicitly assumes infinite production
capacity, with the finite capacity (s, S)-rule, obtained from the application of
the moment-iteration method. For the infinite capacity (s, S)-model, we
assumed that the lead time equals (S — s + U) /=, where U denotes the under-
shoot of the order level s.
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TasLE 5.1. The Infinite Capacity (s, S)-Rule Versus
the Finite Capacity (s, S)-Rule

c2=1/3 ¢t =2/3
T B ﬁinf Bﬁn lsint' ﬂﬁn
1.25 0.95 0.81 0.94 0.80 0.95
1.5 0.95 0.90 0.95 0.90 0.96
2 0.95 0.94 0.96 0.94 0.96
1.25 0.99 0.90 0.98 0.89 0.99
1.25 0.95 0.97 0.99 0.96 0.99

2 0.99 0.99 0.99 0.98 0.99

In Table 5.1, we varied w as 1.25 and 2, 8 as 0.95 and 0.99, and the vari-
ation coefficient of demand, ¢3, as { and 2. The customers’ arrival rate equals
I and the expected demand per customer equals 1. The difference § — 5 has
been computed from the EOQ formula, assuming a fixed-order cost equal to
25 and a holding cost equal to 1. For both the infinite capacity (s, $)-rule and
the finite capacity (s, S)-rule, we have given the actual service levels obtained
from computer simulation,

Remark: The GI1/G/1 queue arises in the context of another important finite-
capacity production-inventory model. Consider a periodic review (R, S) system.
At the beginning of each review period, the economic stock is replenished up
to S. However, the maximum production capacity in a period of length R
equals Q. Hence, the maximum replenishment equals Q. The production lead
time equals L. The demand per review period is distributed according to some
arbitrary probability distribution. Then it can be seen that the economic-stock
process can be translated into a D/G/1 queue.
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