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Introduction 

Instructions are central to many human skill acquisition 

processes e.g. like those used for pilot training (Dennis & 

Harry, 1998). Recent advances in computing technologies 

have expanded the scope of computer based instructional 

delivery especially where safety and cost may preclude the 

use of traditional training systems. The effectiveness of such 

CBT systems has been subjected to considerable research 

(Höffler & Leutner, 2007). An important aspect of research 

into the effectiveness of such instructional methods, which 

is relevant to the study reported here, is the benefit of 

dynamic over static components of instructional interfaces 

used in the acquisition of procedural motor skills as typical 

in aviation engineering training simulators.  

Akinlofa, Holt, and Elyan, (under revision), propose a 

model (Figure. 1) to explain the observed benefit of 

dynamic visualisations compared with statics for learning 

novel procedural motor skills by aviation engineering 

trainees. Following on, a representative sub-step from the 

study is modelled using the ACT-R 6.0 architecture to 

examine the post-learning task performances of the different 

learner groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cognitive Modelling 

It is assumed that different declarative knowledge 

structures, dependent on the instructional formats, are 

created for the sequence of component spatial states in a 

rotation movement. Static diagrammatic instructions can 

only afford the initial and final states of the rotated 

component while dynamic, video instructions will provide 

knowledge of the start and end states as well as all transitory 

states in between. Subsequent motor performance is driven 

by a sequential retrieval of the states, interspersed with a 

random strategy if retrieval fails. Figure 2 shows that the 

representative model for the static condition is constrained 

to a random strategy while the dynamic model utilises a 

mixed strategy. 

 

 

 

 

 

 

 

 

 

 

 

Motor performance for the models is implemented as a 

chained sequence of unit movement vectors simulating the 

transition of a selected reference point of the rotated 

component in 2-D space. The number of unit movement 

vectors in the movement sequence as well as their individual 

directions is stochastically dependent on the current position 

in the trajectory and the selected productions firing per cycle 

of cognitive processing.  

The default mechanism of the motor module of ACT-R 

6.0 was not suitable for our model design as it utilises Fitts’s 

law to calculate movement execution time towards a 

specified target. Additionally, it calculates incremental 

positions along a movement path for specified start and end 

positions only. Our model’s movement strategy however 

specifies only a start position, while the end position is 

stochastically determined by a fixed magnitude, variable 

direction, unit movement vector. Furthermore, as movement 

is implemented by a sequence of unit vectors, the transitory 

point from vector to vector must be modelled accurately to 

ensure uniform and continuous acceleration throughout the 

trajectory. Therefore, the default motor module is redefined 

through an adaptation of the dynamic cost optimisation 

approach for the mathematical modelling of human hand 

movements (Flash & Hogan, 1985). By using the 

minimisation of the time integral of the square of jerk on the 

curved component rotation trajectory, point-to-point 

movement is represented by the insertion of intermediate 

points (at times t1, t2,...,tn) between the start and end 

positions. The entire trajectory is then modelled through a 

shifting boundary condition method across the range of via 

Figure 1: Information-processing model for learning a 

procedural motor task 

Figure 2: Schematic outline of model’s productions 
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points bounded by t=0 and t=tf according to the following 

equations:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This affords accurate and continuous implementation of 

hand acceleration through the transition points in the 

movement vector sequence. The partial matching 

mechanism of the retrieval module is further utilised to 

simulate the inaccuracy of recalling component intermediate 

positions along the trajectory of rotation. As the model 

movement is implemented in 2-D Cartesian space, a sim-

hook function is used to define matching inaccuracies on the 

x-coordinates. Additionally, an extension of the activation 

equation is used to define matching on the y-coordinate and 

a summation of the matching functions outputs is computed 

as the overall match score of a specific location in the 

movement space. This design, as depicted in Figure 3, is 

very flexible and could be a starting point for extending to 

3-D spatial movement. 

 

 

 

 

 

 

 

 

 

 

 

 

Results and Further Work 

Comparison with human data shows that the model’s 

quantitative predictions were accurate on latencies (R
2
=.98, 

RMSE=.52) and trajectory tracking. This result supports an 

advantage of dynamism in the instructional interface for 

procedural skill acquisition. It further supports our 

hypothesis on the hybrid role of cognition in procedural 

motor performance and validates the assumed strategies of 

task execution of initially attempting to recall a mental task 

image and resorting to a controlled stochastic method in the 

event of a retrieval failure. However, there are other factors, 

such as the cognitive abilities of the learners, which were 

controlled in the larger empirical study in contrast with the 

implementation of the computational models. Our result is 

further limited because the models reflect a single step of a 

procedural movement and implements the movement in 2-D 

space only. Further collaborative work will extend the 

model to cover the entire movement sequence of the 

experimental task reported in Watson, Butterfield, Curran, 

and Craig (2010). Our future work will also explore the 

execution of the task with 3-D spatial movement using the 

approach of extending the activation equation for spatial 

matching as outlined above. 
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Figure 3: Spatial location partial matching 

design. 
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where                    ;    is a via-point;                  are constants. 
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