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A linear time algorithm for finding
tree-decompositions of small treewidth*

Hans L. Bodlaender!
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

In this paper, we give, for constant k, a linear time algorithm, that given a
graph G = (V, E), determines whether the treewidth of G is at most k, and if
so, finds a tree-decomposition of G with treewidth at most k. A consequence
is that every minor-closed class of graphs that does not contain all planar
graphs has a linear time recognition algorithm.

Keywords: graph algorithms, treewidth, pathwidth, partial k-trees, graph
minors.

1 Introduction

1.1 Background

The notions of ‘tree-decomposition’ and ‘treewidth’ have received much attention
recently, not in the least due to the important role they play in the deep results
on graph minors by Robertson and Seymour (see e.g. [22, 23, 25, 26, 24], and
many other papers in this series). (See also [17].) Also, many graph problems,
including a very large number of well known NP-hard problems, have been shown to
be linear time solvable on graphs that are given together with a tree-decomposition
of treewidth at most k, for constant k. (See, amongst others [1, 4, 5, 6, 8, 10, 11,
12, 27, 29].)

The first step of algorithms that exploit small treewidth of input graphs is to
find a tree-decomposition with treewidth bounded by a constant, although possible
not optimal. So far, this step dominated the running time of most algorithms, as
the second step (some kind of ‘dynamic programming’ algorithm using the tree-
decomposition) usually costs only linear time. The best algorithm known so far for
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this ‘first step’ was an algorithm by Reed [21], which costs O(nlogn). In this paper,
we improve on this result, and give a linear time algorithm.

The problem ‘Given a graph G = (V, E') and an integer k, is the treewidth of G at
most k’ is NP-complete [2]. Much work has been done on this problem for constant k.
For k = 1,2, 3, linear time algorithms exist [20]. Arnborg et al. [2] showed that the
problem is solvable in O(n**?) time for constant k. Then, Robertson and Seymour
gave a non-constructive proof of the existence of O(n?) decision algorithms [24].
Actually, this algorithm is of a ‘two steps’ form, as described above. The first step
is to apply an O(n?) algorithm, that either outputs that the treewidth of G is larger
than k, or outputs a tree-decomposition with treewidth at most 4k. (Actually, the
result is stated in [24] in terms of ‘branchwidth’, but this is an unimportant technical
difference.) The second step checks in linear time a finite characterization of the
graphs with treewidth at most & in terms of forbidden minors. In [7] (using results
from [16]) it was shown that the non constructive elements can be avoided using
self-reduction without increasing the running time by more than a (huge) constant
factor.

Both Lagergren [18] and Reed [21] improve on the ‘first step’. Lagergren gives
a sequential algorithm that uses O(nlog?) time, and a parallel algorithm that uses
O(n) processors and O(log®n) time. Reed gives a sequential O(nlogn) algorithm,
which can be seen to have a parallel implementation with O(n/logn) processors
and O(log? n) time. A related probabilistic result (with running time O(nlog?n +
n|log p|), p the error of probability) was found by Matousék and Thomas [20]. Each
of these algorithms either determines that the input graph G has treewidth more
than k, or finds a tree-decomposition of G with treewidth bounded by some constant
(linear in k). They all are based upon finding ‘balanced separators’ in some clever
ways. Our algorithm uses a different approach: we reduce the problem in linear
time to a problem on a smaller graph by edge contraction or removing ‘simplicial
vertices’.

Independently, Lagergren and Arnborg [19] and Bodlaender and Kloks [8] showed
that the ‘second step’ can be done without use of graph minors, and give explicit
algorithms to test in linear time whether G has treewidth at most k, once a tree-
decomposition of G with bounded treewidth is available. Moreover, Lagergren
and Arnborg show how to compute the obstruction set of the class of graphs with
treewidth < k, and Bodlaender and Kloks show how if existing, a tree-decomposition
with treewidth at most £ can be computed in the same time bounds. Results of a
similar flavor were obtained independently by Fellows and Abrahamson [13].

Recognition algorithms for graphs with treewidth < k (k constant) have been
designed by Arnborg et al. {3]. These algorithms use linear time, but polynomial,
not linear memory (it is allowed that the algorithm consults the contents of memory
that is never written to). A disadvantage of this approach is that it is not known
how to construct tree-decompositions with small treewidth by the method.



1.2 Main idea of algorithm
The main result in this paper is the following.

Theorem 1.1 Forallk € N, there exists a linear time algorithm, that tests whether
a given graph G = (V,E) has treewidth at most k, and if so, oulputs a tree-
decomposition of G with treewidth at most k.

The main idea of the algorithm is as follows: vertices are partitioned into two
sets, one with vertices of ‘low degree’, and one with vertices of ‘high degree’. It can
be shown for graphs with treewidth at most fixed constant k, that there are only
‘few’ high degree vertices. Two cases are distinguished:

1. ‘Sufficiently many’ vertices of low degree are adjacent to one or more other
vertices of low degree. In this case, it can be shown that any maximal match-
ing in G contains sufficiently many (€2(n)) edges. We compute the graph G’
obtained by contracting all edges in a maximal matching. Recursively, we
compute a tree-decomposition of treewidth at most k of G’, or conclude that
the treewidth of G', and hence the treewidth of G is larger than k. From
this tree-decomposition, one easily can build a tree-decomposition of G with
treewidth at most 2k + 1. This latter tree-decomposition is used to solve the
problem, using the algorithm of Bodlaender and Kloks [8], mentioned above.

2. ‘Only few’ vertices of low degree are adjacent to one or more other vertices of
low degree. It is shown that a certain collection of edges can be added to G
without increasing the treewidth from a number at most k to a number larger
than k. The ‘improved graph of G’ (G with this collection of edges added) is
shown to have sufficiently many (Q(n)) vertices which are I-simplicial: their
neighbors form a clique in the improved graph (and they fulfill some other,
less important conditions). Recursively, a tree-decomposition with treewidth
at most k is computed of G’, obtained by removing all I-simplicial vertices
from the improved graph of G, or one concludes that the treewidth of G, and
hence of G is larger than k. Given such a tree-decomposition of G/, one easily
computes a tree-decomposition of G with treewidth at most k.

In each case, the amount of work of the non-recursive steps is linear, and each G’
has size at most a constant fraction of the size of G. It follows that the algorithm
uses linear time.

2 Definitions and preliminary results

The notion of treewidth was introduced by Robertson and Seymour [22].

Definition. A tree-decomposition of a graph G = (V, E)isapair {X; |i € I}, T =
(I, F)) with {X; | ¢ € I} a family of subsets of V', one for each node of T, and T a
tree such that



® UiEI Xi = V.
o for all edges (v, w) € E, there exists an 7 € I with v € X; and w € X;.
e for all ¢,j,k € I: if j is on the path from 7 to k in T, then X; N X} C X;.

The treewidth of a tree-decomposition ({X; | i € I}, T = (I, F)) is max;es | Xi| — 1.
The treewidth of a graph G is the minimum treewidth over all possible tree-
decompositions of G.

We use (X,T) as a shorthand notation for ({X; | ¢ € I},T = (I, F)). There are
several equivalent notions, e.g. a graph is a partial k-tree, if and only if its treewidth
is at most k [28]. We give some well known or easily derivable results.

Lemma 2.1 If the treewidth of G = (V, E) is at most k, then |E| < k|V|—-1k(k+1).

Lemma 2.2 (See e.g. [9].) Suppose ({X; | i« € I},T = (I,F)) is a tree-
decomposition of G = (V, E).

(i) If W CV forms a clique in G, then 3i e I : W C X;.

(ii) If W1, W, induce a complete bipartite subgraph in G, i.e., each verter in W is
adjacent to each vertex in Wy, then i e I . W; C X; or W, C X;.

Lemma 2.3 If(X,T) is a tree-decomposition of G = (V,E), and Ji € I : v,w € X,
v # w, then (X, T) is also a tree-decomposition of G + (v,w) = (V, E U {(v,w)}).

Lemma 2.4 Suppose v and w have at least k+1 common neighbors in G = (V, E).
If the treewidth of G is at most k, then the treewidth of G + (v, w) is also at most
k. Moreover, any tree-decomposition of G with treewidth at most k is also a tree-
decomposition of G + (v, w) with treewidth at most k and vice versa.

Proof: Suppose (X, T) is a tree-decomposition of G with treewidth at most k.
By lemma 2.2(b) either there exists an i € I with v, w € X;, in which case the lemma
directly follows, or there exists an ¢ € I with X; contains the set W of all common
neighbors of v and w. Now, if we add edges between all non-adjacent vertices in
W, we obtain a graph G’ that contains a clique with size at least k + 2 (namely
W U {v}) and has (X, T) as a tree-decomposition. But a graph with treewidth < k&
cannot contain a clique with more than k + 1 vertices, contradiction. O

A contraction is the operation that removes two adjacent vertices v, w, and
replaces them by one new vertex that is made adjacent to all vertices that were
adjacent to v and w.

We say a tree-decomposition (X,T) of treewidth k is smooth, if for all i € I :
| Xi| = k +1, and for all (3,7) € F : |X;N X;| = k. Any tree-decomposition of a
graph G can be transformed to a smooth tree-decomposition of G with the same
treewidth: apply the following operations until none is possible:
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o If for (¢,j) € F, X; C Xj, then contract the edge (i,7) in T and take for the
new node X = Xj.

o If for (¢,5) € F, X; € X, and |X;| < k+ 1, then choose a vertex v € X; — Xj,
and add v to X.

o If for (¢,j) € F, |Xi| = |X;| = k + 1, and |X; — X,| > 1, then subdivide the
edge (¢,7) in T; let 7' be the new node; choose a vertex v € X; — X; and a
vertex w € X; — X;, and let Xy = X; — {v} U {w}.

Lemma 2.5 If (X,T) is a smooth tree-decomposition of G = (V, E) with treewidth
k, then |I| = |V| —k.

Proof:  With induction to |]. If |I| = 1, then clearly |V| = k + 1. Suppose
the lemma holds for |I| = r — 1. Consider a smooth tree-decomposition (X, T) of a
graph G = (V, E) with treewidth k, with |I| = r. Let ¢ be a leaf of T. There is a
unique vertex v that belongs to X;, but not to any set X;, j € I —{¢}. If we remove
node ¢ from T, we get a smooth tree-decomposition of G[V — {v}] with treewidth &
and with |I| — 1 nodes. The result now follows by induction. O

In the remainder, we assume that k is a given fixed constant. We choose constants
ci, ¢a € R, such that

1 c - ki (k+1)

= - >0
4k? + 12k + 16 2

Ca2

(Note that ¢; and c; are both constants between 0 and 1. ¢; denotes an upper bound
on the fraction of vertices that is of ‘high degree’ (defined below), and c, denotes a
lower bound on the fraction of vertices that is remove in one of the two cases of the
main part of the algorithm.)

Let d = max(k? + 4k + 4, [2k/c,]). We say a vertex with degree at most d is a
low degree vertez, and a vertex with degree larger than d is a high degree vertez. A
vertex is said to be friendly, if it is a low degree vertex and it is adjacent to at least
one other low degree vertex.

Lemma 2.6 There are less than c,-|V| high degree vertices in a graph with treewidth
k.

Proof: If there are n; high degree vertices, then G must contain at least n;-d/2
edges. By lemma 2.1, n;-d/2 < k|V|. O

A mazimal matching of a graph G = (V, E) is a set of edges M C E such that
no two edges in M share an endpoint, and every e € E — M shares an endpoint

with an edge in M. One easily finds a maximal matching in O(|V'| + |E|) time with
a greedy algorithm.



Lemma 2.7 If there are ny friendly vertices in G = (V, E), then any mazimal
matching of G contains at least ns/(2d) edges.

Proof: Consider a maximal matching M. Any friendly vertex must be end-
point of an edge in M, or adjacent to a friendly vertex that is endpoint of an edge
in M. To each edge e of M, we can associate the at most 2d friendly vertices that
are endpoint of e or adjacent to a friendly (and hence low degree) endpoint of e. If
a friendly vertex has not been associated to at least one edge in M, then M is not
maximal. Hence |M| > n/(2d). O

Let M be a maximal matching in G = (V| E)), and let G’ = (V’, E') be the graph
obtained by contracting all edges in M. Define fpy : V = V' by fy(v) =vif v is

not an endpoint of an edge in M, and let fas(v) = far(w) be the vertex resulting of
contracting edge (v, w) € M.

Lemma 2.8 Let M, G, G', fu be as above. If (X,T) is a tree-decomposition of
G with treewidth k, then (Y,T), defined by Y; = {v € V | fu(v) € X} is a tree-
decomposition of G' with treewidth at most 2k + 1.

Proof: This follows easily from the definitions. O

Lemma 2.9 Let G, G' be as above. The treewidth of G' is at most the treewidth of
G.

Proof: G'isa minor of G. The treewidth of a graph cannot increase by taking
minors. O

The set of neighbors of a vertex v in G = (V, E) is denoted by Ng(v) = {w €
V | (v,w) € E}. Finally, we mention some algorithmic results.

Theorem 2.10 (Bodlaender, Kloks [8]) For all k, l, there ezists a linear time algo-
rithm, that when given a graph G = (V, E) together with a tree-decomposition (X, T)
of G with treewidth at most l, determines whether the treewidth of G is at most k,
and if so, finds a tree-decomposition of G with treewidth at most k.

When we are given a graph G = (V, E) as a collection of 7 edges where some
edges of G may appear more than once in the collection, we can remove all multiple
copies of edges in O(|V| + r) time, by applying bucket sort twice.

3 Simplicial vertices
For a graph G = (V, E), let the improved graph G' = (V, E') of G be the graph,

obtained by adding an edge (v, w) to E for all pairs v, w € V such that v and w
have at least k¥ + 1 common neighbors of low degree in G.
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Lemma 3.1 If the treewidth of G is at most k, then the treewidth of the improved
graph of G is at most k. Moreover, any tree-decomposition of G with treewidth at
most k 1s also a tree-decomposition of the improved graph with treewidth at most k,
and vice versa.

Proof: This follows directly from lemma 2.4. O

We say a vertex v is simplicial in G, if its neighbors form a clique in G. We say
v is I-simplicial, if it is simplicial in the improved graph of G, it is of low degree in
G, and it is not a friendly vertex in G. (These latter two requirements are needed
for obtaining a linear running time of the algorithm.) We now derive, by a series
of lemmas a result that states that if we have ‘few’ high degree vertices and ‘few’
friendly vertices, then if the treewidth of G is at most k, then we have ‘many’
I-simplicial vertices.

A vertex v € V is said to be helpful with respect to some tree-decomposition
(X, T), if it is of low degree, not friendly, and there exists a node ¢ € I, such that
all neighbors of v belong to X;.

Lemma 3.2 Suppose (X,T) is a smooth tree-decomposition of G = (V, E) with
treewidth k.

(1) To every leafi of T, one can associate a low degree vertez v € X;, that is friendly
or helpful with respect to (X, T), and there does not exist a j € I, j # i, withv € X;.

(11) To every path ig,1y,...,tk243k43 tn T with i1,...,ik243k+2 nodes of degree 2 in
T, one can associate at least one vertez v € X;, U---U X, , . that is friendly or

helpful with respect to (X,T), such that v does not belong toaset X; withjela
node, not on this path.

Proof: (i) Let j be the neighbor of leaf ¢ in T'. Let v be the unique vertex in
X; — X;. v is only adjacent to vertices in X;. Either all neighbors of v are of high
degree, in which case v is helpful w.r.t. (X, T), or a neighbor of v is of low degree,
in which case v is friendly .
(ii) Note that | X5, U---U X,k2+3k+3| = k% + 4k + 4 < d. Hence all vertices in
Xi, U- > TN ( Xi3,3045) aT€ of low degree. Suppose neither of them
is frlendly, i.e. they are only adJacent to high degree vertices in X, U X,k2+3k+3
Suppose X;, contains r high degree vertices, say wy,...,w,. Clearly r < |X;| =
k + 1. Each of these, say w,, belongs to successive sets X;,, X;,,---, X;,,. Suppose
w.)0.g dy, < Gy, < o+ < dy,. If some low degree vertex v belongs to exactly
one set X;;,, 1 <j < k? + 3k + 2, then it must be helpful w.r.t. (X,T). If some
low degree vertex v belongs only to (a subset of) sets Kiw X then all

Tw,; +1 ?
nelghbors of v belong to Xiu,,,» hence v is helpful w.r.t. (X,T). Aljl vertices in
X, U---UX;

i3, 304, DOt OF one of these two types must belong to at least one of the

sets Xigs Xiwy >+« - Xin,» Xigs, 0,5 This are in total at most (k+1)(k+3) = k*+4k+3
vertices. So, at least one vertex in X;, U---U X, — Xip — Xi,5 4, OUSt be

12
helpful w.r.t. (X,T). O *243k42



A leaf-path collection of a tree T is a collection of leaves in 7', plus a collection
of paths of length k2 + 3k + 4 in T, where all nodes on a path which are not an
endpoint of a path have degree 2 in T and do not belong to any other path in the
collection. The size of the collection is the total number of leaves plus the total
number of paths in the collection.

Lemma 3.3 FEach tree with r nodes contains a leaf-path collection of size at least
T/(2k? + 6k + 8).

Proof: Let 7, be the number of nodes of degree at least 3, r; the number of
leaves, and 73 the number of nodes of degree 2. Clearly, 7, < ;. All nodes of degree
2 belong to < r; + 7, connected components of the forest, obtained by removing all
leaves and all nodes with degree 3 or larger from the tree. Each such component
contains at most k? + 3k + 3 nodes, not part of a leaf-path collection of maximum
size. So, there are less than (r, + r;)(k? + 3k + 3) nodes of degree 2, not on a path
in the collection. Hence, there are at least

Ty — (ro + 1) (k% + 3k + 1)
k2 +3k+4

paths in a leaf-path collection of maximum size. It follows that the maximum size
of a leaf-path collection is at least

re — (ry + 1) (k% + 3k + 3)
k2+3k+4

l T
2 k2+3k+4

max(ry, +7) >

O

Corollary 3.4 If (X,T) is a smooth tree-decomposition of G = (V,T) with
treewidth k, then G contains at least |V'|/(2k*+ 6k +8) — 1 vertices that are friendly,
or helpful with respect to (X, T).

Proof: T contains |V|— k nodes (lemma 2.5). Now apply lemma 3.2 and 3.3.
a

A set Y C V of high degree vertices is said to be semi-important with respect to
tree-decomposition (X,T) of G = (V, E), if there exists an 7 € I with Y C X;. A
set Y is said to be important, if it is semi-important w.r.t. (X, T) and not contained
in any larger semi-important set w.r.t. (X,T).

Lemma 3.5 Let (X,T) be a tree-decomposition of G = (V, E) with treewidth k.
The number of different important sets w.r.t. (X,T) is at most the number of high
degree vertices in G.



Proof: Let L be the set of high degree vertices in G. ({X;NL |ie€ I}, T)
is a tree-decomposition of G[L]. Each important set Y is a set X; N L which is
not contained in another set Xy N L. Repeatedly, contract edges (¢,7') in T with
X;NL D Xy N L, with the new formed node containing all vertices in X;. The
resulting tree-decomposition of G[L] contains the same maximal sets X; and will
have at most |L| nodes. O

A function f that maps each helpful (with respect to some tree-decomposition
(X, T)) vertex v to an important (with respect to (X, T)) set Y with Ng(v) C Y,
is called an hi-function for (X, T). By definition, an hi-function always exists.

Lemma 3.6 Let f be an hi-function for a smooth tree-decomposition (X,T) of G =
(V, E) with treewidth k. Let Y be an important set w.r.t. (X,T). Then at most
$k%(k + 1) helpful vertices w.r.t (X,T) (and G) in f~X(Y) are not I-simplicial.

Proof:  Assign each non-I-simplicial helpful vertex v to a pair of neighbors
of v, that are non-adjacent in the improved graph. To each pair of vertices, there
cannot be assigned more than k vertices, as otherwise they would have at least k+1
common low degree neighbors, and there would be an edge between them in the
improved graph.

It follows that the number of non-I-simplicial helpful vertices v with f(v) =Y
is at most 2|Y|- ([Y|+1) < 3k (k+1). O

Corollary 3.7 If G = (V, E) has treewidth at most k, and contains ny friendly
vertices and ny high degree vertices, then there are at least
\4 1.,
—_———— —1—n;— -k*(k+1
2k + 6k + 8 ny = gF (k+ D
I-simplicial vertices in G.

Lemma 3.8 Let (X,T) be a tree-decomposition of treewidth at most k of the graph
G', obtained by removing all I-simplicial vertices (and adjacent edges) from the im-
proved graph of graph G = (V, E). Then, for all I-simplicial vertices v, there ezxists
an i € I with Ng(v) C X;,.

Proof: Note that by definition, I-simplicial vertices are non-adjacent in G,

and their neighborhood forms a clique in the improved graph of G. The result now
follows directly from lemma 2.2(i). O

4 Main algorithm

We now give a recursive description of the main algorithm. Some details will be
discussed in section 5. Our algorithm, when given a graph G = (V, E), either

9



outputs that the treewidth of G is larger than &

or outputs a tree-decomposition of G with treewidth at most k.

For ‘very small graphs’ (i.e. with at most some constant number of vertices)
any other finite algorithm is used to solve the problem. Otherwise, the following
algorithm is used:

First, check whether |E| < k- |V| — k(k + 1). If this is not the case, we know
by lemma 2.1 that the treewidth of G is larger than k: stop.

Now, count the number of friendly vertices. If there are at least |V'|/(4k%+ 12k +
16) friendly vertices, do the following:

Find a maximal matching M C F in G.
Compute the graph G’ = (V’, E'), obtained by contracting every edge in M.
Recursively, apply the algorithm to G'.

If G’ has treewidth larger than k: stop. The treewidth of G is also larger than
k. (See lemma 2.9.)

Suppose the recursive call yielded a tree-decomposition (X,T) of G’ with
treewidth k. Construct a tree-decomposition (Y,T) of G with treewidth at
most 2k + 1, as in lemma 2.8.

Use the algorithm of theorem 2.10 and solve the problem.

If there are less than |V'|/(4k? + 12k + 16) friendly vertices, do the following:

Compute the improved graph of G. (See section 5.)

If there exists a I-simplicial vertex with degree at least k + 1 then stop: the
improved graph of G contains a clique with k + 2 vertices, hence the treewidth
of G is more than k.

Put all I-simplicial vertices in some set SL. Compute the graph G’, obtained
by removing all I-simplicial vertices and adjacent edges from G.

If [SL| < c3|V|, then stop: the treewidth of G is larger than k. (See below.)
(Now |SL| > ¢2|V]|.) Recursively apply the algorithm on G'.

If the treewidth of G’ is larger than k, then stop: as G’ is a subgraph of G,
also the treewidth of G is larger than k.

Suppose the recursive call yielded a tree-decomposition (X,T) of G' with
treewidth k. For all v € SL, find an ¢, € V with Ng(v) C X;,, and add
a new node j, to T with X; = {v} U Ng(v), and make j, adjacent to i, in T.
(Such a node i, exists by lemma 3.8.) The result is a tree-decomposition of G
with treewidth at most k.

10



Correctness of the algorithm follows from results given in sections 2 and 3, and
the following observation. When there are less than |V'|/(4k* + 12k + 16) friendly
vertices, then by corollary 3.7 and lemma 2.6, there are at least |V'|/(4k%+12k+16)—
3k%(k 4+ 1)c1|V| = ¢,|V| I-simplicial vertices in the improved graph of G, provided
that the treewidth of G is at most k.

The running time of the algorithm can be estimated as follows. Either we recur-
sively apply the algorithm on a graph with (1 —1/(2d(4k* + 12k + 16))) - | V| vertices
(lemma 2.7) or on a graph with (1 — ¢;)|V/| vertices. Write

1

c3 = max(l—c¢z, 1— 5= @R+ 12k516)"

Note that 0 < ¢3 < 1. As all non recursive steps have a linear time implementation
(see also section 5), we have that, if the algorithm takes T'(n) time on a graph with
n vertices in the worst case, then T(n) < T'(c3 - n) + O(n), hence T'(n) = O(n). It
also follows that the algorithm uses linear memory.

5 Some details of the algorithm

In this section we show that the steps of the algorithm given in section 4 can be
implemented in linear time and linear memory. Most steps are rather straight-
forward, and left to the reader, or follow from earlier results. Note that we always
may assume that the number of edges we are working with is linear in the number
of vertices. We represent all graphs we work with by their adjacency lists.

Computing the improved graph and the I-simplicial vertices Number the
vertices vy, v, ..., Un. We use a queue @, containing triples of the form ((v,w), z)
with v,w,z € V, or of the form ((v,w),—), v,w € V. Also, we use an array S,
with for each v; € V' a stack S[v;] containing pairs of vertices. For all (v;,v;) € E
with ¢ < j, put ((vi,v;),—) on Q. For all low degree vertices v € V, for all pairs
of neighbors v;,v; € Ng(v) with ¢ < j, put ((vi,v;),v) on Q. Now ‘bucket sort’ Q
twice, once to the first vertex entries, and once to the second vertex entries. After
this double bucket sort, all pairs of the form ((v;,v;),...) for fixed v;, v; will be
in consecutive positions in Q. By inspecting @, one can directly see what pairs of
vertices have at least k + 1 low degree common neighbors. (If at least k + 1 entries
((vi,v;),v) are adjacent in Q for some pair v;, vj, (v;,v;) must be present in the
improved graph.) For each such pair (v;, v;), and if a triple ((v;, v;),—) is in @, add
the pair (v;,v;) to all stacks S[v] for vertices v with ((v;,v;),v) in Q. This all can
be done in linear time, using the consecutiveness.

Checking whether a low degree vertex v is I-simplicial can be done by inspecting
S[v]: S[v] will consist precisely of all edges between neighbors of v. As v is of low
degree, S[v] is of constant bounded size.
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Adding I-simplicial vertices back in the tree-decomposition Suppose we
have a tree-decomposition (X,T) of G[V — SL| and we want to add all I-simplicial
vertices in SL. For all | < k, we take a queue @;, in which we place all pairs
((vi, ... v3),8) for vy, ..., v, € X;, 1 € I, iy < ig < ---4;, and all pairs
(((viys - -, v3,),v) with Neg(v) = {vi, ..., v, 11 <ig < -+ <.

For each [, 1 <! < k, bucket sort @; ! times, once for each of the [ positions in
the [-tuple. All entries of the form ((v;,...,v;),...) will be at successive positions
in @, after this operation. By a simple scan of @, one can find for each entry
((vig,...,v;),v) an entry of the form ((vy,...,v;),%) for some i € I. This node 4
is precisely the node where the new node j, with X;, = {v} U Ng(v) can be made
adjacent to.

6 Final remarks

A consequence of the result of this paper is that all results that state that certain
problems are solvable in linear time for graphs that are given together with a tree-
decomposition of constant bounded treewidth, are turned into results that state
that these problems can be solved in linear time on graphs with constant bounded
treewidth. One of the most notable of such results is the following.

Theorem 6.1 Every class of graphs that is closed under taking of minors and does
not contain all planar graphs has a linear time recognition algorithm.

Proof: See e.g. [24]. Use the algorithm, described in this paper, to find a
tree-decomposition with constant bounded treewidth of the input graph, and use
this tree-decomposition to test for minor inclusion for all graphs in the obstruction
set of the class. O

In [14, 15] several such classes of graphs can be found. For several of these
notions, we expect that constructive linear time algorithms can be designed, using
the result in this paper and techniques from e.g. [8]. For instance, we expect that
linear time algorithms can be constructed that solve Topological Bandwidth, Search
Number, or Minimum Cut Linear Arrangement, for constant k, and output for
‘yes’-instances the required linear arrangement.

Note that the result shown in this paper is equivalent to stating that (for fixed k)
partial k-trees can be recognized and embedded in a k-tree (or a chordal graph with
maximum clique size k£ + 1) in linear time. Also, a direct consequence is that there
exists a linear time algorithm that recognizes graphs with pathwidth at most k (k
fixed) and gives a path-decomposition with pathwidth at most k for these graphs.

The constant factor of the algorithm in this paper is very large, probably even
for k = 4 it is too large for practical purposes. Still, it is ‘only’ exponential in a
polynomial in k. Still, ideas and techniques in this paper may help to develop really
practical algorithms for the ‘treewidth < k’ problem. As a small increase in the
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treewidth often gives a large increase in the constant factors, an advantage of our
algorithm over others is that we never have to work with tree-decompositions with
treewidth more than 2k +1. Also, finding I-simplicial vertices is done quite fast, and
may be a good heuristic. Variants of our algorithm, perhaps with a better estimate
of the constant c; needed for the test |SL| < ¢, - |V| may yield important savings in
the constant factor of the running time.

It is also possible to modify the algorithm, such that it uses the algorithm in [8]
only on tree-decompositions with treewidth at most k+1, at the cost of increasing the
running time to O(nlogn). Provided that the algorithm in [8] can be implemented
quick enough, this modification may well be quite practical for small values of & (like
k =4 or k = 5). The idea is as follows: instead of using the construction of lemma
2.8, first find a set M’ of at least |M|/(k + 1) edges in M such that no two vertices
which are the result of contracting an edge in M’ belong to a common set X;. (Such
a set can be quickly found in O(n) time: the graph H, obtained by adding an edge
between every pair of vertices in G’ that share a common set X; is a graph with
treewidth k, hence is (k + 1)-colorable. Hence, the set of vertices that are a result of
an edge contraction contains an independent set in H of size at least |M|/(k + 1).
Take M’ the set of edges corresponding to the vertices in this independent set.)
Define fur as in section 2. Now (Y,T), defined by ¥; = {v € v | fir € Xi} is
a tree-decomposition of the graph, obtained from G by contracting all edges in
M — M' with treewidth at most k + 1. Use the algorithm from (8] to find a tree-
decomposition of treewidth at most k£ of this graph. Repeat the process with this
last tree-decomposition, and edge set M — M’ until the edge set is empty. This are
at most O(logn) iterations. (This observation was also made by Jens Lagergren.)

It is possible to implement the algorithm, such that it runs on a pointer machine
(a correct use of pointers is necessary, such that the addressing in the bucket sort
algorithms can be done), and still uses linear time.

An interesting open problem is to find a parallel algorithm with a linear (or close
to linear) time-processor product for the ‘treewidth < k’ problem.
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