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Graph Neural Networks

Message Passing

mf)_i_l — AGGRuEN (fmsg(hv7 hua euv|0 ))
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ht+1 — ftpd(h mfjlgu)

Scarselli et al. (2008), Li et al. (2015), Kipf et al. (2016), Defferand et al. (2016), Xu et al (2017), Gilmer et. al (2017)
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Representation Capacity of GNNs

GNN s learn functions on graphs

gskip(]-]-7 2)

GNNs cannot distinguish many non-isomorphic
graphs

Why?

Murphy et. al (2019), Chen et. al (2020) 3



1-WL Color Refinement

GNN = 1-dim 1-WL Color Refinement
() = HASH(wt (v), g7t (u),u € N(v)}})

Keyulu et al. (2018), Morris et al. (2018)
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1-WL Color Refinement

GNN = 1-dim 1-WL Color Refinement
At () = HASH(wt (v), g7t (u),u € N(v)})

B BEL) S

Equitable partition can not be further refined

Many graphs map to same coloring

Keifer et al. (2020) 5



Individualization and Refinement

Count Green neighbours Count Yellow neighbours

) o ) 2 ®
U U ), O
/Count Red neighbours Equitable Coloring

Individualize i I></T P i I I e

Refine

Mckay & Piperno (2014), Fig adapted from https://pallini.di.uniroma.it/ 6
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Individualization and Refinement

DESySSEEBE
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GNN/1-WL cannot Graphs are distinguishable
distinguish two graphs after one step of IR




Search Tree of Colorings

Preserve Permutation Invariance

|
Search Tree of Colorings
@
Esee

Search Tree unique to Isomorphism class

TP
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PF-GNN

Universal representation on graphs @

19 = (2 vig.7h) -

~
Probabilistic representation e @
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PF-GNN

Observation: IR resembles State Transition

D= d D)

State Next state

Particle Filters provide principled method of
approximating the belief on embeddings.

bi(G) ~ <(g7Hf>7wf>kzle
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1-WL coloring

—
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PF-GNN

Initial Belief

Start with K GNN equitable refinements
bl (g) — <<g> H{C)a wlf>k::1:K

Vk,w¥ =1/K
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PF-GNN

@ <I:I>D Transition to next state of colorings
<I:I>D. <I:f>ﬂp e Sample a node and individualize

] I v~ P(V|H;0)
@ I~ @ M =117; M}, = MLPyau(hif); Hf = Hf © M
1-WL coloring Sample

\ / and Individualize
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1-WL coloring
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PF-GNN

J [
B <I:I>D o @ Transition to next state of colorings

H D e Sample a node and individualize
[ @ - @ e Refine the colorings

v~ P(V|H}:6)

[ @ — @ Mtk = 11T§ Mtku,: = MLPtTanS(hvf)Q Hf = HthMtk?

H},, = GNN,(H})
Sample Refinement

—

and Individualize
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PF-GNN

)

| | [ ;
@ - <I:I>D o @ - <I:I>D Weights update with

| ] I discriminative observation
@ | @ o @ - <I:fﬁ function

| | [
ST Ty et
1-WL coloring Sample Refinement weights update k Jobs (H 13 Wi

\ / and Individualize
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PF-GNN

)
J | [ : [

LDl e
Resamplmg

S @R <tf> -<tf>- e
Qt(k) = awf-l—(tl%—a)l/K

DT <I:I>H- -<EI>D-

1-WL coloring Sample Refinement weights update Resample

\ / and Individualize
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PF-GNN

ST T s I o

<CI>H-~<ET>HH-<CE>DH<CE>EH
SO IT e T o o

1-WL coloring Sample Refinement weights update
and Individualize

Resample

—
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Updated belief

be1(G) =~ ((G, Hf+1>awf+1>k=1:K
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PF-GNN

Minimize expected loss on sampled paths
Loss(G,y) ZP (719, 7Tt 1:T» )L@(Wt 1.7)5 Y33 0)

Train with policy gradient loss

VLoss(G,y) = > VL(H(rE 1), 4:0)+>_ (Vlog P(Z|G, wy.7: 0)) L(H(mEr.r), 3 6)
L

A
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Experiments
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Graph Classification on Circulant Skip Link Graphs

GCN GAT GIN® RING-GNN RP-GIN 3-WL GNN PF-GNN

Gskip (11, 2)

MEAN 10 10 10 10 37.6 97.8 100.0
MEDIAN 10 10 10 10 43.3 - 100.0
MAX 10 10 10 10 53.3 100.0 100.0
MIN 10 10 10 10 10 30 100.0
STD 0 0 0 0 12.9 10.9 0
Graph [somorphism detection
DATASET MODEL CHEBNET PPGN (3-WL) GNNML3 GCN GAT GIN GNNMLI1
SR25 BACKBONE 0.0+0.0 0.0+0.0 0.0+40.0 0.040.0 0.0+0.0 0.040.0 0.0+0.0
+PF-GNN - - - 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0
EXP BACKBONE 0.0+0.0 0.0+0.0 100.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
+PF-GNN - - - 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0
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Experiments

Graph prediction on Real-world datasets

Predicting molecular properties

QM9 OGB-molhiv
Method MAE Method ROC-AUC
GINE-€ 0.081 +0.003 GIN 75.58+1.40
MPNN 0.034 +o0.001 GCN 76.06-+0.97
1-2-GNN 0.068 =+0.001 DeeperGCN 78.58+1.17
1-3-GNN 0.088 +0.007 PNA 79.05+1.32
1-2-3-GNN  0.062 =+0.001 DGN 79.70+0.97
3-IGN 0.046 +0.001 GSN 77.9941.00
0-2-LGNN  0.029 =+0.001 Directional GSN  80.39+0.90
Dimenet 0.019 +o0.001 Graphormer 80.51+0.50
PF-GNN  0.017 =+o.001 PF-GNN 80.15+0.68

Molecular graphs

O
J\N

N ~ N
7/ )I\ Molecular
— / >
N N property
OH
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Takeaway

We use Particle filters to approximate the search-tree of IR based solvers.

With PF-GNN, we get
e Principled approximation of
universal representations on graphs
e No exponential runtime

e No preprocessing required
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Thank you!
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