
Interpolation-based Q-learning

Csaba Szepesvári szcsaba@sztaki.hu

Computer and Automation Research Institute of the Hungarian Academy of Sciences,
1111 Budapest XI, Kende u. 13-17, Hungary.

William D. Smart wds@cse.wustl.edu

Department of Computer Science and Engineering,
Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States.

Abstract

We consider a variant of Q-learning in con-
tinuous state spaces under the total expected
discounted cost criterion combined with lo-
cal function approximation methods. Pro-
vided that the function approximator satis-
fies certain interpolation properties, the re-
sulting algorithm is shown to converge with
probability one. The limit function is shown
to satisfy a fixed point equation of the Bell-
man type, where the fixed point operator de-
pends on the stationary distribution of the
exploration policy and the function approx-
imation method. The basic algorithm is ex-
tended in several ways. In particular, a vari-
ant of the algorithm is obtained that is shown
to converge in probability to the optimal Q
function. Preliminary computer simulations
are presented that confirm the validity of the
approach.

1. Introduction

Since the early days of dynamic programming re-
searchers interested in solving problems with large or
even infinite state spaces combined function approx-
imators and value backups. Reinforcement learning
(RL) is sometimes defined as large-scale approximate
dynamic programming combined with learning tech-
niques. Indeed, RL applied to continuous state spaces
has been a long standing challenging problem.

In this paper we propose and study methods that al-
low Q-learning to work in continuous state spaces, un-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

der the total expected discounted cost criterion. In its
very basic form our method updates the parameters of
some function approximator, where the update equa-
tions take a slightly modified form of the Q-learning
equations. In order to be more specific, let (Xt, At, Rt)
be a controlled Markov process, Xt being the state vis-
ited, At being the action chosen (At ∈ A) and Rt ∈ R
being the reward observed at time step t. Further,
let 0 < γ < 1 be a discount factor. We assume that
Xt ∈ X , where the state space X is a compact sub-
set of a Euclidean space Rd (d ≥ 1). We also assume
that the action space A is finite. Denoting by θt the
parameters of the function approximator at time step
t (θt ∈ Rn, where n is the number of parameters), our
basic algorithm takes the following form:

∆θti = αtisti

(
Rt + γ max

b
Fθt(Xt+1, b)− θti

)
. (1)

Here αti is the learning rate associated with compo-
nent i at time t, the factor sti depends on Xt and i
and determines how much influance sample Xt has on
updating component i, F denotes a function approxi-
mator with Fθ : X × A→ R. At the price of a slight
abuse of notation we also write F (θ) instead of Fθ

when we want to emphasize the dependency of F on
the parameter vector θ. In this sense, F also represents
a mapping that maps the parameter space Rn to real-
valued functions defined over X ×A. Throughout this
article we assume that F is a non-expansion that satis-
fies a system of interpolation equations with respect to
some fixed set of basis points S of cardinality n. Specif-
ically, we assume that if S = {(x1, a1), . . . , (xn, an)}
then Fθ(xi, ai) = θi holds, for all i = 1, . . . , n. This
holds e.g. if S = {x1, . . . , xp} × A and if Fθ(·, a) is
a barycentric interpolator defined over a triangulation
induced by the set of basis points {x1, . . . , xp} for each
a ∈ A. We shall assume that the values sti are defined

by the equations

sti = s(xi, ai, Xt), i = 1, . . . , n, (2)

where s : X × A × X → R is a bounded measurable
spatial smoothing function. Typically s(x, a, z) will be
smooth and decays to zero as ‖x − z‖ tends to infin-
ity. One possible choice is to use a Gaussian function.
Note that Equation (1) allows the update of multiple
components of θt unlike in standard Q-learning.

Our main results will be the following: Initially, as-
sume that a stochastic stationary policy is fixed that
is used to sample the states (Xt) and actions (At).
Further, assume that this policy is such that (Xt) is a
sufficiently regular Markov process. Then θt converges
with probability one to some parameter vector θ∗ such
that Fθ∗ satisfies a fixed point equation of the Bellman
type. This result is then extended to methods that add
new basis points in an adaptive manner. Finally, we
briefly outline a multi-stage method that is claimed
to yield estimates that converge to the optimal value
function. The same multi-stage method allows one to
relax the condition of having to use a fixed sampling
policy during the course of learning. We also present
some experimental results where we provide a prelim-
inary comparision of a particular instantiation of the
proposed algorithm and some related algorithms from
the literature.

2. Definitions

We assume that the reader is familiar with the con-
cepts of reinforcement learning. Here we introduce
only the necessary notation and some well known facts.
The sup-norm shall be denoted by ‖ · ‖. The space
of real-valued bounded functions over a set X will
be denoted by B(X). Except where otherwise noted
multiplication, absolute value, equality and inequality
of functions are defined componentwise. An operator
T : X→Y , where X and Y are metric spaces is called
a γ-contraction if ‖Tf − Tg‖ ≤ γ‖f − g‖ holds for
all f, g ∈ X. 1-contracting operators are called non-
expansive. The equation Tf = f is called a fixed point
equation. Any f satisfying Tf = f is called the fixed
point of T . When T : X →X is a γ-contraction with
0 < γ < 1 and X is a complete metric space then T
has a unique fixed point.

By an MDP we mean a 5-tuple M = (X ,A, P, r, γ),
where X is a set of states, A is a set of actions, P is a
transition probability law, r is a reward function and
γ is a discount factor.

3. Interpolative Non-expansions

A function approximator allows one to use finite di-
mensional spaces to represent functions with contin-
uous domains. In this sense a function approximator
maps the parameter space Rn to the space of functions
defined over some domain X. Note that at this level
of generality we are not interested in how a given pa-
rameter θ ∈ Rn is obtained, but we are only interested
in the properties of the mapping that assigns functions
to the parameters. The idea of using function approx-
imators to solve fixed point equations, first proposed
in the RL literature by Gordon (1995) is as follows:
Assume that we are interested in the fixed point of T
that maps the space of bounded functions into itself.
Let P be a mapping that maps functions from B(X)
into Rn. Conversely, let F map points of Rn into func-
tions of B(X). For obvious reasons, we shall call such
mappings “function approximators”. Then define the
algorithm

θt+1 = PTFθt, θ0 ∈ Rn, t = 0, 1, 2, (3)

Note that if for any V ∈ B(X), PTV can be computed
with a finite amount of work then this algorithm can
be implemented using finite resources. Now consider
the iteration

Vt+1 = TFPVt (4)

in the space B(X) and define θt = PVt. Then we see
that θt satisfies (3) and iteration (3) can be thought
of as a finite dimensional approximation of value it-
eration. It is not too hard to show that if T is a
contraction and FP is a non-expansion then θt con-
verges to some limit value θ∗ such that Fθt converges
to Fθ∗ = V ∗, where V ∗ is the (unique) fixed point of
the composite operator FP T (Gordon, 1995).

In order to extend the above idea to the learning sce-
nario in a rigorous manner we will need some more as-
sumptions on F . In particular, the notion of interpola-
tive function approximators will be central to our anal-
ysis. In order to introduce this concept, we first need
to be more specific about the operator P. For this, fix
a finite set of basis points S = {x1, . . . , xn} ⊂ X and
define P : B(X)→ Rn by

(PV)i = V (xi), i = 1, 2, . . . , n. (5)

Then P is called the composite point evaluation oper-
ator w.r.t. S. Using this notion we can now define the
notion of interpolative function approximators.
Definition 3.1. Let F : Rn → B(X) be a mapping
that maps parameters to functions. Then F is called
interpolative w.r.t. the set of basis points S if it holds
that for all functions V ∈ B(X) PFPV = PV , or

PFP = P. (6)

That is, F is interpolative w.r.t. to the set of basis
points S when for all parameters θ the function F (θ)
takes on the value θi when evaluated at the point xi,
i = 1, . . . , n:

Fθ(xi) = θi, i = 1, 2, . . . , n.

Actually, this condition is equivalent to the above def-
inition. It should be obvious by now why F is called
interpolative.

Since we need to go in both directions between the
spaces Rn and B(X) in an alternating manner it
will be useful to define the composite mapping G :
B(X) → B(X), G = FP. Note that using G Equa-
tion (6) takes the form PG = P. Further G satis-
fies property (I): GV = GV ′ whenever V, V ′ are such
that PV = PV ′. Equivalently, one may start with
a mapping G : B(X) → B(X) that satisfies PG = P
and property (I) and define F : Rn →B(X) such that
FPV = GV . Then F is well-defined by (I) and since
P is surjective. In such a case G is also called an in-
terpolative mapping. The following proposition sum-
marizes some of the basic properties of interpolative
non-expansions:

Proposition 3.2 (Basic properties of interpola-
tive non-expansion mapping). Let P be the com-
posite point evaluation operator over B(X) w.r.t.
some basis point set S. Let G : B(X) → B(X) and
F : Rn →B(X) be mappings such that the equations

FP = G, (7)
PF = idRn , (8)

are satisfied, where idRn is the identity operator over
Rn. Then (i) G is a non-expansion if and only if F
is a non-expansion. Further, if F is a non-expansion
then (ii):

‖PGU − PGV ‖ = ‖PU − PV ‖, (9)
‖PU −PV ‖ ≤ ‖U − V ‖, (10)
‖GU − GV ‖ = ‖PGU − PGV ‖. (11)

Proof. Assume that G is a non-expansion. Now, let
u, v ∈ Rn be arbitrary. Choose U, V ∈ B(X) such
that PU = u and PV = v and ‖U − V ‖ = ‖u − v‖.
Then ‖Fu− Fv‖ = ‖FPU − FPV ‖ = ‖GU − GV ‖ ≤
‖U − V ‖ = ‖u − v‖. This proves that F is a non-
expansion. Now, assume that F is a non-expansion.
Let U, V ∈ B(X) be arbitrary. Then ‖GU − GV ‖ ≤
‖PU−PV ‖ ≤ ‖U−V ‖. This finishes the proof of part
(i).

Now, assume that F is a non-expansion. Equations (9)
and (10) are trivial. Equation (11) follows since ‖GU−

GV ‖ ≤ ‖PU −PV ‖ (since F is a non-exponasion) and
‖PU −PV ‖ is equal to ‖PGU −PGV ‖ by (9). Hence
‖GU − GV ‖ ≤ ‖PGU − PGV ‖ ≤ ‖GU − GV ‖, where
the last inequality follows by (10).

4. Main Results

We start with an extension of a result due to
Szepesvári and Littman (1999). The extension con-
cerns the convergence of a sequence of random func-
tions Vt that satisfy the iteration

Vt+1 = GTt(Vt, Vt), V0 ∈ B(X), t = 0, 1, 2, (12)

Here Tt is a sequence of random operators mapping
B(X) × B(X) into B(X), and G : B(X) → B(X) is
assumed to be a non-expansive interpolative mapping.
Intuitively, (12) can be thought of as a randomized ver-
sion of approximate value function iteration (4) (i.e.
the operators Tt are randomized versions of T). Al-
though at a first glance, it looks odd that Tt is a two
argument mapping and that in iteration (12) both
arguments are the same, this special two argument
form allows one to reduce the convergence properties
of asynchronous algorithms to synchronous once, as we
shall see it soon.

Given the decomposition G = FP, where P is the com-
posite point evaluation mapping, one readily derives
the parameter space recursion

θt+1 = PTt(Fθt, Fθt), (13)

from Equation (12), where Vt = Fθt, t = 1, 2, . . .
and θt = PVt, t = 0, 1, 2, This can be proven
e.g. by defining θt = PVt. Then by the interpola-
tive property of F , we have that θt+1 = PVt+1 =
PFPTt(Vt, Vt) = PTt(Vt, Vt). Further, Vt+1 =
GTt(Vt, Vt) = FPTt(Vt, Vt) = Fθt+1. Since this holds
for all t = 0, 1, 2, . . ., we also have that Vt = Fθt holds
for t = 1, 2, Putting the pieces together we arrive
at (13). Note that (13) can be a practical algorithm
(that can be carried out with finite resources), which
is not that obvious and indeed does not hold in general
for (12).

We will be primarily concerned with the convergence
of Vt (equivalently, with the convergence of θt) and the
quality of approximation of the optimal value function
by the limit value. Note that if the limit exists then
by the continuity of P and since θt = PVt, θt will also
converge to some limiting value.

Here is our first result:

Theorem 4.1. Let T : B(X) → B(X) be a contrac-
tion with contraction coefficient 0 < γ < 1 and let

G be a non-expansive interpolative mapping w.r.t. to
the composite point evaluation mapping P. Let V̂ ∗ be
the fixed point of GT . Then, iteration (12) converges
to V̂ ∗ independently of V0 provided that the following
conditions hold: (i) The sequence Ut+1 = GTt(Ut, V̂

∗)
converges to V̂ ∗ with probability one (w.p.1), indepen-
dently of U0. (ii) There exists a sequence of random
function Gt, Ft ∈ B(X) that satisfy 0 ≤ PFt,PGt ≤ 1,
PFt ≤ γ(1 − PGt), and P (limn→∞ ‖Πn

t=t0PGt‖ =
0) = 1, where t0 ≥ 0 is an arbitrary natural number,
and where Tt, Ft, Gt satisfy the following inequalities
componentwise:

|Tt(U1, V)− Tt(U2, V)| ≤ Gt|U1 − U2|, (14)
|Tt(U, V1)− Tt(U, V2)| ≤ Ft (‖V1 − V2‖+ λt) .(15)

Here λt ≥ 0 is a random process that converges to zero
w.p.1 and U,U1, U2, V, V1, V2 ∈ B(X) are arbitrary.

Proof. The proof follows the steps of the main result
of (Szepesvári & Littman, 1999): we compare Ut+1 =
GTt(Ut, V̂

∗) with Vt+1 = GTt(Vt, Vt). Let δt = |Vt−Ut|
denote the error process. First, note that by (11),

‖δt+1‖ = ‖GTt(Vt, Vt)− GTt(Ut, V̂
∗)‖

= ‖PGTt(Vt, Vt)− PGTt(Ut, V̂
∗)‖

= ‖PVt+1 −PUt+1‖ = ‖Pδt+1‖. (16)

This equality plays a key role in proving the conver-
gence of Vt as it shows that it is sufficient to prove
that Pδt converges to zero w.p.1. This way, the prob-
lem is reduced to a finite dimensional problem. Now,
by (8) PVt+1 = PFPTt(Vt, Vt) = PTt(Vt, Vt). Simi-
larly, PUt+1 = PTt(Ut, V̂

∗). Therefore

Pδt+1 = |PTt(Vt, Vt)− PTt(Ut, V̂
∗)|. (17)

Proceeding formally, using (14) and (15) we get

Pδt+1 ≤ |PTt(Vt, V̂
∗)− PTt(Ut, V̂

∗)|+
|PTt(Vt, Vt)−PTt(Vt, V̂

∗)|
≤ P(Gt|Vt − Ut|) +

P(Ft(‖Vt − Ut‖+ ‖Ut − V̂ ∗‖+ λt))
= (PGt) (P|Vt − Ut|) +

(PFt) (‖δt‖+ ‖Ut − V̂ ∗‖+ λt).

Now, by (16), ‖δt‖ = ‖Pδt‖ and therefore

Pδt+1 ≤ (PGt) (Pδt)+(PFt) (‖Pδt‖+‖Ut−V̂ ∗‖+λt).

Notice that we have reduced the infinite dimensional
error recursion to a finite dimensional one. Now, if
PGt, PFt satisfy 0 ≤ PFt,PGt ≤ 1, PFt ≤ γ(1 −
PGt), and limn→∞ ‖Πn

t=t0PGt‖ = 0 w.p.1, for all t0 >

0 and since ‖Ut − V̂ ∗‖ converges to zero, by Lemma 4
of (Szepesvári & Littman, 1999) Pδt converges to zero
w.p.1. Hence, by (16) we also have ‖δt‖ → 0 w.p.1.
Since Ut is known to converge to V̂ ∗, it follows that
Vt → V̂ ∗ w.p.1., as t→∞ holds, as well.

We note in passing that although in this paper we are
only concerned with the convergence of Q-learning, the
above theorem is rather general and can be used to de-
duce the convergence of other reinforcement learning
algorithms in continuous spaces when they are com-
bined with interpolative function approximators.

Similarly to the above analysis, the convergence of Ut

can be studied by looking at PUt. Namely, if PUt

converges to θ̂∗ then by the continuity of F , Ut must
also converge w.p.1. Further, if V̂ ∗ is the fixed point of
the operator GT then ‖Ut+1 − V̂ ∗‖ = ‖GTt(Ut, V̂

∗) −
GV̂ ∗‖ = ‖PUt+1 − PV̂ ∗‖ by (11). This shows that if
PUt converges to PV̂ ∗ then Ut converges to V̂ ∗ (and
vice versa). This observation will be exploited in our
next result where we study the convergence of the basic
algorithm (1).

For the proof of our main result, we will need the fol-
lowing assumptions. Let S = {(x1, a1), . . . , (xn, an)}
be the basis point set.

Assumption A1 (X ,A, P, r, γ) is a discounted MDP,
whereA is finite, X is a compact subset of a Polish
space, and (in order to play it safe) we assume
that r is a continuous function of its arguments.

Assumption A2 At ∼ π(a = ·|Xt), where π
is a fixed stochastic stationary policy satis-
fying π(a|x) > 0 over X × A; Xt+1 ∼
dP (·|Xt, At), X0 ∼ π0 for some probability mea-
sure π0; (Xt) is a positive Harris, aperiodic
chain (Meyn et al., 1996),12 Rt is a stochastic
process with uniformly bounded variance given
Ht = (Xt, At, Rt−1, Xt−1, At−1, . . . , R0, X0, A0)
and E[Rt|Ht] = r(Xt, At).

Assumption A3 For all t = 0, 1, 2, . . . and i =
1, 2, . . . , n, sti = s(xi, ai, Xt), where s ≥ 0
is a bounded measurable function, such that∫

s(xi, ai, z)dµX(z) > 0 where µX is the unique
invariant measure underlying the Markov chain
(Xt).3

1This property is the analogue of positive recurrence
defined for finite state space Markov chains.

2Note that we do not assume that the chain is station-
ary.

3Note that µX is the analogue of the stationary distri-
bution for finite Markov chains. The existense and unique-
ness of µX follow since (Xt) is positive Harris (Meyn et al.,

Assumption A4 For all t = 0, 1, 2, . . . and i =
1, 2, . . . , n, αti = χ(s(xi, ai, Xt) > ε)/nt(xi, ai),
where nt(xi, ai) = 1 +

∑t
s=0 χ(s(xi, ai, Xs) > ε).

Here χ(L) = 1 iff the expression L holds true
and χ(L) = 0 otherwise. The constant ε > 0
is selected such that µX(Ai) > 0 holds for all
i = 1, 2, . . . , n, where Ai = { z | s(xi, ai, z) > ε }.

Note that Assumption A4 is the analogue of the con-
dition widely used for finite models that every state is
visited infinitely often. Let sε(x, a, y) = χ(s(x, a, y) >
ε)s(x, a, y) denote the “ε-cut” of s. The following the-
orem holds true:

Theorem 4.2. Consider the sequence θt, gener-
ated using (1) and assume that Assumptions A1–A4
hold. Further, assume that F is an interpolative non-
expansion w.r.t. the set of basis points S and let
G = FP. Then θt converges to θ∗ w.p.1 such that
Q̂∗ = Fθ∗ is the fixed point of the operator GH, where
H : B(X ×A)→B(X ×A) is given by

H(Q)(z, a) =
∫ ∫

ŝ(z, a, x){r(x, a)+

γ max
b

Q(y, b)}dP (y|x, a)dµX(x).
(18)

Here ŝ(z, a, x) = sε(z, a, x)/(
∫

sε(z, a, x)dµX(x)).

Proof. Let us define the process Qt+1 = GTt(Qt, Qt),
where

[Tt(Q,Q′)](z, a) = (1− αt(z, a))s(z, a, Xt)Q(z, a)

+ (1− αt(z, a))s(z, a,Xt)
{

Rt + γ max
b

Q′(Xt+1, b)
}

.

(19)

Note that here αt is defined over the whole space
X × A. However, by the special form of the itera-
tion defining Qt, one only needs to define the values of
αt(xi, ai). This follows from the identity

(PTt(Q,Q′))i = (1− αti)stiQ(xi, ai)

+ (1− αti)sti

{
Rt + γ max

b
Q′(Xt+1, b)

}
(20)

and since by our previous observations θt = PQt sat-
isfies the recursion

θt+1 = PTt(Fθt, Fθt). (21)

In particular, Qt = Fθt holds as well and when Q0 is
any function satisfying PQ0 = θ0 then Equations (21)
and (1) yield the same process θt.

1996).

Now, our goal is to show that Theorem 4.1 can be
applied to prove the convergence of the process Qt

(and hence that of θt).

First, let us consider the convergence of the process
Q̃t+1 = GTt(Q̃t, Q), where Q ∈ B(X × A) is such
that Q = Fθ0 for some θ0 ∈ Rn. Consider the
corresponding parameter space recursion PQ̃t+1 =
PTt(FPQ̃t, Fθ0). This recursion takes a form simi-
lar to multi-state Q-learning whose convergence was
proven in Theorem 4 of (Szepesvári & Littman, 1999).
The only difference is that here sti is defined with
sti = s(xi, ai, Xt), where now Xt is the element of the
not necessarily finite set X . Also, in Theorem 4 it was
assumed that Xt is stationary. Nevertheless, the same
proof applies with some small changes once we show
that the conditions

∑∞
t=1 αti = ∞ and

∑∞
t=1 α2

ti < ∞
hold w.p.1. The rest of the assumptions are readily
satisfied. Consequently we will have that PQ̃t con-
verges to PHFθ0 = PHQ, where H is defined by (18)
(note that PHF is an operator over a finite dimen-
sional vector space). Hence Q̃t converges to GHQ
w.p.1.

The conditions on the learning rates αti are satis-
fied since (Xt) is positive Harris and therefore for any
fixed i, nt(xi, ai)/(t + 1)→ µX(Ai) > 0.4 The exten-
sion of Theorem 4 of (Szepesvári & Littman, 1999)
to non-stationary processes can be obtained thanks to
E[f(Xt)|Ht]→

∫
f(x)dµX(x) as t→∞, where f is any

function satisfying f ∈ L1(µ). This convergence holds
since (Xt) is positive Harris and aperiodic (cf. Theo-
rem 13.3.3 of (Meyn et al., 1996)). This together with
some trivial extensions of Theorem 7 and Lemma 7 of
(Szepesvári & Littman, 1999) yield the convergence of
PQ̃t to PHFθ0.5

So far we have seen that for Q = Fθ0 we have that
Q̃t → GHQ. Now let θ∗ be the fixed point of PHF .
Then Fθ∗ is the fixed point of GH. Hence, if one takes
θ0 then by our previous result we get that the first
condition of Theorem 4.1 is satisfied. The second con-
dition can be checked directly using the definition of
Tt. This shows that Qt converges to the fixed point
of GH, and hence also that θt converges to some pa-
rameter vector θ∗ such that Fθ∗ is the fixed point of
GH.

Note that by taking |A| = 1, Theorem 4.2 yields the

4This follows since according to Theorem 17.1.7 of
(Meyn et al., 1996), any positive Harris recurrent chain
satisfies the law of large numbers.

5Due to the lack of space here and in what follows we
restrict ourselves to communicating the main ideas and
leaving technical details to the reader and a forthcoming
longer version of this paper.

convergence of TD(0) for any fixed positive stochastic
stationary policy π.

5. Extensions

In this section we consider several extensions of the
basic algorithm. The first extension concerns adaptive
basis point construction methods.

5.1. Adaptive Basis Points

Often the set of basis points is determined by means
of an adaptive process. The underlying assumption is
that the function approximator is more accurate where
there are more basis points. This is the case when
e.g. barycentric (linear) interpolation is used, or more
generally for spline- or kernel-based methods. Hence,
the goal of the algorithm that determines the location
of the basis points is to put more basis points into re-
gions where a more accurate representation is required
(e.g. (Munos & Moore, 1999)). In the current paper,
we are not concerned with the details of such a con-
struction, but are interested in the convergence of the
resulting algorithm. The only assumption we make
on the construction process is that it should depend
only on the past observations and that the set of basis
points is changed by the process only a finite number of
times. Further, we assume that the last time when the
set of basis points is updated is bounded with probabil-
ity one. We call this assumption (FT). The notion of
function approximators need to be extended to cover
the case of a variable number of basis points. This is
done by assuming that we have a sequence of function
approximators F (n) such that F (n) : Rn×Zn→B(Z),
where we introduced Z = X ×A. Further, we assume
that the following error bounds hold:

‖F (n)(PQ,S)−Q‖ ≤ C dens(S), (22)

where Q ∈ B(Z) is now assumed to be a continuous
function living in an appropriate smoothness space L,
such as a Lipschitz space, and where the constant C >
0 is independent of S and Q. We shall also assume
that the image space of F (n) is contained in L. Here
dens(S) refers to the density of S. This is defined as
maxz∈Z dist(z, S), where dist(z, S) = mins∈S d(z, s),
and where d is a distance defined over Z. Let nt denote
the number of basis points at time t. The following
result holds:
Proposition 5.1. Assume that the basic algorithm is
run parallel to a process that updates the set of basis
points based on past observations such that in all steps
the maximum number of points added is bounded by
some constant. Let St be the set of basis points at time
t. Assume that assumption (FT) holds. Then θt will
converge w.p.1. to some random vector θ∗, such that

Fθ∗ is the fixed point of the (random) operator GH,
where G is defined by limt→∞ F (nt)(·, St)P. If we also
have that lim supt→∞ dens(St) < h0 holds w.p.1 and
if Q∗, the fixed point of the operator H is sufficiently
smooth (Q∗ ∈ L) and if H maps L into itself then
‖Fθ∗ −Q∗‖ ≤ O(h0/(1− γ)).

Note that smoothness requirements regarding H and
its fixed point can be satisfied when one assumes suf-
ficient smoothness and regularity of the immediate re-
ward function r and the transition probability kernel
P , such as if r is bounded and differentiable and P
satisfies the so-called Feller property.

5.2. A Multi-stage Process

In this section we consider a multi-stage process with
the goal of proving convergence to the fixed point of
the Bellman operator underlying the MDP. In the pro-
posed multi-stage process the parameter update equa-
tion is used as a subroutine of an outer cycle. The
purpose of the outer cycle is to increase the density of
the set of basis points S so that convergence will not
be limited by the denseness of this set. Let therefore
St be a (deterministic) sequence of nested sets with
dens(St) → 0. Assume that the sets are changed at
the time steps t0, t1, . . . , tn, . . . where tn+1 − tn ≥ 0
and tn+1 − tn → +∞ at an appropriate rate. Fur-
ther, assume that we are also given a sequence of non-
expansive operators Jt : R|St|→B(Z), where Jt is in-
terpolative with respect to St. We assume that when
at time tj the set Stj−1 is replaced by the set Stj the
new parameters θ′tj

are determined in such a way that
no information is lost. Specifically, we assume that
θ′tj

= PStj
Jtj−1θtj .

6 We further assume that that (22)
holds for the sequence Jt, as well.

We shall also change the definition of sti by letting the
spatial smoother shrink with time and by compensat-
ing for the effect of the exploration policy π. Assuming
that µX is absolutely continuous w.r.t. the Lebesgue
measure dλ, we define gπ(x) = dµX/dλ as the den-
sity of µX . We assume again sufficient regularity (e.g.
fast mixing, gπ(x) being continuous and bounded away
from zero) and introduce κt, a density estimator whose
purpose is to estimate gπ(x) using the samples (Xt).
We redefine sti as follows:

sti =
st(xti, ati, Xt)

κt(Xt)
.

Here (xti, ati) are the elements of St and st : X ×A×
X→R is a sequence of functions such that st(x, a, y) =

6Note that this simply means that old components are
kept unchanged and new components of θ′tj

are set by read-
ing out the value of Jtj−1θtj at the new site corresponding
to a given new component.

φa(‖x − y‖/ht) for some functions φa : R+
0 → R that

are assumed to be continuous and satisfy φa(r) → 0
as r → ∞ sufficiently fast. We further assume that
the smoothing bandwidth ht converges to 0. For the
sake of simplicity we assume that ht and κt are kept
constant in the intervals [t0, t1), [t1, t2), We as-
sume that κt is constructed such that it converges uni-
formly to gπ w.p.1. Such a density estimator can be
constructed using e.g. kernel density estimators (Lieb-
scher, 2001). The following proposition holds:

Proposition 5.2. Under sufficient regularity assump-
tions on the MDP M the estimates θt are such that
Jtθt converges to the fixed point of the Bellman oper-
ator T underlying the MDP M.

The proof uses uniform bounds on κt, a convergence
rate estimate of the basic process (1) (where st is de-
fined using a fixed spatial smoother, s) along the lines
of (Even-Dar & Mansour, 2003) and the property that
if Hs is defined by

Hs(Q)(z, a) =
∫ ∫

s(z, a, x){r(x, a)+

γ max
b

Q(y, b)}dP (y|x, a)dµX(x).
(23)

then for st(z, a, x) = φa(‖z−x‖/ht)/gt(x) with ht→0,
gt→gπ, limt→∞Hst→T holds where T is the Bellman
operator of the underlying MDP. The proof is omitted
due to the lack of space. Note that this result can
be easily extended to the case when in each stage a
different (but “proper”) sampling policy is used.

6. Related Work

In (Gordon, 1995) and indepentently in (Tsitsiklis &
Van Roy, 1996) convergence results were derived for
approximate dynamic programming when the “value-
fitting operator” was chosen to be a non-expansion or
an ‘almost non-expansion’. Both papers assume that
the controlled system is known.

The only work known to us which does need a sam-
pling device or the knowledge of a model and which
does not build a model is due to Singh et al. (1995).
The algorithm introduced by these authors is called
“soft-state aggregation” (SSA) and works by updat-
ing the parameters θt much like Equation (1) except
that neither a spatial smoother, nor a function ap-
proximator is used in the update equation and only
one component is updated in each time step. For con-
venience we assume that components of θt are now
indexed by pairs of the form (i, a), 1 ≤ i ≤ n, a ∈ A.
Then in step t only component with index (it, At) is
updated with it ∼ P (·|Xt), where P (·|·) is a param-
eter of the algorithm. Also, maxb θt,(it+1,b) is used as

the estimate of the value of the “next state” in place
of maxb Fθt

(Xt+1, b). Finally, the value of a state-
action pair is computed by interpolating among the
components of θt using the probability distribution P :
Qt(x, a) =

∑
i P (i|x)θt,(i,a). Having said this, our al-

gorithm can be viewed as a Rao-Blackwellised version
of SSA with Fθt

(x, a) = E[θt,(it,a)|Xt = x, θt] and
sti = P (i|Xt). Although, our theoretical results do
not apply to this case since Fθ defined this way will
not be an interpolative function approximator, intu-
ition still says that our algorithm (with some other
interpolative non-expansion) should be more efficient
than SSA since it avoids the introduction of additional
randomness and thus it should yield estimates having
smaller variance.

Another related method is Kernel-based Reinforce-
ment Learning (KBRL) introduced by (Ormoneit &
Sen, 2002). This algorithm is best viewed as one that
uses non-parametric kernel-methods to estimate the
model (the reward function and the transition prob-
abilities). Since it uses kernels and since it is a non-
parametric method at a surface-level it might look sim-
ilar to our algorithm, but even for a fixed set of sam-
ple points our algorithm converges to a different limit
point. Further, KBRL is best viewed as an off-line
algorithm, whilst our method is an on-line method.

7. Experimental Results

We have run some experiments where we compared
our algorithm (henceforth called IFAPPQ for “Inter-
polative Function Approximator based Q-learning”)
with SSA and KBRL. We have selected the well-known
‘mountain car’ domain of Singh and Sutton (1996) be-
cause it provides a standard test-bed and thus our re-
sults can be compared with other results published in
the literature.

For all the three algorithms, samples were generated
using the same fixed stochastic stationary policy with
each run being started at a uniform random location
in the state space. This sampling policy was chosen
to be an 0.2-greedy policy corresponding to a finely-
tuned Q-table. Performance was measured as the L2-
error of the learned Q-values where the values of the
finely-tuned Q-table were taken as the ground truth.
The L2-error was measured (approximately) only over
those parts of the state space that had a subtantial
chance of being sampled by our sampling method.7

For SSA we used a fixed number of basis points that
were sampled uniformly at random. We tried vari-

7This part of the state space was precomputed by run-
ning a series of Monte-Carlo experiments.

ous number in the range [50, 400] and finally chose to
use 200. This parameter had no substantial influance
on the final performance. For IFAPPQ we used the
following adaptive basis point construction algorithm:
when the closest basis point to a new sample point is
farther away than a constant (0.05) then a new ba-
sis point is inserted and the corresponding parameter
values are set such that the action-values at the in-
serted point do not change due to the insertion. At
the end of runs we typically ended up with 280–290
basis points. All basis points stored the distance to
their closest neighbors to improve efficiency. Both s
and Fθ use Gaussian kernels whose bandwidth is set
such that they evaluate to less than 0.01 at their clos-
est neighbors. For Fθ we used kernel-based averaging.8

The learning rate αti is set to be a0/(1+nti/N0), where
we used N0 = 1000 and a0 = 1. For KBRL we used
a fixed bandwidth that matched the bandwidth used
with IFAPPQ. We also tried time varying bandwidths
but the results did not improve significantly.

We decided to compare the algorithms on the num-
ber of floating point operations they use. The rea-
son is that for the same amount of data KBRL does
much more computation than the other algorithms and
makes better use of experience initially. However we
did not compare the performance of it with that of the
other algorithms on the basis of the number of sam-
ples observed because of its excessive computational
demands.

Plots of the estimated L2-error of the Q-values are
shown in Figure 1 obtained by averaging results of 5
independent tests. It can be seen that the performance
of KBRL is better than that of the others initially, but
as time goes by the error of IFAPPQ becomes lower.
For SSA the performance improves initially and then
it gets worse again. We are still investigating this.

8. Conclusions

We have derived rigorous convergence results for Q-
learning when combined with appropriate function ap-
proximators. In addition to being a non-expansion,
we require the function approximator to satisfy an in-
terpolation property. This result was extended to al-
gorithms that construct the set of basis points in an
adaptive manner. To our best knowledge this is the
first result that concerns the convergence of such pro-
cesses. The basic algorithm was also extended to a

8Although kernel-based averagers are not interpolative,
they are quasi-interpolative in the sense that Fθ(xi) − θi

is guaranteed to be small when the kernels’ bandwidths
match the density of the basis point set. Our results can
be extended to such cases.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2e+009 4e+009 6e+009 8e+009 1e+010 1.2e+010

E
rr

or

Flops

’kbrl.stat’
’ifappq.stat’

’ssa.stat’

Figure 1. The figure shows the estimated L2-
approximation error of Q∗ obtained as a number of
floating point operations used by the various algorithms.

multi-stage process and it was argued that using the
tools available to us this process can be shown to con-
verge to the optimal value function of the underlying
MDP in probability. In the multi-stage setting it is
also possible to remove the assumption that the policy
used to sample the MDP must be fixed.

References

Even-Dar, E., & Mansour, Y. (2003). Learning rates
for Q-learning. Journal of Machine Learning Re-
search, 5, 1–25.

Gordon, G. J. (1995). Stable function approximation
in dynamic programming. Proc. of ICML 20 (pp.
261–268). Morgan Kaufmann.

Liebscher, E. (2001). Estimation of the density and the
regression function under mixing conditions. Statis-
tics & Decisions, 19, 9–26.

Meyn, S., , & Tweedie, R. (1996). Markov chains and
stochastic stability. Springer-Verlag.

Munos, R., & Moore, A. (1999). Variable resolution
discretization for high-accuracy solutions of optimal
control problems. Proc. of IJCAI (pp. 1348–1355).

Ormoneit, D., & Sen, S. (2002). Kernel-based rein-
forcement learning. Machine Learning, 49, 161–178.

Singh, S., Jaakkola, T., & Jordan, M. (1995). Re-
inforcement learning with soft state aggregation.
NIPS 7 (pp. 361–368). MIT Press.

Singh, S., & Sutton, R. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning,
32, 123–158.

Szepesvári, C., & Littman, M. (1999). A unified anal-
ysis of value-function-based reinforcement-learning
algorithms. Neural Computation, 11, 2017–2059.

Tsitsiklis, J. N., & Van Roy, B. (1996). Feature-based
methods for large scale dynamic programming. Ma-
chine Learning, 22, 59–94.

