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Abstract

In this paper, a novel low rank graph regularization embedding for 3D facial expression recognition (LRGREFER) approach
is proposed, in which the core tensor is utilized to characterize the low-rank attribute among the samples combined with
the factor matrices with the graph regularization embedding. At first, a model based on a 4D tensor is constructed from
the facial expression data. By Tucker decomposing the constructed 4D tensor, a resulting core tensor and factor matrices
in different tensor modes are utilized to characterize the low-rankness among samples. Because of the loss of information
during modelling the 4D tensor, the missing data from partly observed facial expression data are recovered by embedding
the tensor completion. Finally, the proposed model is handled and solved by adopting the alternating direction method of
multipliers (ADMM). Meanwhile, the classification prediction of facial expressions are implemented by Multi-class-SVM.
Numerical experiments are conducted on BU-3DFE database. The experiment results have been verified that our proposed
approach is more competitive.
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1. Introduction
Expression recognition (FE), which is regarded as an important
non-verbal way of human emotional communication and an
important branch of automatic face analysis, has attracted more
and more attention in the field of computer vision and pattern
recognition, and plays an important role in today’s scientific
challenges.

In last decades, 2D facial expression recognition mainly
focuses on 2D modal fusion of images and videos or multi-modal
fusion of audio-visual data. Although the 2D FER methods based
on face texture analysis have made great progress, they are largely
affected by the changes of illumination and pose, which often
appear in real scenes.

With the rapid innovation of 3D data acquisition equipment,
3D data are insensitive to variation of illumination and head pose,
which are exactly what robust 3D FER requires. Hence 3D FER

has wide application prospects in related domains, such as human-
computer interface (HCI), pattern recognition, computer vision,
image retrieval, facial animation and psychological research
[1]. With the BU-3DFE database [2] releasing by the public,
researches on 3D Facial expression recognition (3D FER) have
attracted enormous attentions [3]. The prototypical expressions
include seven basic emotions, i.e. Disgust (DI),Sadness (SA),
Anger (AN), Happiness (HA), Surprise (SU), Fear (FE) and
Neutral (NE), which are widely recognized and keep consistent
in different races and cultures.

The approaches based on the model [4] and the feature are
regarded as two main streams [4, 5] categorized roughly by
existing approaches in 3D FER. Approaches of the former make
use of a generic 3D face template firstly, then a number of neutral
samples are averaged from this template as the training, and is
fitted to match a 3D face as the testing. Finally, the obtained
coefficients or parameters from shape deformation in the course of
the fitting are finally utilized for subsequent classifier prediction.
While the latter often focus on sensitive geometry features of the
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facial expression from input 3D face scans. The feature-based
approaches [3, 5] mainly contain the geometric feature-based, the
local patch-based and 2D image mapping-based methods, such as
Depth, Texture Map, Gaussian curvature , Shape index features,
Mean curvature, Normal Map (NOM), and so on.

The approaches based on the model are attractive theoretically.
Due to insufficient recognition features and changes in face
mesh topology, they are prone to fatal errors in convergence,
e.g. incurred by mouth opening. In addition, they often require
high computation. The methods based on the feature are
straightforward and often need low computations, while the
discriminative power of utilized facial features are depended on
substantially, and automatic or manual landmarks are mostly
required. In recent years, deep learning based methods [6, 7]
and the methods based on tensor decomposition [8, 9] are used
and applied into 3D facial expression, and are obtained satisfied
results.

However, among the methods above, it is not considered that
the low-rank attribute among samples can be characterized by
both the factor matrices with the graph regularization embedding
and the core tensor. Hence, we propose a low rank graph
regularization embedding approach which is applied into 2D+3D
facial expression recognition (LRGREFER) in this paper, in
which the core tensor is used to characterize the low-rank
attribute among the samples combined with the factor matrices
with the graph regularization embedding. At the first, a 4D
tensor model is constructed from the facial expression data.
After Tucker decomposing [10] the constructed 4D tensor, a
resulting core tensor and factor matrices in different tensor
modes are utilized to characterize the low-rankness among
samples. Because of the loss of information in the course of
modelling the 4D tensor, the missing data from partly observed
facial expression data are recovered by embedding the tensor
completion. Finally, the proposed model is handled and solved by
using the alternating direction method of multipliers (ADMM).
Meanwhile, the classification prediction of facial expressions are
implemented by Multi-class-SVM. Numerical experiments are
carried out on person-independent and gender-independent cases
simultaneously on BU-3DFE database that is the most popularly
employed for evaluating 3D FER approaches.

The rest of the paper is organized as follows. Some related
preliminaries on tensors are reviewed in Section 2. A novel model
based on low rank Tucker decomposition is proposed and solved
in Section 3. In Section 4, experiment results are shown. and in
Section 5,conclusions are drawn.

2. Preliminaries on Tensors
In this paper, lowercase letters (e.g., y), capital letters (e.g.,
Y ) and calligraphic letters (e.g., Y) represent vectors, matrices
and tensors, respectively. Symbols ∗, ◦ and ⊗ are represented
Hadamard product, outer, and the Kronecker , respectively.

2.1. Tucker Decomposition

Tucker decomposition is an effective method to extract the
internal structure of multidimensional data. Given an Nth-order
tensor X ∈ RI1×I2...×IN with its elements are represented by
Xi1,i2,··· ,in (1 ≤ in ≤ In), then there always exist integers R1,
. . ., Rn, . . ., RN (Rn ≤ In, n = 1, 2 · · · , N ), a core tensor
G = (Gr1···rN ) ∈ RR1×R2...×RN , and matrices U1 ∈ RI1×R1 ,

. . ., UN ∈ RIN×RN , so that X = G ×1 U1 ×2 U2 · · · ×N UN
whenUTn Un = In (n = 1, 2, · · · , N ) is satisfied. The Frobenius
norm of X is defined by ‖X‖2F=

∑
i1

∑
i2
· · ·

∑
in
X 2
i1,i2,··· ,in .

In tensor operations, X(n) ∈ RIn×(I1···In−1,In+1···IN )

represents the mode-nunfolding of anNth-order tensorX , where
the mode-n folding is the procedure from X(n) to X . The mode-
n product of X with a matrix Un is denoted by Y = X ×n Un,
where Y ∈ RI1×I2×···Rn×In+1···×IN . Meanwhile the mode-
n unfolding of Y = X ×n Un can be represented as Y(n) =
UnX(n).

2.2. Graph regularization Extension

In order to improve the prediction accuracy of multi-dimensional
tensor decomposition, the graph regularization framework [11]
for tensor factorization is utilized to incorporate sample similarity
into matrix factorization, in which the auxiliary information are
exploited and regarded as similarity matrices as follows:

min
G,{Un},X ,UTn Un=In

α

N∑
n=1

Tr(UTn LnUn)

s.t. X − G
N∏
n=1

×nUn = 0,X (Ω) = X0(Ω) (1)

where α ≥ 0, Tr(·) and Ln = Dn − Wn represent a
regulization constant, the matrix trace and the graph Laplacian
matrix, respectively. Meanwhile Wn and Dn denote the weight
matrix of the samples and the diagonal matrix, i.e., (Dn)ii =∑
j(Wn)ij .

3. The Low Rank Tensor Approach
Now, 3D face scans and 2D face images from a samples are
used, in which M kinds of features are extracted with its size
of I1× I2 and are constructed into a 4D tensorX0 with its size of
X0 ∈ RI1×I2×M×N . Because of the information missed in the
process of modeling the 4D tensor, an appropriate tensor X will
be utilized by recovering X0. Meanwhile the orthogonal Tucker
decompositionX = G

∏4
n=1×nUn. is used for finding the factor

matrices to project the 4D tensor for expression classification
prediction.

It is well known that a Tucker decomposition of a high-order
tensor has high computational cost, resulting in the ability of
solving large-scale problems limited. Motivated by the challenge,
we proposed a low rank Tucker decomposition approach for
2D+3D FER by replacing ‖X‖∗ with ‖G‖∗.

3.1. The Tensor Optimization Model

Theorem 1: Given two tensors: X ∈ RI1×I2×...×IN with n-
rank = (r1, r2, · · · , rN ), G ∈ RR1×R2×...×RN with Rn ≥ rn
(n = 1, 2, · · · , N ). If X = G

∏N
n=1×nUn and UTn Un = IRn

are satisfied , then ‖X‖∗ = ‖G‖∗ where ‖G‖∗ and ‖X‖∗ are the
trace norm of the core tensor G and the tensor X , respectively.
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According to Theorem 1, the proposed approach is given as
the general tensor optimization model in the following:

min
G,{Un},{G(n)}

4∑
n=1

αn‖G(n)‖∗ + γ

4∑
n=1

Tr(UTn LnUn)

s.t. X − G
4∏

n=1

×nUn = 0,X (Ω) = X0(Ω), UTn Un = I, (2)

where γ and αns denote a positive tradeoff parameter to
compromise the effect of the two terms and the weight of G(n),

respectively. The values of the term
4∑

n=1

Tr(UTn LnUn) are

expected to be small so that discriminatively low dimensional
subspace features can be better obtained from the constructed 4D
tensor. X is a recovered and reconstructed tensor. G(n) is the
unfolding of the n-mode of G. In order to distinguish G andG(n),
four auxiliary matricesM(n)s are introduced into (2) by replacing
G(n)s, thus (2) is rewritten as:

min
G,{Un},{Mn}

4∑
n=1

αn‖Mn‖∗ + γ

4∑
n=1

Tr(UTn LnUn)

s.t.X − G
4∏

n=1

×nUn = 0, G(n) = Mn,

X (Ω) = X0(Ω), UTn Un = I, (3)

3.2. Solution of the Optimization Problem

Obviously, problem (3) is nonlinear and non-convex including
lots of constraints and variables. To solve this problem and
ease the computation, the alternating direction method of
multipliers (ADMM) [12] is utilized. Now, the augmented
Lagrange function of (3)is defined as below by being given
(G, {Un},X , {Mn},Px, {Pn},Pt, µ):

Lµ(G, {Un}, {Mn},Px, {Pn},Pt)

=

4∑
n=1

αn‖Mn‖∗ + γ

4∑
n=1

Tr(UTn LnUn)

+ < X − G
4∏

n=1

×nUn,Px > +
µ

2
‖X − G

4∏
n=1

×nUn‖2F

+
4∑

n=1

< G(n) −Mn, Pn > +
µ

2

4∑
n=1

‖G(n) −Mn‖2F

+ < X (Ω)−X0(Ω),Pt > +
µ

2
‖X (Ω)−X0(Ω)‖2F , (4)

where µ > 0 is a scalar, Un must satisfy UTn Un = In (n =
1, 2, 3, 4,), Px, Pns and Pt are the Lagrange multipliers,.

3.2.1. Solution of G

By fixing other parameters, G can be solved by :

min
G

µ

2
‖G −Q‖2F +

µ

2

4∑
n=1

‖G(n) −Mn +
Pn
µ
‖2F . (5)

whereQ = (X + Px
µ

)
∏4
n=1×nU

T
n , a closed-form solution can

be given:

G =
µ(Q+N )

µ(N + 1)
(6)

whereN =
4∑

n=1

fold(Mn − Pn) and N = 4.

3.2.2. Solution of Un’s

By fixing Uk(k 6= n) and other parameters, Un(1 ≤ n ≤ 4) can
be updated by

min
UTn Un=I

µ

2
‖X − G

4∏
n=1

×nUn +
Px
µ
‖2F + γTr(UTn LnUn).(7)

Utilizing the equation Y = S ×n V ⇔ Y(n) = V S(n), (7) turns
to the problem as below:

max
UTn Un=I

< Un, An > . (8)

where An = µ(X + Px
µ

)(n)GT(−n) − γLnUn,and G(−n) =

G
∏4
k=1,k 6=n×kU

T
k . (8) can be solved easily by using the von

Neumann’s trace inequality [13] by

Un = BnCn, (9)

where An = BnDnCn is the SVD decomposition of An.

3.2.3. Solution ofMn’s

By fixing Mk(k 6= n) and other parameters, Mn(1 ≤ n ≤ 4)
can be updated by

min
Mn

αn‖Mn‖∗ +
µ

2
‖G(n) −Mn +

Pn
µ
‖2F . (10)

Hence, a closed-form solution is achieved in (10) as follows:

Mn = Θαn
µ

(G(n) +
Pn
µ

) (11)

where Θδ(W ) = DSδ(Σ)V T , in which the singular value
decomposition (SVD) of any matrix W denotes W = DΣV T ,
and Sδ(Σij)= max(0,Σij − δ) represents the soft-thresholding
operator.

3.2.4. Solution of X

By fixing other parameters, X is be achieved easily to implement
with the following method:{

Ω (X ) = Ω(G
∏4
n=1×nUn −

Px
µ

),

Ω (X ) = Ω(G
∏4
n=1×nUn −

Px
µ

+ X0 − Ptµ ).
(12)

The proposed algorithm can be summarized combined with the
ADMM framework in Algorithm 1.
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Algorithm 1 Solving Problem (3) by ADMM

Input: A tensor X0 ∈ RI1×I2...×I4 ; Parameters αn, γ, tmax;
Output: Factor matrices {Un}4n=1;

Step 0 Initialization: choose {U0
n}4n=1, G0,X 0, ρ, µ0, {M0

n}4n=1

and set t = 0;
Step 1 Update Gt by (6);
Step 2 Update {U tn}4n=1 by (9);
Step 3 Update X t by (12);
Step 4 Update M t

n by (11);
Step 5 Update multipliers by Ptx = Pt−1

x + µt−1(X t −
Gt

∏4
n=1×nU

t
n) , P tn = P t−1

n + µt−1(Gt(n) −M t
n) and

Ptt = Pt−1
t + µt−1(X t(Ω)−X0(Ω));

Step 6 Let µt = ρµt−1;
Step 7 t=t+1; While some stop criteria are not satisfied, go to Step

1.

4. Experiment Results
Experiments are implemented in the BU-3DFE database. BU-
3DFE database consists of 56 femals and 44 males with various
ethnic backgrounds, ranging age from 18 years to 70 years old and
including East-Asian, White, Middle-east Asian, Black, Hispanic
Latino and Indian. The expressions include a neutral expression
and six prototypic expressions (see Fig.1) with four intensity
levels ranging from 1 to 4. 90% of 100 subjects are selected
randomly regarded as the training, while the rest as the testing, and
we repeat the experiments for 10 times and treat Multi-Class-SVM
as the classifier in all experiments.

Fig. 1. Visualization of six basic expressions with face images and
facial models in BU-3DFE database.

4.1. Experimetal Details

Three parts are discussed in this subsection: the first one is the nine
features extracted, the second is the parameters in Algorithm1,
and the last one is the stopping criterion. The nine features
are extracted firstly by 2D maps, and then processed by LBP
descriptor [14] which is widely used in 2D and 3D fields, the
details can be seen in [8]. And the extracted nine features are
depth map Ig , 3-channel textured maps Irt , I

g
t and Ibt which can

be introduced in [15], 3-direction normal maps Ixn , Iyn and Izn, and
curvature maps Ic (curvature) and Imc (mean curvature). Fig.
2 shows the nine types of features of 2D maps and 2D texture
information of four 3D face scans with four intensity level in
BU-3DFE database.

Fig. 2. Illustration of happiness expressions of four 3D face scans
with nine kinds of extracted features in BU-EDFE database.
And from left to right are the depth maps, 3-channel textured
information (R, G, B), 3-direction normal maps (x, y, z), and
curvature maps (curvature and mean curvature).

The parameters in the experiments are set as below: αn(n =
1, 2, 3, 4) are set to be 0.1, 0.1, 10,0.01, respectively, and γ is set
to be 100, and ζ is set to be 1e-4 in the experiments.

In Algorithm 1, the stop criteria can be set by

‖Ω(X [t] − G[t−1]
4∏

n=1

×nU [t−1]
n )‖F /‖X0‖F < ζ,

with some sufficiently small ζ > 0, or the iteration process will
be terminated when t > tmax.

4.2. Experimental Evaluation

In this subsection, we evaluate our proposed approach in three
parts: the average confusion matrix of six expressions, the
convergence behavior of our proposed approach, and comparison
results with other state-of-the-art methods. The first part are given
in Table 1. It is found obviously that happiness and surprise
expressions can be easily recognized because of their high facial
muscle deformation, while the recognition of disgust and fear are
obtained are more difficult. Meanwhile, it is easily found that fear
can be confused with other any expressions.
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Table 1. Average Confusion Matrix of six expressions on BU-3DFE
for 10 Times.

% AN DI FE HA SA SU
AN 96.42 1.15 0.65 0.00 1.78 0.00
DI 2.71 92.13 3.53 0.42 0.00 1.21
FE 0.32 1.63 89.35 6.36 1.50 0.84
HA 0.00 0.05 1.04 98.91 0.00 0.00
SA 2.46 0.91 1.87 0.00 94.76 0.00
SU 0.00 0.49 0.21 0.42 0.00 99.30
Accuracy(%) 95.15

The convergence behavior is shown in Fig. 3 by using the log
relative error log10(RE), where RE := ‖X [k+1]−X [k]‖F /‖X‖F
with X [k] := G[k]

∏4
n=1×nU

[k]
n . From Fig. 3, it is easily

observed that our approach requires less iterations and generates
a non-increasing sequence of objective values, which shows the
advantage of our proposed approach via the low-rankness graph
regularization embedding.

Fig. 3. The convergence behavior in BU-3DFE database.

At the same time, some state-of-the-art methods are compared
with our proposed approach, the comparisons are given in Table
2. From this table, it is found the state-of-the-art methods [16–
18] that used vector features do not outperform our proposed
approach because vector features do not maintain the structral
information. Meanwhile the method [5], which constructs a 4D
tensor model to explore the intrinsic strucutral information and
corelations among multi-mode data from 2D images and 3D scans
for the first time, do not consider low-rankness atribute among 3D
scan samples, resulting in its recognition result is not better than
that of our proposed approach. Thus, our proposed approach are
more competitive from Table 2.

Table 2. The comparisons with the state-of-the-art methods.

Method Accuracy
Soyel et al. [16] 95.10
Wang et al.[17] 83.60
Zhao et al. [18] 82.30
Fu et al.[5] 85.802
Ours 95.15

5. Conclusions
In this paper, we have proposed a low rank model with
graph regularization embedding and applied into 2D+3D facial
expression recognition (LRGREFER). At first, a 4D tensor is
built by extracting nine kinds of features from 2D face images
and 3D face scans. Secondly, low rank attribute of 4D tensor
among samples is characterized by a core tensor and four factor
matrices by Tucker decomposing the 4D tensor. Thirdly, a tensor
completion framework is embedded because of the data missed
in the course of the 4D tensor modelling. Finally, the ADMM
algorithm is utilized to solve the proposed optimization model.
The numerical experiments have been verified that the proposed
approach is more competitive. In the future, more effective low
rank algorithms based on Tucker decomposition are required,
which is one topic of our future research.
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