
NP-Hardness of Reed-Solomon Decoding
and the Prouhet-Tarry-Escott Problem

Venkata Gandikota∗, Badih Ghazi † and Elena Grigorescu‡
∗ Department of Computer Science, Purdue University, West Lafayette, IN 47906

Email: vgandiko@purdue.edu
† Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA 02139

Email: badih@mit.edu
‡Department of Computer Science, Purdue University, West Lafayette, IN 47906

Email: elena-g@purdue.edu

Abstract—Establishing the complexity of Bounded Distance
Decoding for Reed-Solomon codes is a fundamental open
problem in coding theory, explicitly asked by Guruswami
and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is
motivated by the large current gap between the regime when it
is NP-hard, and the regime when it is efficiently solvable (i.e.,
the Johnson radius).

We show the first NP-hardness results for asymptotically
smaller decoding radii than the maximum likelihood decod-
ing radius of Guruswami and Vardy. Specifically, for Reed-
Solomon codes of length N and dimension K = O(N), we show
that it is NP-hard to decode more than N −K −O(log N

log log N
)

errors. Moreover, we show that the problem is NP-hard
under quasipolynomial-time reductions for an error amount
> N −K − c logN (with c > 0 an absolute constant).

An alternative natural reformulation of the Bounded Dis-
tance Decoding problem for Reed-Solomon codes is as a
Polynomial Reconstruction problem. In this view, our results
show that it is NP-hard to decide whether there exists a degree
K polynomial passing through K +O(log N

log log N
) points from a

given set of points (a1, b1), (a2, b2) . . . , (aN , bN). Furthermore,
it is NP-hard under quasipolynomial-time reductions to decide
whether there is a degree K polynomial passing through
K + c logN many points (with c > 0 an absolute constant).

These results follow from the NP-hardness of a generaliza-
tion of the classical Subset Sum problem to higher moments,
called Moments Subset Sum, which has been a known open
problem, and which may be of independent interest.

We further reveal a strong connection with the well-studied
Prouhet-Tarry-Escott problem in Number Theory, which turns
out to capture a main barrier in extending our techniques.
We believe the Prouhet-Tarry-Escott problem deserves further
study in the theoretical computer science community.

Keywords-Reed-Solomon codes; Bounded distance decoding;
Moment Subset Sum;

I. INTRODUCTION

Despite being a classical problem in the study of error-

correcting codes, the computational complexity of decoding

Reed-Solomon codes [1] in the presence of large amounts

of error is not fully understood. In the Bounded Distance

Decoding problem, the goal is to recover a message cor-

rupted by a bounded amount of error. Motivated by the large

gap between the current efficient decoding regime, and the

NP-hard regime for Reed-Solomon codes, we study the NP-

hardness of Bounded Distance Decoding for asymptotically

smaller error radii than previously known. In this process, we

unravel a strong connection with the Prouhet-Tarry-Escott, a

famous problem from number theory that has been studied

for more than two centuries.

A Reed-Solomon (RS) code of length N , dimen-

sion K, defined over a finite field F, is the set of

vectors (called codewords) corresponding to evaluations

of low-degree univariate polynomials on a given set

of evaluation points D = {α1, α2, . . . , αN} ⊆ F.

Formally, RSD,K = {〈p(α1), . . . , p(αN)〉 : p ∈
F[x] is a univariate polynomial of degree < K}. The Ham-

ming distance between x, y ∈ F
N is Δ(x, y) := |{i ∈

[N] : xi �= yi}|. In the Bounded Distance Decoding
(BDD) problem, given a target vector y ∈ F

N and a

distance parameter λ, the goal is to output c ∈ C such that

Δ(c, y) ≤ λ.

It is well-known that if the number of errors is λ ≤
(N − K)/2, there is a unique codeword within distance

λ from the message, which can be found efficiently [2],

[3]. Further, Sudan [4] and Guruswami and Sudan [5] show

efficient decoding up to λ = N−√NK errors (the “Johnson

radius”), a setting in which the algorithm may output a small

list of possible candidate messages. At the other extreme, if

the number of errors is at least N−K (the covering radius),

finding one close codeword becomes trivial, amounting to

interpolating a degreeK−1 polynomial through≤ K points.

However, just below that radius, namely at N − K − 1
errors, the problem becomes NP-hard, a celebrated result of

Guruswami and Vardy [6]. The proof approach of [6] is only

applicable to the Maximum Likelihood Decoding setting of

N −K − 1 errors, prompting the fundamental problem of

understanding the complexity of BDD in the wide remaining

range between N −√KN and N −K − 1:

[6] “It is an extremely interesting problem to show
hardness of bounded distance decoding of Reed-
Solomon codes for smaller decoding radius.”

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.86

759

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.86

760

2016 IEEE 57th Annual Symposium on Foundations of Computer Science

0272-5428/16 $31.00 © 2016 IEEE

DOI 10.1109/FOCS.2016.86

760

Some partial progress on improving the NP-hardness

regime was shown in a recent result by the same authors

[7] for N −K − 2 and N −K − 3 errors. The only other

work addressing the hardness of decoding RS codes are due

to Cheng and Wan [8], [9] who show randomized reductions

from the Discrete Log problem over finite fields, which is

not believed to be NP-hard.

In this work, we study the complexity of the decision

version of BDD, where the number of errors is parametrized

by d ≥ 0, as formalized next:

Problem Bounded Distance Decoding of Reed-
Solomon codes with parameter d (RS-BDD(d))
Input D = {α1, α2, . . . , αN} ⊆ F, where αi �= αj

for all i �= j, target y = (y1, y2, . . . , yN), and integer

K < N
Goal Decide if there exists p ∈ RSD,K such that

Δ(y, p) ≤ (N −K)− d

We emphasize that the BDD problem above is in

fact the basic and natural Polynomial Reconstruction

problem, where the input is a set of points D =
{(α1, y1), (α2, y2), . . . , (αN , yN)} ⊆ F × F, and the goal

is to decide if there exists a polynomial p of degree < K
that passes through at least K + d points in D.
We state our main result in both forms.

A. Contributions

Our main technical contribution is the first NP-hardness

result for BDD of RS codes, for a number of errors that is

asymptotically smaller than N −K, and its alternative view

in terms of polynomial reconstruction.

Theorem I.1. For every 1 ≤ d ≤ O(logN
log logN), the RS-

BDD(d) problem for Reed-Solomon codes of length N ,
dimension K = N/2 − d + 1 and field size |F| = 2poly(N)

is NP-hard. Furthermore, there exists c > 0, such that
for every 1 ≤ d ≤ c · logN , RS-BDD(d) over fields of
size |F| = 2N

O(log log N)

does not have NO(log logN)-time
algorithms unless NP has quasi-polynomial time algorithms.

Equivalently, for every 1 ≤ d ≤ O(logN
log logN), it is NP-

hard to decide whether there exists a polynomial of degree
< K = N/2−d+1 passing through K+d many points from
a given set D = {(α1, y1), (α2, y2), . . . , (αN , yN)} ⊆ F×F,
with |F| = 2poly(N). Furthermore, there exists c > 0, such
that for every 1 ≤ d ≤ c · logN , the same interpolation
problem over fields of size |F| = 2N

O(log log N)

does not
have NO(log logN)-time algorithms unless NP has quasi-
polynomial time algorithms.

Our results significantly extend [6], [7], which only show

NP-hardness for d ∈ {1, 2, 3}. As in [6], [7], we require the

field size to be exponential in N .

The bulk of the proof of Theorem I.1 is showing the NP-

hardness of a natural generalization of the classic Subset

Sum problem to higher moments, that may be of independent

interest.

Problem Moments Subset Sum with parameter d, over
a field F (MSS(d))
Input Set A ⊆ F of size |A| = N , integer k, elements

m1,m2, . . . ,md ∈ F

Goal Decide if there exists S ⊆ A such that
∑

s∈S s� =
m�, for all � ∈ [d], and |S| = k.

We note that the reduction from MSS(d) to RS-BDD(d)
uses the equivalence between elementary symmetric poly-

nomials and moments polynomials, when the field is of

characteristic larger than Ω(d!)(see, e.g., [7] for a formal

reduction.)

We point out that the Moments Subset Sum problem

has natural analogs over continuous domains in the form

of generalized moment problems and truncated moments

problems, which arise frequently in economics, operations

research, statistics and probability [10].

In this work, we prove NP-hardness of the Moments

Subset Sum problem for large degrees.

Theorem I.2. For every 1 ≤ d ≤ O(logN
log logN), the Moments

Subset Sum problem MSS(d) over prime fields of size |F| =
2poly(N) is NP-hard. Furthermore, there exists c > 0, such
that for every 1 ≤ d ≤ c · logN , the Moments Subset Sum
problem MSS(d) over fields of size |F| = 2N

O(log log N)

does
not have NO(log logN)-time algorithms unless NP has quasi-
polynomial time algorithms.

Furthermore, we reveal a connection with the famous

Prouhet-Tarry-Escott (PTE) problem in Diophantine Anal-

ysis, which is the main barrier for extending Theorem I.2

and Theorem I.1 to d = ω(logN), as explained shortly.

The PTE problem [11], [12], [13] first appeared in letters

between Euler and Goldbach in 1750-1751, and it is a

important topic of study in classical number theory (see, e.g.,

the textbooks of Hardy and Wright [14] and Hua [15]). It

is also related to other classical problems in number theory,

such as variants of the Waring problem and problems about

minimizing the norm of cyclotomic polynomials, considered

by Erdös and Szekeres [16], [17].

In the Prouhet-Tarry-Escott problem, given k ≥ 1, the
goal is to find disjoint sets of integers {x1, x2, . . . , xt} and

{y1, y2, . . . , yt} satisfying the system:

x1 + x2 + · · ·+ xt = y1 + y2 + · · ·+ yt

x2
1 + x2

2 + · · ·+ x2
t = y21 + y22 + · · ·+ y2t

. . .

xk
1 + xk

2 + · · ·+ xk
t = yk1 + yk2 + · · ·+ ykt .

We call t the size of the PTE solution. It turns out that the

completeness proof of our reduction in Theorem I.2 relies

on explicit solutions to this system for degree k = d and

of size t = 2k. As explained next, despite significant efforts

that have been devoted to constructing PTE solutions during

the last 100 years, no explicit solutions of size t = o(2k)

760761761

are known. This constitutes the main barrier to extending

our Theorem I.2 and Theorem I.1 to d = ω(logN).
The main open problem that has been tackled in the PTE

literature is constructing solutions of small size t compared

to the degree k. It is relatively easy to show that t ≥
k + 1, and straightforward (yet non-constructive!) pigeon-

hole counting arguments show the existence of solutions

with t = O(k2). If we further impose the constraint that

the system is not satisfied for degree k + 1 (which is a

necessary constraint for our purposes), then solutions of size

t = O(k2 log k) are known to exist [15]. However, these

results are non-constructive, and the only general explicit

solutions have size t = O(2k) (e.g., [13], [17]). A special

class of solutions studied in the literature is for t = k+1 (of

minimum possible size). Currently there are known explicit

parametric constructions of infinitely many minimum-size

solutions for k ≤ 12 (e.g., [17], [18]), and finding such

solutions often involves numerical simulations and extensive

computer-aided searches [18].

From a computational point of view, an important open

problem is to understand whether PTE solutions of size

O(k2) (which are known to exist) can be efficiently con-
structed, i.e., in time poly(k).
We identify the following generalization of the PTE

problem as a current barrier to extending our results:

Problem I.3. Given a field F, integer d, and a, b ∈ F, effi-
ciently construct x1, . . . , xt, y1, . . . , yt ∈ F, with t = o(2d),
satisfying:

x1 + x2 + · · ·+ xt = y1 + y2 + · · ·+ yt

ai +
t∑

j=1

xi
j = bi +

t∑
j=1

yij ∀i ∈ {2, . . . , d}

We believe that this question is worth further study in the

theoretical computer science community.

In the next section, we outline the proof of Theorem I.2,

and in the process, we explain how PTE solutions of

degree d naturally arise when studying the computational

complexity of MSS(d).

B. Proof Overview

To prove Theorem I.2, we begin with the classical reduc-

tion from 1-in-3-SAT to Subset-Sum, in which one needs to

construct a set of integers such that there is a subset whose

sum equals a given target m1, if and only if there is an

assignment that satisfies exactly one literal of each clause

of the 3-SAT formula (we refer the reader to Section III for

more details about this standard reduction). Extending this

reduction so that the 2nd moment also hits target m2 raises

immediate technical hurdles, since we have very little handle

on the extra moment. In [7], the authors manage to handle

a reduction for 2nd and 3rd moments via ad-hoc arguments

and identities tailored to the degree-2 and degree-3 cases.

The problem becomes much more complex as we need to

ensure both completeness and soundness for a large number

of moments. In this work, we achieve such a reduction

where the completeness will rely on explicit solutions to

“inhomogeneous PTE instances” and the soundness will rely

on a delicate balancing of the magnitudes of these explicit

solutions. We now describe the details of this reduction.

For each 1-in-3-SAT variable, we create a collection of

explicit auxiliary numbers which “stabilize” the contribution

of this variable to all i-th moment equations with 2 ≤ i ≤
d, while having no net effect on the 1st moment equation.

Concretely, if a and b are the numbers corresponding to

the two literals of the given variable, then we need to find

numbers x1, . . . , xt, y1, . . . , yt satisfying:

x1 + x2 + · · ·+ xt = y1 + y2 + · · ·+ yt

ai +
t∑

j=1

xi
j = bi +

t∑
j=1

yij ∀i ∈ {2, . . . , d} (†)

Note that in order for the overall reduction to run in

polynomial-time, the above auxiliary variables should be

efficiently constructible. Moreover, we observe that (†) is

an inhomogeneous PTE instance: for a = b, it reduces to a

PTE instance of degree d. Of course, in our case a and b
will not be equal, and (†) is a more general system (and is

hence harder to solve) than PTE instances. Nevertheless, as

we will see shortly, solving (†) can be essentially reduced

to finding explicit PTE solutions of degrees k ≤ d.
In addition, we need to ensure that the added auxiliary

numbers satisfy some “bimodality” property regarding their

magnitudes, which would allow the recovery of a satisfying

1-in-3-SAT assignment from any solution to the MSS(d)
instance:

Property I.4 (Bimodality (informal)). Every subset S of the
auxiliary variables is such that either |∑s∈S s| is tiny, or
|∑s∈S s| is huge.

We note that the existence of explicit and efficiently

constructible solutions of small size t = O(d) to system (†)
(and hence to a PTE system too) would at least ensure the

completeness of a reduction with d = O(N). If soundness
can also be ensured for such solutions, then our techniques

would extend to radii closer to the Johnson Bound radius.

Overview of procedure for solving system (†): We build

the variables xi and yi recursively, by reducing the construc-

tion for degree i to a solution to degree i− 1. Towards this
goal, we design a sub-procedure, called ATOMICSOLVER,

that takes as inputs an integer i ∈ {2, 3, . . . , d}, and a num-

ber Ri, and outputs 2i rational1 numbers {xi,j , yi,j}j∈[2i−1]

that satisfy a PTE system of degree i − 1, along with a

non-homogeneous equation of degree i:

1In our case, we can afford having rational solutions to Equations (2a)
and (2b). Note that this system is still a generalization of the PTE problem
since we can always scale the rational solutions by their least common
denominator to get a PTE solution of degree i− 1.

761762762

2i−1∑
�=1

(xj
i,� − yji,�) = 0 ∀ 2 ≤ j < i,

2i−1∑
�=1

(xi
i,� − yii,�) = Ri.

(2a)

(2b)

We can then run ATOMICSOLVER sequentially on inputs

i ∈ {2, . . . , d} with the Ri input corresponding to a

“residual” term that accounts for the contributions to the

degree-i equation of the outputs of ATOMICSOLVER(j,Rj)

for all 2 ≤ j < i, namely,

Ri = bi − ai +
∑

2≤j<i

2j−1∑
�=1

(yij,� − xi
j,�). (3)

Note that the aim of the ATOMICSOLVER(i,Ri) procedure

is to satisfy the degree-i equation (2b) without affecting the

lower-degree equations (2a).

We then argue that the union ∪2≤i≤d{xi,j , yi,j}j∈[2i−1]

of all output variables satisfies the polynomial constraints in

(†) with t = exp(d).
Specifics of the ATOMICSOLVER: We next illustrate

the ATOMICSOLVER procedure by describing its operation

in the particular case where i = d = 4. In what follows, we

drop “i = 4 subscripts” and denote R = R4, x� = x4,� and

y� = y4,� for all 1 ≤ � ≤ 8. Then, Equation (2b) above that

we need to satisfy becomes

8∑
�=1

(x4
� − y4�) = R. (4)

First, we let α be a constant parameter (to be specified later

on) and we set

x1 − y1 = α

y2 − x2 = α

(5a)

(5b)

Namely, in Equations (5a) and (5b), we “couple” the ordered
pairs (x1, y1) and (y2, x2) in the same way. Then, using

Equations (5a) and (5b), we substitute y1 = x1 − α and

x2 = y2 − α, and the sum of the � = 1 and � = 2 terms in

Equation (4) can be written as

(x4
1 − y41)− (y42 − x4

2) = pα(x1)− pα(y2) (6)

where pα is a cubic polynomial. If we set x1−y2 = β, then
(6) further simplifies to

pα(x1)− pα(y2) = qα,β(x1) (7)

where qα,β is a quadratic polynomial2.

2Intuitively, we can think the LHS of (7) (along with the setting x1 −
y2 = β) as being a “derivative operator”. This explains the fact that we are
starting from a cubic polynomial pα(·) and getting a quadratic polynomial
qα,β(·). This intuition was also used (twice) in (6), and will be again used
in (9) and (10) in order to reduce the degree further.

In the next step, we couple the ordered tuple

(y3, x3, y4, x4) in the same way that we have so far coupled

the tuple (x1, y1, x2, y2). The sum of the first four terms in

the LHS of (4) then becomes

4∑
�=1

(x4
� − y4�) = (x4

1 − y41 + x4
2 − y42)− (y43 − x4

3 + y44 − x4
4)

= qα,β(x1)− qα,β(y3).
(8)

As before, we set x1 − y3 = γ and (8) further simplifies to

qα,β(x1)− qα,β(y3) = wα,β,γ(x1) (9)

where wα,β,γ(x1) is a linear polynomial in x1. Finally, we

couple the ordered tuple (y5, x5, y6, x6, y7, x7, y8, x8)
in the same way that we have so far coupled the tuple

(x1, y1, x2, y2, x3, y3, x4, y4), and we obtain that the follow-

ing equation is equivalent to Equation (4) above:

wα,β,γ(x1)− wα,β,γ(y5) = R. (10)

Setting x1 − y5 = θ, Equation (10) further simplifies to

θ · hα,β,γ = R, (11)

where hα,β,γ is the coefficient of x1 in the linear polynomial

wα,β,γ(x1). We conclude that to satisfy (4), it suffices to

choose α, β, γ such that hα,β,γ �= 0, and to then set θ =
R/hα,β,γ .

It is easy to see that there exist α, β, γ such that hγ,β,α �=
0, and that the above recursive coupling of the variables

guarantees that (2a) is satisfied. The more difficult part will

be to choose α, β, γ in a way that ensures the soundness of

the reduction. This is briefly described next.

Bimodality of solutions: In the above description of

the particular case where i = d = 4, it can be seen that

the produced solutions are {0,±1}-linear combinations of

{α, β, γ, θ}, which are required to satisfy (11). It turns out

that in this case hα,β,γ = 24 ·α · β · γ, and so (11) becomes

θ · α · β · γ =
R

24
. (12)

So assuming we can upper bound |R|,3 we would be able

to set θ to a sufficiently large power of 10 while letting

α, β and γ to have tiny absolute values and satisfy (12).

Using the fact that the auxiliary xi and yi variables are set

to {0,±1}-linear combinations of {α, β, γ, θ}, this implies

that the bimodality property is satisfied. In Section III,

we show that the bimodality property ensures that in any

feasible solution to MSS(d), the auxiliary variables should

have no net contribution to the degree-1 moment equation

(Proposition III.3), which then implies the soundness of the

reduction.

3which we will do by inductively upper bounding |Ri|.

762763763

General finite fields: We remark that as described

above, our solution works over the rational numbers, and,

by scaling appropriately, over the integers. By taking the

integer solution modulo a large prime p (i.e., p = 2poly(N))

the same arguments extend to Fp. Moving to general finite

fields F = Fp� , we first observe that system (†) (and thus

a PTE system too) has non-constructive solutions of size

O(d), which follows from the Weil bound . Our reduction

in the proof of Theorem I.2 also extends to general fields

F = Fp� , where p is a prime p = Ω(d!), and � = poly(N, d!).
The reduction now uses a representation of field elements

in a polynomial basis {1, γ, γ2, . . . , γ�−1} ⊆ F , instead of

decimal representations. See the full version for the changes

that need to be made to the proof over the integers, as well

as for all the missing proofs from this extended abstract.

C. Related Work

A number of fundamental works address the polynomial

reconstruction problem in various settings. In particular,

Goldreich et al. [19] show that that the polynomial recon-

struction problem is NP-complete for univariate polynomials

p over large fields. Håstad’s celebrated results [20] imply

NP-hardness for linear multivariate polynomials over finite

fields. Gopalan et al. [21] show NP-hardness for multivariate

polynomials of larger degree, over the field F2.

We note that in general, the polynomial reconstruction

problem does not require that the evaluation points are all

distinct (i.e., xi �= xj whenever i �= j). This distinction is

crucial to the previous results on polynomial reconstruction

(eg. [19], [21]). It is this distinction that prevents those

results from extending to the setting of Reed-Solomon codes,

and to their multivariate generalization, Reed-Muller codes.

On the algorithmic side, efficient algorithms for decoding

of Reed-Solomon codes and their variants are well-studied.

As previously mentioned, [4], [5] gave the first efficient

algorithms in the list-decoding regime. Paravaresh and Vardy

[22] and Guruswami and Rudra [23] construct capacity

achieving codes based on variants of RS codes. Koetter and

Vardy [24] propose soft decision decoders for RS codes.

More recently, Rudra and Wooters [25] prove polynomial

list-bounds for random RS codes.

A related line of work is the study of BDD and of Maxi-

mum Likelihood Decoding in general codes, possibly under

randomized reductions, and when an unlimited amount of

preprocessing of the code is allowed. These problems have

been extensively studied under diverse settings, e.g., [26],

[27], [28], [29], [30], [31], [6], [32].

II. PRELIMINARIES

We start by recalling the formal definition of the MSS(d)
problem.

Definition II.1 (Moments Subset-Sum: MSS(d)). Given a
set A = {a1, . . . , an}, ai ∈ F, integer t, and m1, . . . ,md ∈
F, decide if there exists a subset S ⊆ A of size t, satisfying

∑
a∈S ai = mi for all i ∈ [d]. We call t the size of the

MSS(d) instance.

We next recall the reduction from MSS(d) to RS-BDD(d).

Lemma II.2 ([7]). MSS(d) is polynomial-time reducible
to RS-BDD(d). Moreover, the reduction maps instances of
MSS(d) on N numbers and of size t to Reed-Solomon codes
of block length N + 1 and of dimension t − d + 1. The
reduction holds over prime fields Fp where p = 2poly(N).

We will use the 1-in-3-SAT problem in which we are

given a 3-SAT formula φ on n variables and m clauses

and are asked to determine if there exists an assignment

z ∈ {0, 1}n satisfying exactly one literal in each clause. It

is known that this problem is NP-hard even for m = O(n)
[33]. We will use [n] to denote the set {1, 2, . . . , n}.

III. REDUCTION FROM 1-IN-3-SAT TO MSS(d)

We start proving Theorem I.2 by describing the reduc-

tion from from 1-in-3-SAT to MSS(d) and its properties.

Henceforth, we denote by 1� the concatenation of � ones,

and we let (1�)10 denote the positive integer whose decimal

representation is 1�.

Subset Sum Reduction: We start by recalling the re-

duction from 1-in-3-SAT to Subset-Sum which will be used

in our reduction to MSS(d). In that reduction, each variable

(zt, zt), t ∈ [n] is mapped to 2 integers a′t (corresponding

to zt) and b′t (corresponding to zt). The integers a′t and b′t
and the target B have the following decimal representation

of length-(n+m):

• The decimal representations of a′t and b′t consist of two
parts: a variable region consisting of the leftmost n
digits and a clause region consisting of the (remaining)

rightmost m digits.

• In the variable region, a′t and b′t have a 1 at the t-th
digit and 0’s at the other digits. Denote that by (at)

′v .

• In the clause region, for every j ∈ [m], a′t (resp. b′t)
has a 1 at the jth location if zt (resp. zt) appears in

clause j, and a 0 otherwise. We denote the clause part

of a′t by (at)
′c.

• We define a′t = 10ma
′v
t + a

′c
t . We define b′t similarly.

• The target B is set to the integer whose decimal repre-

sentation is the all 1’s, i.e., we set B = 10m(1n)10 +
(1m)10.

See Figure 1 for an illustration of the decimal representa-

tions. This reduction to Subset-Sum is complete and sound.

Indeed given a satisfying assignment to the 3-SAT formula

φ(z), the subset S = {a′t | t ∈ [n], zt = 1} ∪ {b′t | t ∈
[n], zt = 0} is seen to satisfy that

∑
s∈S

s =
∑
t∈[n]
zt=1

a′t+
∑
t∈[n]
zt=0

b′t =

B. Conversely, given a subset S ⊆ {a′t, b′t | t ∈ [n]}
such that

∑
s∈S

s = B, a satisfying assignment to φ(z) is

763764764

constructed from it by setting zi = 1 if a′t ∈ S and 0
otherwise.

Our Reduction from 1-in-3-SAT to MSS(d): An in-

stance of MSS(d) consists of a tuple 〈A,B1, . . . , Bd〉. In
this reduction, each variable (zt, zt) is mapped to 2d+1 − 2
distinct rationals: {at}∪{xt,i | i ∈ [2d−2]} (corresponding
to zt) and {bt} ∪ {yt,i | i ∈ [2d − 2]} (corresponding to

zt). Let {a′t, b′t : t ∈ [n]} be the integers produced by the

above reduction to Subset-Sum. We denote by a
′v
t (resp. a

′c
t)

the variable (resp. clause) region of a′t. Let ν be a natural

number to be specified later on. Define:

at := 10ν(10ma
′v
t + a

′c
t) and,

bt := 10ν(10mb
′v
t + b

′c
t).

(13)

For each t ∈ [n], we will explicitly construct two sets of

2d − 2 auxiliary variables, Xt = {xt,i | i ∈ [2d − 2]}
and Yt = {yt,i | i ∈ [2d − 2]} which satisfy the following

properties:

Property (1):
∑
x∈Xt

x =
∑
y∈Yt

y = 0.

Property (2):
∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈

{2, . . . , d}.
Property (3): For any subset S ⊆ ⋃

t∈[n]
(Xt ∪ Yt), either∣∣∣∣∣

∑
s∈S

s

∣∣∣∣∣ > 10m+2n+ν or

∣∣∣∣∣
∑
s∈S

s

∣∣∣∣∣ < 10ν .

Property (4): Every rational number of
⋃

t∈[n]
(Xt∪Yt) can be

written as a fraction whose numerator and de-

nominator are integers of magnitudes at most

10poly(n,d!). Moreover,

∣∣∣∣∣ ⋃t∈[n](Xt ∪ Yt)

∣∣∣∣∣ = n ·
(2d+1 − 4).

Properties (1) and (2) will be used to ensure completeness,

Property (3) will be used to ensure soundness, and Property

(4) will guarantee the polynomial running-time. Construct-

ing such auxiliary variables forms the crux of the reduction.

Define the set A =
⋃
t∈[n]

({at} ∪ {bt} ∪Xt ∪ Yt). We will

observe that |A| = n(2d+1 − 2) by showing that all the

variables {at}, {bt} and those in Xt and Yt for t ∈ [n] are
distinct.

Let N = |A| = n(2d+1 − 2). The targets B1, . . . , Bd are

defined as follows:

B1 := 10ν(10m(1n)10 + (1m)10),

Bk :=
n∑

t=1

akt +
n∑

t=1

∑
x∈Xt

xk for every k ∈ {2, . . . , d}.

(14)

Note that at (and bt and B1, respectively) defined above

are obtained by inserting ν zeros to the right of the decimal

representation of a′t (resp. b
′
t and B). Therefore, at = 10ν ·

a′t. Similarly, bt = 10ν · b′t and B1 = 10ν ·B (see Figure 2

for a pictorial illustration). The following fact is immediate

from the definitions,

Fact III.1. For any x ∈ {at, bt | t ∈ [n]} ∪B1, we have

10ν < |x| < 10m+n+ν+1

In Section III-A, we will show how to construct variables

satisfying Properties (1), (2), (3) and (4). The proof of The-

orem I.2 will follow from the next lemma and Property (4).

The proof of Theorem I.1 will then follow from Theorem I.2

and Lemma II.2.

Lemma III.2. (Main) There exists a satisfying assignment
to a 3-SAT instance φ(z1, . . . , zn) if and only if there exists
a subset S ⊆ A of size |S| = n(2d − 1) such that for every
k ∈ [d], ∑

s∈S
sk = Bk.

Proof of Theorem I.2: Recall that N = n(2d+1 − 2),
and so |S| = |A|/2 = N/2. From Property (4) above,

we know that every element constructed in the instance of

MSS(d) has poly(n, d!) digit representation. Therefore, for

d = O(log n/ log logn), the reduction runs in poly(n) time.

The NP-hardness of MSS(d) for d ≤ O(logN/ log logN)
(under polynomial-time reductions) and for d < c logN
(under quasipolynomial time reductions, and with c > 0
being a sufficiently small absolute constant) then follows

from Lemma III.2.

Proof of Theorem I.1: By Property (4) above, we

deduce the same hardness results for MSS(d) over prime

fields of size 2poly(N). This – along with Lemma II.2 – imply

Theorem I.1.

We now prove Lemma III.2.

Proof of Lemma III.2: We start by proving the com-

pleteness of our reduction. We show that given a satisfying

assignment z to the 3-SAT instance φ(z1, . . . , zn), there

exists a subset S ⊆ A such that for every k ∈ [d],∑
s∈S

sk = Bk.

Consider the following subset S of variables:

S �
⋃

t∈[n],zt=1

{at}
⋃

t∈[n],zt=1

Xt

⋃
t∈[n],zt=0

{bt}
⋃

t∈[n],zt=0

Yt.

Note that |S| = n(2d−1) = N
2 since the number of auxiliary

variables included in S corresponding to each t ∈ [n] is
exactly 2d − 2.

For every k ∈ [d], we have that

∑
s∈S

sk =
∑
t∈[n]
zt=1

(
akt +

∑
x∈Xt

xk

)
+
∑
t∈[n]
zt=0

⎛
⎝bkt +

∑
y∈Yt

yk

⎞
⎠
(15)

764765765

By Property (2) of the auxiliary variables, we have that

for any t ∈ [n] and any k ∈ {2, 3, . . . , d},∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt .

Summing this equation over all t ∈ [n], such that zt = 0,
we get

∑
t∈[n]
zt=0

⎛
⎝bkt +

∑
y∈Yt

yk

⎞
⎠ =

∑
t∈[n]
zt=0

(
akt +

∑
x∈Xt

xk

)
(16)

From 15 and 16, we conclude that for every k ∈
{2, 3, . . . , d},

∑
s∈S

sk =
n∑

t=1

(
akt +

∑
x∈Xt

xk

)
= Bk

For k = 1, Property (1) implies that for every t ∈ [n],∑
x∈Xt

x = 0 and
∑
y∈Yt

y = 0. Therefore,

∑
s∈S

s =
∑
t∈[n]
zt=1

at +
∑
t∈[n]
zt=0

bt (17)

Recall the variables a′t, b
′
t and B from the Subset Sum

reduction defined at the beginning of the proof. Note that

(
∑
t∈[n]
zt=1

a′t +
∑
t∈[n]
zt=0

b′t) = B. Therefore, we can rewrite Equa-

tion (17) as:

∑
s∈S

s = 10ν ·

⎛
⎜⎜⎝∑

t∈[n]
zt=1

a′t +
∑
t∈[n]
zt=0

b′t

⎞
⎟⎟⎠ = 10ν ·B = B1.

We now prove the soundness of our reduction. Let S be a

solution to the MSS(d) instance. That is, S ⊆ A is such that∑
s∈S

sk = Bk for every k ∈ [d]. Proposition III.3 – which is

stated below – shows that the auxiliary variables in S should

sum to 0. Therefore, there exists a subset S′ ⊆ {at, bt | t ∈
[n]} such that

∑
s∈S′

s = B1. By definition of at, bt and B1, it

follows that there exists a subset of {a′t, b′t | t ∈ [n]} which

sums to B, and the soundness of our reduction then follows

from the soundness of the Subset Sum reduction.

Proposition III.3. Let S ⊆ A be such that
∑
s∈S

s = B1. Let

D =
⋃

t∈[n]
(Xt ∪ Yt) be the set of all the auxiliary variables.

Then, ∑
y∈S∩D

y = 0.

variable region clause region

n digits m digits

Target: B = 111111 ·111111

Figure 1. Decimal representations in the original reduction from 1-in-3-
SAT to Subset-Sum.

Proof of Proposition III.3: Since
∑
s∈S

s = B1, we have

that ∑
y∈S∩D

y +
∑

s∈S\D
s = B1.

Note that S \ D ⊆ {at, bt | t ∈ [n]}. Since the ν
least significant digits of B1 and those of each element of

S \ D are all equal to 0, either

∣∣∣∣∣∣B1 −
∑

s∈S\D
s

∣∣∣∣∣∣ = 0 or

∣∣∣∣∣∣B1 −
∑

s∈S\D
s

∣∣∣∣∣∣ > 10ν . If

∣∣∣∣∣∣B1 −
∑

s∈S\D
s

∣∣∣∣∣∣ = 0, then we

are done. Henceforth, we assume that

∣∣∣∣∣∣B1 −
∑

s∈S\D
s

∣∣∣∣∣∣ >

10ν . By Fact III.1, the elements of S \ D as well as

B1 all have magnitudes at most 10m+n+ν+1. Therefore,∣∣∣∣∣∣B1 −
∑

s∈S\D
s

∣∣∣∣∣∣ ≤ (2n + 1) · 10m+n+ν+1 < 10m+2n+ν .

On the other hand, by Property (3) of the auxiliary vari-

ables, we know that either

∣∣∣∣∣∣
∑

y∈S∩D
y

∣∣∣∣∣∣ > 10m+2n+ν or

∣∣∣∣∣∣
∑

y∈S∩D
y

∣∣∣∣∣∣ < 10ν . Since

∣∣∣∣∣∣
∑

y∈S∩D
y

∣∣∣∣∣∣ =
∣∣∣∣∣∣B1 −

∑
s∈S\D

s

∣∣∣∣∣∣, we
get a contradiction. Therefore,

∑
y∈S∩D

y = 0.

A. Constructing the auxiliary variables Xt, Yt

We now show how to construct the auxiliary variables,

starting from the at, bt variables described before, for every

t ∈ [n]. We do so in Algorithm 1, the AUXILIARYVARI-

ABLEGENERATOR. For every t ∈ [n], we construct 2(2d−2)
distinct auxiliary variables which satisfy the Properties 1, 2,

3 and 4 stated above. The AUXILIARYVARIABLEGENERA-

TOR outputs the union of the variables generated in Algo-

rithm 2, the ATOMICSOLVER, using the recursive coupling

idea described in Section I-B. We use 1� (and 0�) to denote

a column vector of � 1’s (0’s) respectively. For any vector

v, let vT denote its transpose.

765766766

Algorithm 1: AUXILIARYVARIABLEGENERATOR:

Input:
⋃

t∈[n]
{at, bt}

Output: Sets of auxiliary variables Xt, Yt for every

t ∈ [n].

1: for t ∈ [n] do
2: Xt = ∅
3: Yt = ∅
4: for i ∈ {2, . . . , d} do
5: if i = 2 then
6: Rt,i = b2t − a2t
7: else
8: Rt,i = (bit − ait) +

∑
y∈Yt

yi −
∑
x∈Xt

xi

9: end if
10: Let

{
xt,i,j | j ∈ [2i−1]

}⋃{
yt,i,j | j ∈ [2i−1]

}
=ATOMICSOLVER(t,i, Rt,i)

11: Let Xt = Xt

⋃{xt,i,j | j ∈ [2i−1]} and

Yt = Yt

⋃{yt,i,j | j ∈ [2i−1]}
12: end for
13: end for

We now give the details of ATOMICSOLVER(t,i, Rt,i) for

any t ∈ [n] and i ∈ {2, 3, . . . , d}. Let ν = n2, and M =
m + ν + n + 1. For every t ∈ [n], i ∈ {2, 3, . . . , d} and

r ∈ [i], we define the functions f(t, i) := (i − 1)! · νt and

g(t, i, r) := (t − 1)d2 + (i − 1)i + r, where νt is the tth

prime integer greater than n4. Note that M = O(n3) and

10M > B1, by Fact III.1. We will use the fact that νt is much

larger than M later. Using the Prime Number Theorem [34],

it follows that the number of primes in the interval [n4, n5]
is larger than n, and thus νn < n5. Moreover, these n primes

can be found in deterministic polynomial time [35].

We will implement the recursive coupling idea of the

ATOMICSOLVER described in Section I-B, in terms of

matrix algebra. For example, recall that in the first step of

the variable coupling, we set x1 − y1 = α, y2 − x2 = α
and x1 − y2 = β. We can then express x1, x2, y1, y2
as a linear combination of α, β, where we use the extra

degree of freedom to choose x1 = −x2 , as follows:

(x1, x2)
T = 1

2

[
1 1
−1 −1

]
· (α, β)T , and (y1, y2)

T =

1
2

[−1 1
1 −1

]
·(α, β)T . In general, the polynomial equations

give rise to 2i − 1 linear constraints on 2i unknowns

(x1, · · · , x2i−1 , y1, · · · , y2i−1). The extra degree of freedom
allows us to preserve the symmetry of the solution, which

enables us to describe the algorithm and its analysis in a

clean form.

ACKNOWLEDGEMENTS

We would like to thank Madhu Sudan for very helpful

discussions that led to the proof of existence of inhomoge-

Algorithm 2: ATOMICSOLVER(t,i, Rt,i):

Input: i, t, Rt,i

Output: Set of auxiliary variables,

{xt,i,j | j ∈ [2i−1]}⋃{yt,i,j | j ∈ [2i−1]}
1: Let νt be the tth prime integer greater than n4

2: Let f(t, i) = (i− 1)! · νt
3: Let g(t, i, r) = (t− 1)d2 + (i− 1)i+ r for all

1 < r < i
4: αt,i,1 = 10f(t,i)

5: αt,i,r = 10g(t,i,r) for all 1 < r < i
6: αt,i,i = Rt,i/(i!

∏
r∈[i−1]

αt,i,r)

7: αt,i = [αt,i,1, . . . , αt,i,i]
T

8: if i = 2 then
9: A2 =

[
1 1
−1 −1

]
and B2 =

[
1 −1
−1 1

]
10: else

11: Ai =

[
Ai−1 12i−2

Bi−1 −12i−2

]
and Bi =

[
Bi−1 12i−2

Ai−1 −12i−2

]
12: end if
13: [xt,i,1, . . . , xt,i,2i−1]T = 1

2 ·Ai · αt,i

14: [yt,i,1, . . . , yt,i,2i−1]T = 1
2 ·Bi · αt,i

15: Return {xt,i,j | j ∈ [2i−1]}⋃{yt,i,j | j ∈ [2i−1]}

neous PTE solutions over finite fields. We would also like

to thank Venkatesan Guruswami and Swastik Kopparty for

helpful comments and conversations. Finally, we would like

to thank Andrew Sutherland and Colin Ingalls for helpful

correspondence.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the society for industrial and applied
mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[2] W. W. Peterson, “Encoding and error-correction procedures
for the Bose-Chaudhuri codes,” IRE Transactions on Infor-
mation Theory, vol. 6, no. 4, pp. 459–470, 1960. [Online].
Available: http://dx.doi.org/10.1109/TIT.1960.1057586

[3] E. Berlekamp and L. Welch, “Error correction for algebraic
block codes,” 1986, uS Patent 4,633,470. [Online]. Available:
http://www.google.com/patents/US4633470

[4] M. Sudan, “Decoding of Reed Solomon codes beyond
the error-correction bound,” J. Complexity, vol. 13,
no. 1, pp. 180–193, 1997. [Online]. Available:
http://dx.doi.org/10.1006/jcom.1997.0439

[5] V. Guruswami and M. Sudan, “Improved decoding of
Reed-Solomon and algebraic-geometry codes,” IEEE Trans.
Inf. Theory, vol. 45, no. 6, pp. 1757–1767, 1999. [Online].
Available: http://dx.doi.org/10.1109/18.782097

[6] V. Guruswami and A. Vardy, “Maximum-likelihood decoding
of Reed-Solomon codes is NP-hard,” IEEE Trans. Inf.
Theory, vol. 51, no. 7, pp. 2249–2256, 2005. [Online].
Available: http://dx.doi.org/10.1109/TIT.2005.850102

766767767

[7] V. Gandikota, B. Ghazi, and E. Grigorescu, “On the NP-
hardness of bounded distance decoding of Reed-Solomon
codes,” in Information Theory (ISIT), 2015 IEEE Interna-
tional Symposium on. IEEE, 2015, pp. 2904–2908.

[8] Q. Cheng and D. Wan, “On the list and bounded distance
decodability of Reed-Solomon codes,” SIAM J. Comput.,
vol. 37, no. 1, pp. 195–209, 2007. [Online]. Available:
http://dx.doi.org/10.1137/S0097539705447335

[9] ——, “Complexity of decoding positive-rate primitive Reed-
Solomon codes,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5217–5222, 2010. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2010.2060234

[10] J. B. Lasserre, Moments, positive polynomials and their
applications. World Scientific, 2009, vol. 1.

[11] E. Prouhet, “Mémoire sur quelques relations entre les puis-
sances des nombres,” CR Acad. Sci. Paris, vol. 33, no. 225,
p. 1851, 1851.

[12] L. E. Dickson, History of the Theory of Numbers, Volume II:
Diophantine Analysis. Courier Corporation, 2013, vol. 2.

[13] E. M. Wright, “Prouhet’s 1851 solution of the Tarry-Escott
problem of 1910,” The American Mathematical Monthly,
vol. 66, no. 3, pp. 199–201, 1959.

[14] G. H. Hardy and E. M. Wright, An introduction to the theory
of numbers, ser. Oxford Science Publications. Oxford:
Clarendon Press, 1979.

[15] L. K. Hua, Introduction to number theory. Springer, 1982.

[16] P. Erdos and G. Szekeres, “On the product
∏

n k= 1 (1- zak),
acad,” Serbe Sci. Publ. Inst. Math, vol. 13, pp. 29–34, 1959.

[17] P. Borwein and C. Ingalls, “The Prouhet-Tarry-Escott prob-
lem revisited,” Enseign. Math, vol. 40, pp. 3–27, 1994.

[18] P. Borwein, P. Lisonek, and C. Percival, “Computational
investigations of the Prouhet-Tarry-Escott problem,” Math.
Comput., vol. 72, no. 244, pp. 2063–2070, 2003.

[19] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning
polynomials with queries: The highly noisy case,” SIAM J.
Discrete Math., vol. 13, no. 4, pp. 535–570, 2000. [Online].
Available: http://dx.doi.org/10.1137/S0895480198344540

[20] J. Håstad, “Some optimal inapproximability results,” J. ACM,
vol. 48, no. 4, pp. 798–859, 2001.

[21] P. Gopalan, S. Khot, and R. Saket, “Hardness of
reconstructing multivariate polynomials over finite fields,”
SIAM J. Comput., vol. 39, no. 6, pp. 2598–2621, 2010.
[Online]. Available: http://dx.doi.org/10.1137/070705258

[22] F. Parvaresh and A. Vardy, “Correcting errors beyond
the guruswami-sudan radius in polynomial time,” in 46th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA,
USA, Proceedings, 2005, pp. 285–294. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.2005.29

[23] V. Guruswami and A. Rudra, “Explicit codes achieving
list decoding capacity: Error-correction with optimal
redundancy,” IEEE Transactions on Information Theory,
vol. 54, no. 1, pp. 135–150, 2008. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2007.911222

[24] R. Koetter and A. Vardy, “Algebraic soft-decision decoding
of Reed-Solomon codes,” IEEE Transactions on Information
Theory, vol. 49, no. 11, pp. 2809–2825, 2003. [Online].
Available: http://dx.doi.org/10.1109/TIT.2003.819332

[25] A. Rudra and M. Wootters, “Every list-decodable
code for high noise has abundant near-optimal rate
puncturings,” in Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June
03, 2014, 2014, pp. 764–773. [Online]. Available:
http://doi.acm.org/10.1145/2591796.2591797

[26] A. Vardy, “Algorithmic complexity in coding theory and the
minimum distance problem,” in Proceedings of the Twenty-
Ninth Annual ACM Symposium on the Theory of Computing,
El Paso, Texas, USA, May 4-6, 1997, 1997, pp. 92–109.

[27] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness
of approximate optima in lattices, codes, and systems of linear
equations,” J. Comput. Syst. Sci., vol. 54, no. 2, pp. 317–331,
1997.

[28] I. Dinur, G. Kindler, R. Raz, and S. Safra, “Approximating
CVP to within almost-polynomial factors is NP-hard,” Com-
binatorica, vol. 23, no. 2, pp. 205–243, 2003.

[29] I. Dumer, D. Micciancio, and M. Sudan, “Hardness of ap-
proximating the minimum distance of a linear code,” IEEE
Trans. Information Theory, vol. 49, no. 1, pp. 22–37, 2003.

[30] U. Feige and D. Micciancio, “The inapproximability of lattice
and coding problems with preprocessing,” J. Comput. Syst.
Sci., vol. 69, no. 1, pp. 45–67, 2004.

[31] O. Regev, “Improved inapproximability of lattice and cod-
ing problems with preprocessing,” IEEE Trans. Information
Theory, vol. 50, no. 9, pp. 2031–2037, 2004.

[32] Q. Cheng, “Hard problems of algebraic geometry codes,”
IEEE Trans. Information Theory, vol. 54, no. 1, pp. 402–406,
2008.

[33] T. J. Schaefer, “The complexity of satisfiability problems,” in
STOC. ACM, 1978, pp. 216–226.

[34] V. Shoup, A computational introduction to number theory and
algebra. Cambridge university press, 2009.

[35] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,”
Annals of mathematics, pp. 781–793, 2004.

767768768

large components region variable region clause region tiny components region

n digits m digits ν digits

1st moment: B1 = 000000 · · · · · · · · · · ·000 111111 · · · · · · · · · ·111 111111 · · · · · · · · · ·111 000000 · · · · · · · · ·· 000

Figure 2. Decimal representations in the reduction from 1-in-3-SAT to MSS(d). The “large components region” only contains zeros in {at, bt : t ∈ [n]}
but contains non-zeros in {|xt,i|, |yt,i| : t ∈ [n], i ∈ [2d − 2]}.

large components region variable region clause region

n-digits m-digits

tiny components region

ν-digits

αt,i,1 at, bt, B1 αt,i,2, . . . , αt,i,i

Figure 3. Relative distribution of αt,i,r for any i ∈ {2, · · · , d} with respect to at, bt and B1.

768769769

