Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation

ICML 2022

Volodymyr Kuleshov, Shachi Deshpande

July 21, 2022

Machine Learning Models Output Probabilistic Predictions

Class membership probabilities

Raw confidence intervals from Bayesian Neural Network

Machine Learning Models Output Probabilistic Predictions

Log-likelihood based training can give inaccurate probabilistic predictions!

Only **half** the points are within **90%** region!

Machine Learning Models Output Probabilistic Predictions

Gneiting et al, 2007 Gneiting and Raftery, 2005; 2007

Solutions to improve probabilistic forecasts

 Dropout [Gal & Ghahramani, 2016] or ensembling [Lakshminarayanan et al,, 2017]

 Recalibration [Platt, 1999; Kuleshov et al. 2018; Song et al. 2019]

Calibration of Probabilistic Forecasts

Gneiting et al, 2007 Gneiting and Raftery, 2005; 2007

What we do

- Simpler techniques to obtain distribution calibration that are more broadly applicable
- Reason about uncertainty in terms of calibration and sharpness
- Low-dimensional density estimation to enforce distribution calibration
- Theoretical analysis to establish guarantees on calibration and vanishing regret

Quantile Calibration of Probabilistic Forecasts

9/10 points are within 90% region!

Quantile calibration re-labels 99% interval to 90% interval

Quantile Calibration

$$\mathbb{P}(Y \leq \mathsf{CDF}_{F_X}^{-1}(p)) = p \text{ for all } p \in [0,1],$$

Distribution Calibration of Probabilistic Forecasts

Distribution Calibration

 $\mathbb{P}(Y = y \mid F_X = F) = f(y) \text{ for all } y \in \mathcal{Y}, \, F \in \Delta_{\mathcal{Y}}$

$$P(Y=1|F_X=Bern(p)) = p$$

Quantile Calibration

$$\mathbb{P}(Y \leq \mathsf{CDF}_{F_X}^{-1}(p)) = p \text{ for all } p \in [0,1],$$

9/10 points are within 90% region and tighter confidence intervals after applying distribution calibration

Training Distribution Calibrated Models

Recalibration as density estimation

$$R(F) = \mathbb{P}(Y \mid H(X) = F)$$

Challenge 1: Conditioning on *F*(can be any arbitrary distribution)

Challenge 2: Learning objective for *R*

- Low dimensional density estimation (tractable)
- Proper Loss = Calibration Sharpness + Irreducible term
- Quantile function regression when underlying model performs probabilistic regression
- Enforces stronger notion of calibration as compared to quantile calibration by Kuleshov et al. (2018)
- More broadly applicable as compared to distribution calibration by Song at al. (2019)

Theoretical Analysis and Experimental Results

Distribution Calibration

We prove that we can achieve distribution calibration via density estimation P(Y|H(X)=F)

Vanishing Regret:

We achieve calibration without degrading performance of baseline model (in terms of proper loss)

ExpectedLoss(RoH, Y)
$$\leq$$
 ExpectedLoss(H, Y) + δ_m

Experiments: UCI Regression benchmarks and Classification benchmarks **Key results**:

- Calibrated Regression: Accuracies and uncertainties improve over Kuleshov et al. (2018) and in many cases over Song et al. (2019)
- Calibrated Classification: Best uncertainties are obtained via our method (compared with Platt scaling baseline) while accuracies remain similar

We test with a number of neural network base models. Please check our paper for more results!

Conclusions

- Reasoning about uncertainty in machine learning in terms of calibration and sharpness
- Simple low-dimensional density estimation to provably achieve distribution calibration
- Theoretical analysis to establish asymptotically distributionally calibrated forecasts while minimizing regret
- Calibration may be simpler than previously thought. Distribution calibration should be leveraged more broadly across machine learning

