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Extended Abstract

Developing high quality ontologies is expensive, and, like most infrastructure
components of the life sciences, ontologies have evolved in response to specific
needs and requirements of the biomedical community. At the same time, new
tools utilizing ontologies emerged to enable or improve analysis of biological
data. In my talk, I will explore how bio-ontologies have evolved in response to a
changing bioinformatics environment and how bioinformatics tools and methods
evolved in response to changing ontologies; my main aim will be to characterize
the current changes in bioinformatics through large-scale application of machine
learning, and how ontologies have to change to accommodate these changes.

The Gene Ontology (GO), the first bio-ontology that was and still is widely
used, emerged as a consequence of breakthroughs in gene and genome sequencing
and the resulting understanding of how many genes are conserved in different
organisms [2]. This novel understanding, combined with the rapid change of
knowledge in the field of molecular biology, necessitated the development of the
GO, to keep track of the changing knowledge in the field and simultaneously
provide a means to describe our knowledge of gene and protein functions. Us-
ing the GO for describing protein functions solved many challenges. A form of
deductive inference (“true path rule”) allowed capturing the most specific infor-
mation about a protein as possible while still allowing inference of more general
information, and use of a taxonomy allowed knowledge to evolve by gradually
adding more specific functions to a protein without invalidating previous asser-
tions.

Today, some of the most exciting developments (and challenges) in bio-
ontologies still occur in fields where novel experimental techniques are leading
to a radical change of our understanding of biological phenomena. For exam-
ple, recently, our understanding of cell types has changed drastically, resulting
from single cell sequencing technologies and the resulting detailed information
available about cell types and their relations; ontologies of cell types had to
change accordingly [15], and cell ontologies are now one of the most active areas
of bio-ontology development (as evidenced, for example, by the regular CELLS
workshop co-lated with the International Conference on Biomedical Ontologies).

Yet, what the early development of the GO (and similar ontologies) has
shown is that the development and evolution of ontologies in life sciences is not

1



a one-way road and only determined by changes in experimental techniques;
rather, the availability of ontologies has also led to novel computational analy-
sis methods, and ontologies will change in response to the emergence of novel
methods. Two methods are particularly noteworthy here, ontology enrichment
analysis and semantic similarity measures. Both techniques are some of the
most widely used computational analysis methods involving ontologies. An on-
tology enrichment analysis uses an ontology together with its annotations in
order to determine whether there is a function that is statistically enriched in
a set of genes or gene products [8, 24, 16]. Ontology-based semantic similarity
measures utilize the knowledge contained in ontologies (in particular within the
formal axioms) to define measures of similarities between ontology classes, sets
of classes, instances of classes, or entities annotated with (sets of) classes [9]. Se-
mantic similarity was first used to query for and retrieve “semantically” related
proteins [13], and later extended to find other entities with some association
using a “guilt by association” approach.

My key take away message from these methods is that bioinformatics has
developed a set of computational methods that crucially relied on ontologies
providing accurate results. Both enrichment analysis and semantic similarity
require that inferences in ontologies, in particular inferences about annotated
genes or gene products (the “true path rule” in GO and more elaborate versions
of this rule), are accurate (accurate in the sense that they are biologically correct
and experimentally verifiable). Early ontologies did not always produce accurate
inferences [20, 19, 21, 5], and finding these incorrect inferences has, arguably,
led to one of the most active periods for ontology development and quality
improvement, where the community applied and developed methods inspired,
among others, by philosophy [23], linguistics [3], and logics [10].

With further improvement in experimental methods, in particular the emer-
gence of high throughput sequencing methods, the demands on ontologies rose
further, both in terms of their accuracy as well as in their detail and discrimina-
tory power. Ontologies now had to cope with Big Data, and manually building
ontologies would no longer scale in many domains. In this time, ontology de-
sign patterns [14], upper ontologies [18, 22], more and elaborate ontology design
principles and community standards allowed ontologies to “scale up” both to
capturing Big Data and more detailed nuances in biological phenomena. The
new problem arose that our tools (reasoners and ontology editors such as Pro-
tege) no longer scaled to the new size and complexity of ontologies. The so-
lution was to switch to different tools like Elk [11], and apply modularization
techniques such as MIREOT [7]; while these work in solving the problem of
scalability to Big Data, they have also hidden (and lost) some information; au-
tomated reasoners such as Elk only consider a tiny subset of the language we use
to formalize ontologies, and modularization techniques can hide inconsistencies
and therefore allow inconsistencies to increase [17].

As a result, a switch took place within the bio-ontologies community and the
focus was no longer only on “ontologies” as formal artifacts capturing domain
knowledge accurately, but rather on constructing “knowledge graphs” in which
the focus is on linking information in some (vaguely) meaningful manner. The
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tendency to focus more on “knowledge graphs” instead of ontologies was by no
means universal but certainly noticeable and still ongoing today. The move was
motivated by the desire to focus on “relatedness” instead of precision, and find
ways to integrate (i.e., link) large amounts of resources, in particular in the
biomedical domain; the resources that are linked were often not ontologies but
(medical) terminologies, so that ontological precision may have been an obstacle
to successful integration. At the same time, and further motivating the focus
on knowledge graphs instead of ontologies, novel knowledge graph analytics ap-
proaches emerged, in particular machine learning methods that would operate
directly on graphs or knowledge graphs [25, 1], and graph neural networks that
can exploit the knowledge graphs for various tasks [26]. In particular, knowledge
graph embedding methods have been adopted widely within the bioinformatics
community to exploit information in knowledge graphs for predictive or analyt-
ical tasks. Several knowledge graph embedding methods have been developed
[25], but some of the most popular are based on the principle that, if the fact
r(a, b) is in the knowledge graph, then a⃗+ r⃗ ≈ b⃗ (where a⃗ etc. are the “embed-
ding” vectors of some dimension that “represent” a, r, and b in a distributed
manner) [4]. The advantage of these embedding methods is their interpretabil-
ity, simplicity, and almost universal applicability.

The role of ontologies in graph-based machine learning methods (such as
knowledge graph embeddings, or graph neural networks) is to provide a source
of nodes, and the formal axioms in the ontologies provides a source of related-
ness (edges) that make up the resulting graph [6]. Yet, many aspects that have
been considered crucial in developing ontologies are lost, specifically all benefits
arising from semantics, both logical and ontological [12]: the ability for complex
queries; ensured consistency; and deductive inference. In particular deductive
inference (which is required both for complex queries and determining consis-
tency) is crucial for exploring the knowledge ontologies contain beyond what
has been explicitly asserted, but this ability for deductive inference is largely
lost in graph-based methods.

Before ontologies (considered here as artifacts which explicitly and formally
specify a conceptualization of a domain using a logic-based language) can be-
come relevant in machine learning in bioinformatics, methods that can utilize
the semantics of ontologies need to first be developed, because very few such
methods exist in the field of AI; and it is even more of a challenge to tune
such methods to the specific peculiarities of bio-ontologies which have distinct
properties when compared to ontologies used in other domains, in particular
computer science.

Some new methods emerged over the past years that apply machine learn-
ing methods to bio-ontologies. While some of these methods are simple ex-
tensions of learning from graph-structured data or learning from text, more
recent approaches aim to explicitly address the missing formal semantics in
machine learning models. These neuro-symbolic methods can produce deduc-
tive inferences directly, either by implementing a deduction system using neural
approaches or by generating model structures using neural approaches. Es-
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tablishing this correspondence between classical semantics and neural networks
enables novel applications and demands on ontologies, but also opens novel
opportunities, both for bioinformatics and AI. In bioinformatics, these meth-
ods allow machine learning to utilize the vast and rich knowledge contained
in bio-ontologies thereby endowing the machine learning models with domain
knowledge (and the ability to explore the knowledge more deeply than would
be possible using only knowledge graphs), which can be used to provide access
to the results of over a hundred years of experiments that are now contained in
ontologies and knowledge bases. One of the most obvious areas of application
are rare diseases where only little training data will ever be available. For AI,
bio-ontologies provide a vast und largely underused resource of knowledge with
direct implications for health, the environment, and well-being.
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