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Machine Learning Models Output Probabilistic Predictions

Class membership 
probabilities 

Raw confidence intervals from 
Bayesian Neural Network 



Machine Learning Models Output Probabilistic Predictions

Only half the points are within 90% region!

Log-likelihood based training can give inaccurate probabilistic predictions!



Machine Learning Models Output Probabilistic Predictions

Solutions to improve probabilistic forecasts

● Dropout [Gal & Ghahramani, 2016 ] or 
ensembling [Lakshminarayanan et al,, 
2017]

● Recalibration [Platt, 1999; Kuleshov et al. 
2018; Song et al. 2019]
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Calibration of Probabilistic Forecasts

What we do

❖ Simpler techniques to obtain distribution 
calibration that are more broadly applicable

❖ Reason about uncertainty in terms of 
calibration and sharpness

❖ Low-dimensional density estimation to 
enforce distribution calibration

❖ Theoretical analysis to establish 
guarantees on calibration and vanishing 
regret
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Quantile Calibration of Probabilistic Forecasts

9/10 points are within 90% region!
Quantile calibration re-labels 99% interval to 90% interval

Quantile Calibration



FX= Bernoulli(p)

Distribution Calibration of Probabilistic Forecasts

9/10 points are within 90% region and tighter 
confidence intervals after applying distribution calibration

Distribution Calibration

For example,

Quantile Calibration

ModelX

P(Y=1|FX=Bern(p)) = p



Training Distribution Calibrated Models

Recalibration as density estimation

Challenge 1: Conditioning on F 
(can be any arbitrary distribution)

Challenge 2: Learning objective for R

Base Model Uncalibrated 
Forecast F ∊ Δ𝗒

Train to minimize 
Proper Loss

Calibrated 
Forecast F ∊ Δ𝗒

𝜙(F)

Recalibrator 
R

● Low dimensional density estimation (tractable)
● Proper Loss = Calibration - Sharpness + Irreducible term
● Quantile function regression when underlying model performs 

probabilistic regression
● Enforces stronger notion of calibration as compared to 

quantile calibration by Kuleshov et al. (2018)
● More broadly applicable as compared to distribution 

calibration by Song at al. (2019)



Theoretical Analysis and Experimental Results

● Distribution Calibration
We prove that we can achieve distribution calibration via density estimation  P(Y| H(X)=F)

● Vanishing Regret: 
We achieve calibration without degrading performance of baseline model (in terms of proper loss)

Experiments: UCI Regression benchmarks and Classification benchmarks
Key results:

● Calibrated Regression: Accuracies and uncertainties improve over Kuleshov et al. (2018) and in many 
cases over Song et al. (2019)

● Calibrated Classification: Best uncertainties are obtained via our method (compared with Platt scaling 
baseline) while accuracies remain similar

We test with a number of neural network base models. Please check our paper for more results!

ExpectedLoss(RoH, Y) ExpectedLoss(H, Y) + 𝛅m≤



Conclusions

❖ Reasoning about uncertainty in machine learning in terms of calibration and sharpness
❖ Simple low-dimensional density estimation to provably achieve distribution calibration
❖ Theoretical analysis to establish asymptotically distributionally calibrated forecasts while minimizing regret
❖ Calibration may be simpler than previously thought. Distribution calibration should be leveraged more 

broadly across machine learning



Thank you!


