
Randomised Composition and Small-Bias Minimax

Shalev Ben-David
University of Waterloo

Eric Blais
University of Waterloo

Mika Göös
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Abstract—We prove1 two results about randomised query
complexity R(f). First, we introduce a linearised complexity
measure LR and show that it satisfies an inner-optimal com-
position theorem: R(f ◦ g) ≥ Ω(R(f)LR(g)) for all partial f
and g, and moreover, LR is the largest possible measure with
this property. In particular, LR can be polynomially larger than
previous measures that satisfy an inner composition theorem,
such as the max-conflict complexity of Gavinsky, Lee, Santha,
and Sanyal (ICALP 2019).

Our second result addresses a question of Yao (FOCS 1977). He
asked if ε-error expected query complexity Rε(f) admits a distri-
butional characterisation relative to some hard input distribution.
Vereshchagin (TCS 1998) answered this question affirmatively in
the bounded-error case. We show that an analogous theorem fails
in the small-bias case ε = 1/2− o(1).

I. INTRODUCTION

This paper is motivated by the following basic open problem

in boolean function complexity theory.

Conjecture 1. R(f ◦ g) ≥ Ω(R(f)R(g)) for all total boolean
functions f, g.

Let us unpack what this conjecture is claiming. The ran-

domised ε-error query complexity Rε(f) of a boolean func-

tion f : {0, 1}n → {0, 1} is defined (see [BdW02] for the

classic reference) as the least number of queries a randomised

algorithm (decision tree) needs to make, on the worst-case

input, to the bits xi of x ∈ {0, 1}n in order to compute f(x)
correctly with error at most ε. We write R := R1/3 for the

bounded-error case. For functions f and g over n and m bits,

their composition f ◦ g is defined over nm bits by

(f ◦ g)(x) := f(g(x1), . . . , g(xn))

where x = (x1, . . . , xn) ∈ ({0, 1}m)n. In particular, we have

R(f ◦ g) ≤ O(R(f)R(g) logR(f)) for all f, g. This holds

since we can run an algorithm for f with query cost R(f) and

whenever it queries an input bit, we can run, as a subroutine,

an ε-error algorithm for g of cost Rε(g). Setting ε� 1/R(f)
makes sure that the errors made by the subroutines do not

add up. Moreover, we have Rε(g) ≤ O(R(g) log(1/ε)) =
O(R(g) logR(f)) by standard error reduction techniques.

Conjecture 1 thus postulates that a converse inequality always

holds (without the log factor).

The analogue of Conjecture 1 has been long resolved for

many other well-studied complexity measures: deterministic

query complexity satisfies a perfect multiplicative composition

theorem, D(f ◦ g) = D(f)D(g) [Sav02], quantum query

1This is an extended abstract. For the full version of this article, please
refer to [BDBGM22].

complexity satisfies Q(f ◦ g) = Θ(Q(f)Q(g)) [Rei11],

[LMR+11], and yet more examples (degree, certificate

complexity, sensitivity, rank) are discussed in [Tal13],

[GSS16], [DM21]. In the randomised case, however, the

conjecture has proved more delicate, exhibiting a far richer,

and more surprising, structure.

Partial counterexamples. Conjecture 1 is known to be false

if we relax the requirement that f, g are total and instead

consider partial functions (promise problems), which are

undefined on some inputs x, f(x) = ∗. Indeed, works by

Gavinsky, Lee, Santha, and Sanyal [GLSS19] and Ben-David

and Blais [BB20b] have culminated in examples of partial

functions f , g such that R(f ◦ g) ≤ o(R(f)R(g)). Motivated

by these counterexamples, we ask: What is the best possible
composition theorem one can prove for partial functions?

A. A new composition theorem

Our first result is an inner-optimal composition theorem for

partial functions. To state this result, we start by introducing

a new linearised complexity measure defined for a partial

function f : {0, 1}n → {0, 1, ∗} by

LR(f) := min
R

max
x

cost(R, x)

biasf (R, x)
,

− where R ranges over randomised decision trees;

− x ranges over the domain of f , namely, Dom(f) :=
f−1({0, 1});

− cost(R, x) denotes the expected number of queries R
makes on input x; and

− biasf (R, x) denotes the bias R has of guessing the

value f(x) correctly; formally, biasf (R, x) := max{1 −
2 errf (R, x), 0} where errf (R, x) := PrR[R(x) 	= f(x)].
We often omit the subscript f for brevity.

This definition might seem mysterious at first sight. To get

better acquainted with it, let us first note that

∀f : Ω(
√

R(f)) ≤ LR(f) ≤ O(R(f)). (1)

Indeed, the second inequality follows by considering a

bounded-error decision tree R, with cost(R, x) ≤ R(f) and

bias(R, x) ≥ 1/3. For the first inequality, if we let R be a

randomised tree that achieves the minimum in the definition

of LR(f), we can amplify the bias of R, which is possibly tiny,

as follows. On input x we run R(x) repeatedly until we have

made a total of LR(f)2 queries, and then output the majority

answer over all runs. We expect this simulation to run R(x)
for LR(f)2/ cost(R, x) ≥ 1/bias(R, x)2 many times, which,
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by standard Chernoff bounds, is enough to amplify the bias to

a constant. This shows R(f) ≤ O(LR(f)2).
Both extremes in (1) can be realised. First, consider the n-bit

parity function XORn. It is not hard to see that any randomised

tree that achieves bias δ for XORn needs to query all the n
bits with probability at least δ, resulting in expected query

cost at least δn. This shows LR(XORn) = R(XORn) = n.

Second, consider the partial n-bit gap-majority function (here

|x| denotes the Hamming weight)

GAPMAJn(x) :=

⎧⎪⎨
⎪⎩
1 if |x| ≥ n/2 +

√
n,

0 if |x| ≤ n/2−√n,

∗ otherwise.

It is well known that R(GAPMAJn) = Θ(n). By contrast, the

algorithm R that queries and outputs a uniform random bit

of x has cost(R, x) = 1 and bias(R, x) ≥ Ω(1/
√
n), which

shows LR(GAPMAJn) ≤ O(
√
n).

Our first main result shows that a multiplicative composition

theorem holds when the inner function is measured according

to LR, and moreover, our choice of LR is optimal among

all inner complexity measures. Ultimately, these theorems are

what lends naturalness to our definition of LR.

Theorem 1. R(f ◦g) ≥ Ω(R(f)LR(g)) for all partial boolean
functions f, g.

Theorem 2. Theorem 1 is optimal: If M is any complexity
measure such that R(f ◦ g) ≥ Ω(R(f)M(g)) for all partial
f, g, then LR(g) ≥ Ω(M(g)) for all partial g.

Additionally, LR itself satisfies a composition theorem as

well.

Theorem 3. LR(f ◦ g) ≥ Ω(LR(f)LR(g)) for all partial
boolean functions f, g.

B. Comparison with previous work

The randomised composition conjecture for general boolean

functions was first explicitly raised in [BK16]. Several com-

plexity measures have since been shown to satisfy an inner

composition theorem, including:

1) (block-)sensitivity s, bs [ABK16],

2) randomised sabotage complexity RS [BK16],

3) randomised complexity Rδ with small-bias error δ :=
1/2− 1/n4 [AGJ+18],

4) max-conflict complexity χ [GLSS19] (also studied

in [Li21]).

By our optimality theorem, we have LR(f) ≥ Ω(M(f)) for all

M ∈ {s, bs,RS,Rδ, χ} and all f . In fact, we can show that

the largest of the above measures, namely χ, can sometimes

be polynomially smaller than LR.2

2Technically, it does not seem to be known in the literature whether Rδ is
always at most χ; this doesn’t matter much for our purposes, as LR is larger
than both and it is easy to separate LR from Rδ (for example with the OR

function).

Lemma 4. There exists a partial f such that LR(f) ≥
Ω(χ(f)1.5).

Previous work has also investigated complexity measures M
that admit an outer composition theorem, that is, R(f ◦ g) ≥
Ω(M(f)R(g)) for all partial f, g. These measures include:

1) sensitivity s [GJPW18] (which was applied in [AKK16]),

2) fractional block sensitivity fbs [BDG+20],

3) noisy randomised complexity noisyR [BB20b] (also stud-

ied in [GTW21]).

In particular, noisyR is known to be outer-optimal: if

we have R(f ◦ g) ≥ Ω(M(f)R(g)) for all partial f, g,

then noisyR(f) ≥ Ω(M(f)) for all partial f . Our result can

be viewed as an inner analogue of this.

Finally, we mention that randomised composition has also

been studied in the super-multiplicative regime, where we have

examples of functions f, g with R(f ◦ g) ≥ ω(R(f)R(g)).
Tight bounds exist when the outer function is identity [BB19]

(building on [JKS10], [BK16]), parity [BKLS20], or major-

ity [BGKW20], [GM21].

C. On small-bias minimax

Our second result addresses a question of Yao [Yao77].

Yao-style minimax theorems are routinely used to construct

and analyse hard input distributions (including in our proof

of the new composition theorem). For example, Rε admits a

distributional characterisation as

Rε(f) = max
μ

min
R∈R(f,ε,μ)

depth(R), (2)

where μ ranges over distributions on Dom(f); the set

R(f, ε, μ) consists of trees R with Ex∼μ[err(R, x)] ≤ ε;
and depth(R) is the worst-case cost of R, that is, maximum

number of queries over all inputs (and internal randomness if

R is randomised). While the worst-case cost setting is perhaps

what is most widely studied up to this day, Yao’s original

paper discussed, in fact, exclusively the expected cost setting.

It is the expected cost setting that is currently undergoing

a renaissance as it has proven important in the randomised

composition literature surveyed above (Section I-B).

Minimax for expected cost. We define the ε-error expected
query complexity and the ε-error distributional expected query
complexity by

Rε(f) := min
R∈R(f,ε)

max
x

cost(R, x),

Dε(f) := max
μ

min
R∈R(f,ε,μ)

cost(R,μ),

where R(f, ε) is the set of randomised trees R such

that err(R, x) ≤ ε for all inputs x; and cost(R,μ) :=
Ex∼μ[cost(R, x)] is the expected cost over μ (and internal

randomness of R). We note that the set R(f, ε, μ) is sometimes

restricted to contain only deterministic algorithms wlog (as can

be done in (2)), but in the expected cost setting this may not

necessarily be t†the case (see Open Problem 4); hence we

allow R(f, ε, μ) to contain randomised trees.

Yao showed an exact distributional characterisation for zero-

error algorithms, namely, R0(f) = D0(f), and moreover, the
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optimal distributional algorithm is deterministic. He asked if

a similar characterisation holds in the case ε > 0. He ob-

served that the “easy” direction of minimax, Dε(f) ≤ Rε(f),
certainly holds (although Yao’s version of this inequality had

some loss in parameters as he was restricted to deterministic

algorithms). Vereshchagin [Ver98] proved the “hard” direction

with a modest loss in parameters; in summary,

Dε(f) ≤ Rε(f) ≤ 2Dε/2(f).

These bounds give a satisfying distributional characterisation

in the bounded-error case. What happens in the small-bias case

ε = 1/2 − o(1)? Our second result shows that, surprisingly,

the distributional characterisation fails in a particularly strong

sense. We write δ̇ = (1− δ)/2 for short.

Theorem 5. There is an n-bit partial function f and a bias
δ(n) = o(1) such that Rδ̇(f) ≥ Dδ̇(f)

1+Ω(1).

This theorem says that there is no way to capture Rε(f)
relative to a single hard distribution. However, there does exist

a distributional characterisation using a pair of distributions,

as we explore next.

D. Discussion: How are our two results related?

Suppose we want to prove an inner composition theorem.

All the previous proofs [BK16], [AGJ+18], [GLSS19] revolve

around the following high-level idea. Let R be a randomised

tree that on input x seeks to compute f(g(x1), . . . , g(xn)).
The tree can invest different numbers of queries qi to different

components xi, making q =
∑

i qi queries in total. If we had

a complexity measure M(g) that allowed us to bound the bias

the tree has for the i-th component g(xi) as a linear function
of qi—say, the bias for g(xi) is at most qi/M(g)—then, by

linearity of expectation, the expected total sum of the biases

for all components g(x1), . . . , g(xn) is at most q/M(g). This

would allow us to track the total progress R is making across

all the inner functions.

What is the largest such “linearised” measure M? The most

natural attempt at a definition (which the authors of this paper

studied for a long time before finding the correct definition

of LR) runs as follows. The measure should be such that

with q := Rδ̇(f) queries one gets bias at most δ ≤ q/M(f).
Optimising for M(f) this suggest the following definition (a

competitor for LR)

ULR(f) := min
δ>0

Rδ̇(f)

δ
= min

R
max
x,y

cost(R, x)

bias(R, y)
.

We call it uniform-LR, since the tree R that achieves the

minimum has an upper bound on cost(R, x) that is uniformly

the same for all x, and similarly there is a uniform lower bound

on bias(R, x) for all x. By contrast, the definition of LR(f) is

non-uniform: a tree R that achieves the minimum for LR(f)
has only a bound on the cost/bias ratio, but the individual cost

and bias functions can vary wildly as a function of x.

We clearly have LR(f) ≤ ULR(f) by definition. How about

the converse? It is enlightening to compare the distributional

characterisations of these two measures, which can be derived

using the recent minimax theorem for ratios of bilinear func-

tions [BB20a]:

LR(f) := min
R

max
x

cost(R, x)

bias(R, x)
= max

μ
min
R

cost(R,μ)

bias(R,μ)
,

ULR(f) := min
R

max
x,y

cost(R, x)

bias(R, y)
= max

μ,ν
min
R

cost(R,μ)

bias(R, ν)
.

Here, LR is captured using a single hard distribution μ such

that both cost and bias are measured against it. By contrast,

ULR needs a pair of distributions μ, ν, one to measure the

cost, one to measure the bias. The upshot is that we are able

to show that the two measures are polynomially separated.

Theorem 6. There is an n-bit partial function f such that
ULR(f) ≥ Ω(LR(f)5/4) ≥ nΩ(1).

Our optimality theorem thus implies that ULR cannot
satisfy an inner composition theorem. This means that our

attempt at finding a “linearised” measure at the start of this

section missed a subtlety, namely, Yao’s question: can we

capture our measure relative to a single hard distribution? Our

proof of the composition theorem will rely heavily on the fact

that LR admits a single hard distribution. Our separation of

LR and ULR is what allows us to prove the impossibility

of capturing Rε(f) relative to a single distribution. Indeed,

Theorem 5 can be derived from Theorem 6 simply as follows.

Proof of Theorem 5. Let f be as in Theorem 6 and let R be a

randomised tree witnessing LR(f). We may assume wlog that

cost(R, x) ≥ 1 for all x. (If R places a lot of weight on a 0-

cost tree, we may re-weight R without affecting the cost/bias

ratio; see Lemma 9 for details.) Thus bias(R, x) ≥ 1/n =: δ
for all x. We show the following inequalities, which would

prove Theorem 5.

Rδ̇(f) ≥ δ · ULR(f), (3)

Dδ̇(f) ≤ δ · LR(f), (4)

Indeed, (3) holds since ULR(f) ≤ Rδ̇(f)/δ by the defi-

nition of ULR. For (4) consider any input distribution μ.

Define R′ as the randomised tree that with probability λ :=
δ/bias(R,μ) runs R, and with probability 1 − λ makes no

queries and outputs a random 0/1 answer. Then bias(R′, μ) =
λbias(R,μ) = δ and cost(R′, μ) = λ cost(R,μ) =
δ cost(R,μ)/bias(R,μ) ≤ δLR(f), as desired.

E. Techniques

Composition theorem. Our first result, the inner-optimal

composition theorem, is proved in Section III. As in other

composition theorems for randomised algorithms, we start

with a randomised algorithm R for the composition f ◦ g
as well as hard distributions μ0 and μ1 for g (corresponding

to distributions on g−1(0) and g−1(1)), and we construct a

randomised algorithm R′ for f whose cost is significantly

lower than that of R (we need the cost to decrease by a factor

of LR(g)). The algorithm R′ will simulate R, but not every

query that R makes to the large, mn-sized input to f ◦ g will

turn into a query to the smaller, n-sized input to f that R′
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has access to. Instead, R′ will attempt to delay making a true

query as long as possible, and instead when R makes a query

(i, j) (querying position j inside copy i of an input to g), R′

will return an answer that is generated according to μ0 and

μ1, so long as these two distributions approximately agree on

the answer to that query.

So far, this is the same strategy employed by several

other composition theorems, including in particular that of

[GLSS19]. Our innovation comes from the precise way we

choose when to query the bit i versus when to return an

artificially-generated query answer to the query (i, j). Specif-

ically, in Section IV, we prove the following simulation theo-

rem for decision trees. Suppose we are given two distributions

μ0 and μ1, we are asked to answer online queries to the bits

of a string sampled from μb without knowing the value of

b; moreover, suppose we have access to a big red button

that, when pressed, provides the value of b ∈ {0, 1}. Then

there is a strategy to answer these online queries with perfect

soundness (i.e. with distribution identical to sampling a string

from μb) with the following guarantee: if the decision tree that

is making the online queries is D, then the probability we press

the button is at most TV(tran(D,μ0), tran(D,μ1)) (the total

variation distance between the query outputs D receives when

run on μ0 and the query outputs D receives when run on μ1).

This simulation theorem, though somewhat technical, ends

up being stronger than the simulation guarantee used by

Gavinsky, Lee, Santha, and Sanyal [GLSS19] to provide

their composition result for max-conflict complexity. To get

a composition theorem, we need to convert this total variation

distance between transcripts into a more natural measure; this

can be done via some minimax arguments, and the resulting

measure is LR. We note that a similarly structured argument

occurred in [BB20b], but the squared-Hellinger distance be-

tween the transcripts appeared instead of the total variation

distance; in that result, the authors showed that this squared-

Hellinger distance between transcripts characterized R(g), but

they failed to construct a randomised algorithm R′ for f ,

instead constructing only a “noisy” randomised algorithm.

This gave them the result R(f ◦ g) = Ω(noisyR(f)R(g)).
In contrast, the total variation distance allows us to get R(f)
on the outside, at the cost of getting only LR(g) on the inside.

The measure LR is arguably more natural than max-conflict

complexity, but the real advantage is that our composition

theorem turns out to be the best possible of its type: if

R(f◦g) = Ω(R(f)M(g)) for all partial functions f and g, then

LR(g) = Ω(M(g)). To show this, we give a characterization

of LR(g) in terms of randomised query complexity: there

is a family of partial functions fm such that for all partial

functions g, we have

LR(g) = Θ

(
R(fm ◦ g)

R(fm)

)
,

where m is the input size of g. Once we have this, it

clearly follows that R(f ◦ g) = Ω(R(f)M(g)) implies

LR(g) = Ω(M(g)). The function family fm turns out to

be the same as the one introduced in [BB20b] (based on a

family of relations introduced in [GLSS19]); the randomised

query complexity R(fm) was already established in that

paper, so all we need is an upper bound on R(fm ◦ g) which

uses the existence of an LR-style algorithm for g. The linear

dependence on the bias which is built into the definition of

LR(g) turns out to be precisely what is needed to upper

bound R(fm ◦ g) (see Section VI for details).

Failure of small-bias minimax. Our second result, separation

of LR and ULR, is proved in the full verison of this article

[BDBGM22]. The function f that witnesses the separation

ULR(f) ≥ Ω(LR(f)5/4) is not hard to define. For simplicity,

we denote its input length by N := Bn and think of the

input as being composed of B = nc blocks (for some large

constant c) of n bits each. We define f as a composition of

MAJB as an outer function, and XORn as an inner function,

where we are able to switch individual XOR-blocks to be

easy (requiring O(1) queries) or hard (requiring n queries).

Moreover, we make the following promises about the input.

Either

(1) all blocks are easy, and a random block has a value with

bias 1/n towards the majority value; or

(2) b := n−3/4 fraction of the blocks are hard, and a random

block has bias Ω(b) towards the majority.

We claim that this function is easy for LR, namely, LR(f) =
O(n). To see this, consider the algorithm R that chooses a

block at random, computes it, and outputs its value. For inputs

x of type (1) we have cost(R, x) = O(1) and bias(R, x) ≥
1/n so that cost/bias ratio is O(n). For inputs x of type (2) we

have cost(R, x) = bn+(1−b)O(1) ≤ O(bn) and bias(R, x) =
b so that cost/bias ratio is O(n) again.

The difficult part is to show that ULR(f) ≥ Ω(n5/4).
For example, the above algorithm R has ULR-style measure

maxx,y cost(R, x)/bias(R, y) = O(bn)/(1/n) = O(n5/4),
and we would like to show that this is optimal. Intuitively, it is

hard to get large bias for inputs of type (1) (although query cost

is small here) and it is hard to get low query cost for inputs

of type (2) (although bias is relatively high here). We first

argue that an algorithm that wants to keep cost(R, x) small

uniformly for all x (even those x with high bias(R, x)) cannot

afford to solve hard blocks very often. This is formalised

by picking an appropriate pair of hard distributions for f
according to the minimax formulation. What remains is the

following task: Show that any algorithm that does not solve

hard blocks, has large cost/bias ratio relative to a single hard

distribution, that is, show an LR-style lower bound.
To this end, we develop a suite of techniques to prove lower

bounds on the cost/bias trade-off achievable by decision trees

in the small-bias expected cost setting, which has not really

been studied in the literature before. Consequently, we end up

having to re-establish some basic facts in the expected-cost

setting that have been long known in the worst-case setting.

For example, we show any algorithm for GAPMAJn (with
√
n

gap promise) can achieve bias at most O(
√

cost /n) (see the

full version [BDBGM22]). The proof here exploits the “AND-

trick” used by Sherstov [She12] to prove a lower bound on
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the (worst-case) randomised communication complexity of the

gap-Hamming problem. These techniques also come in handy

when we separate LR from χ for the proof of Lemma 4.

F. Open questions

The foremost open question is to resolve Conjecture 1. We

can equivalently formulate it as follows.

Open Problem 1 (Conjecture 1 rephrased). Does LR(f) =
Θ(R(f)) for all total functions f?

One intriguing open problem regarding our new-found mea-

sure LR is to show that it is lower-bounded by quantum query

complexity Q. Indeed, the bias of a quantum algorithm can

be amplified linearly in the query cost, so it seems sensible

to conjecture this is so. However, quantum query complexity

has mostly been studied in the worst-case setting, and it is

unclear how one should even define quantum query complexity

in expectation (in such a way that it supports linear bias

amplification).

Open Problem 2. Does it hold that LR(f) ≥ Q(f)?

There is a second reason to care about this question, having

to do with the composition limit of randomised algorithms.

Define R∗(f) := limk→∞ R(f◦k)1/k; this is the limit of the k-

th root of the randomised query complexity of the k-fold com-

position of f . Our results here imply that R∗(f) ≥ Ω(LR(f))
for all (possibly partial) functions f . Due to the composition

theorem for quantum query complexity, it is also known that

R∗(f) ≥ Ω(Q(f)). The above open problem asks whether one

of these results dominates the other. More generally, it would

be nice to characterize R∗(f) in terms of a simpler measure

(for instance, one which is efficiently computable given the

truth table of the function).

Our inner-optimal composition theorem for LR,

together with the outer-optimal composition theorem

for noisyR [BB20b] give a relatively satisfying picture

of composition in the case of partial functions. However,

we can still ask whether there remain other incomparable
composition theorems.

Open Problem 3. Are there multiplicative composition theo-
rems, stating that R(f ◦ g) ≥ Ω(M1(f)M2(g)) for all partial
f, g, that can sometimes prove better lower bounds than
Ω(max{R(f)LR(g), noisyR(f)R(g)})?

Regarding the failure of the distributational characterization

of Rε in the low bias regime (Theorem 5), one may wonder

whether the definition of Dε should really involve randomized

decision trees instead of deterministic ones. As hinted in

Section I-C, while considering deterministic trees is the natural

choice in the bounded error regime, we feel it might not be

in the regime where ε ≈ 1/2. Indeed, while a randomised

decision tree can get cost arbitrarily close to zero for ε
approaching 1/2 (by taking an appropriate mixture with the

zero-query tree), a deterministic one will get stuck at making

one query and thus cost 1. Deciding whether the two versions

are equivalent (up to constant factors and additive terms) is

our last open question.

Open Problem 4. Define D
�

ε (f) for a boolean function f with

D
�

ε (f) := max
μ

min
D∈D(f,ε,μ)

cost(D,μ)

where D(f, ε, μ) is the set of all deterministic decision trees
solving f with error at most ε relative to inputs sampled from
μ. For any partial f and ε, do we have D

�

ε (f) ≤ O(Dε(f)+1)?

II. PRELIMINARIES

A. Query complexity notation

Fix a natural number n ∈ N. A total boolean function is

a function f : {0, 1}n → {0, 1}. We will consider several

generalizations of total boolean functions: first, there are

partial boolean functions, which are defined on a domain

which is a subset of {0, 1}n. We use Dom(f) ⊆ {0, 1}n
to denote the domain of such a function. A further way to

generalize boolean functions is to expand the input and output

alphabets; that is, for finite sets ΣI and ΣO, we can consider

functions f : Dom(f)→ ΣO with Dom(f) ⊆ Σn
I , which take

in input strings over the alphabet ΣI and output a symbol in

ΣO.

A still further way to generalize such functions is to consider

relations instead of partial functions. A relation is a subset of

Σn
I × ΣO, or alternatively, it is a function that maps Σn

I to a

subset of ΣO. Any partial function can be viewed as a (total)

relation, where on an input x which is not in the domain of the

partial function, the corresponding relation relates all output

symbols to x (meaning that if x is the input, any output symbol

is considered valid).

Given a boolean function f (or, more generally, a relation),

we will denote its deterministic query complexity by D(f).
This is the minimum height of a decision tree D which

correctly computes f(x) on any x ∈ Dom(f); in other words,

it is the minimum number of worst-case adaptive queries

required by a deterministic algorithm computing f . For a

formal definition, see [BdW02].

In this work we will mostly be dealing with randomised

algorithms rather than deterministic ones, so let us more

carefully define those. A randomised query algorithm or

randomised decision tree will be a probability distribution

over deterministic decision trees. Such deterministic decision

trees will have internal nodes labeled by [n] := {1, 2, . . . , n}
(representing the index of the input to query), arcs labeled by

ΣI (representing the symbol we might see after querying an

index), and leaves labeled by ΣO (representing output symbols

to return at the end of the algorithm). We will assume that no

internal node shares a label with an ancestor, meaning that a

deterministic algorithm does not query the same index twice.

For such a randomised algorithm R and for an input x ∈ Σn
I ,

we denote by R(x) the random variable we get by sampling a

deterministic tree D from R, and returning D(x) (the label

of the leaf of D reached after starting from the root and

taking the path determined by x). For a function f , we write

errf (R, x) := PrR[R(x) 	= f(x)] (or PrR[R(x) /∈ f(x)] if f
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is a relation), and we write bias±f (R, x) := 1 − 2 errf (R, x),

biasf (R, x) := max{bias±f (R, x), 0}; we omit the subscript f
when it is clear from context.

For a deterministic tree D, let cost(D,x) be the number

of queries D makes on input x; this is the height of the leaf

of D that is reached when D is run on x. For a randomised

algorithm R, we then define cost(R, x) := ED∼R[cost(D,x)]
(this is the expected number of queries R makes when run on

x).

We extend both of the above to distributions μ over Σn
I

instead of just inputs x; that is, define

bias±f (R,μ) :=Ex∼μ[bias±f (R, x)]

=Ex∼μED∼R[bias±f (D,x)]

cost(R,μ) := Ex∼μ[cost(R, x)] = Ex∼μED∼R[cost(D,x)],

with biasf (R,μ) := max{bias±f (R,μ), 0}. We also define

tran(R,μ) to be the random variable we get by sampling a

decision tree D from R, a string x from μ, and returning

the pair (D, �), where � is the leaf of D reached when

D is run on x. Intuitively, tran(R,μ) is the “transcript”

when R is run on an input sampled from μ, and such a

transcript records all information that an agent running R
knows about the input x at the end of the algorithm. We will

use TV(μ, ν) := 1
2

∑
x∈X |μ[x] − ν[x]| to denote the total

variation distance between distributions μ and ν over set X .

Most often, we will employ it with respect to the transcript

of R on two different distributions as a way to quantify the

extent to which R can tell these distributions apart.

We say that a randomised algorithm R computes f to

error ε if errf (R, x) ≤ ε for all x ∈ Dom(f). We then

let Rε(f) the minimum possible value of maxx cost(R, x)
over randomised algorithms R satisfying errf (R, x) ≤ ε
for all x ∈ Dom(f). We also use Rε(f) to denote the

minimum number T such that there is a randomised algorithm

R with errf (R, x) ≤ ε for all x ∈ Dom(f) such that all

decision trees in the support of R have height at most T .

The difference between Rε(f) and Rε(f) is that the former

measures the worst-case cost of an algorithm computing f to

error ε (maximizing over both the input string and the internal

randomness), while the latter measures the expected worst-

case cost of the algorithm computing f to error ε (this still

maximizes over the input strings x, but takes an expectation

over the internal randomness of the algorithm R).

It is easy to see that Rε(f) ≤ Rε(f) for all f . The other

direction also holds if we tolerate a constant-factor loss, as

well as an additive constant loss in ε; to see this, note that if

we cut off the Rε(f) algorithm after it makes 10 times more

queries than it is expected to, then the probability of reaching

such a cutoff is at most 1/10 by Markov’s inequality, and

hence the error probability of the algorithm increases by at

most 1/10; this converts an Rε(f) algorithm into a Rε(f)
algorithm.

Standard error reduction techniques imply that for a boolean

function f , Rε(f) is related to Rε′(f) by a constant factor that

depends only on ε and ε′, so long as both are in (0, 1/2). For

this reason, the value of ε does not matter when ε is a constant

in (0, 1/2) (so long as we ignore constant factors and so long

as the function is boolean), so we omit ε when ε = 1/3. The

same error reduction property holds for Rε(f). Combined with

the Markov inequality argument above, both R(f) and R(f)
are the same measure (up to constant factors) for a boolean

function and for constant values of ε.
We warn that these equivalences break if f is not boolean

(especially if f is a relation) or if the value of ε is not constant;

in particular, when ε = 1/n or when ε = 1/2−1/n, the values

of Rε(f) and Rε(f) may differ by more than a constant factor.

B. Linearised R
For a (possibly partial) boolean function f on n bits, we

define

LR(f) := min
R

max
x

cost(R, x)

bias(R, x)
.

Here R ranges over randomised decision trees and x ranges

over the domain of f , and we treat 0/0 as ∞.

We call this measure linearised randomised query complex-
ity. The name comes from the linear dependence on the bias

achieved by the algorithm. Note that if we wanted to amplify

bias γ to constant bias, we would, in general, have to repeat

the algorithm Θ(1/γ2) times to do so. In some sense, then,

the measure R(f) charges 1/γ2 for an algorithm that achieves

bias γ instead of achieving constant bias. The measure LR(f),
in contrast, charges only 1/γ for such an algorithm, so it can

be up to quadratically smaller than R(f).
A minimax theorem for ratios such as [BB20a] (Theo-

rem 2.18) can show that

LR(f) = max
μ

min
D

cost(D,μ)

bias(D,μ)
, (5)

where D ranges over deterministic decision trees and μ ranges

over probability distributions over Dom(f).
It is not hard to see that the maximizing distribution μ above

will place equal weight on 0 and 1 inputs. This is because

otherwise, we could take D to be a decision tree that makes

0 queries, and then cost(D,μ) would be 0 while bias(D,μ)
would be positive.

If μ is balanced over 0 and 1 inputs, we may express it as

μ := μ0/2 + μ1/2 and it is not hard to show that for the best

possible choice of leaf labels for an unlabeled decision tree

D, we have

bias(D,μ)± = bias(D,μ) = TV(tran(D,μ0), tran(D,μ1)).

This follows, for example, from [BB20a] (Lemma 3.9); to see

this intuitively, recall that tran(D,μ) is the random variable

for the leaf of D reached when D is run on μ, and note

that the best choice of leaf label if D reaches a leaf � is 0
if the probability of D reaching � is higher when run on μ0

than on μ1, and it is 1 otherwise. Therefore, the bias for the

best choice of leaf labels is the sum, over leaves � of D,

of 2max{Prμ0
[�],Prμ1

[�]} − 1, which is easily seen to be

the total variation distance between the two distributions over

leaves.
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Given (??), we can also write

LR(f) = max
μ0,μ1

min
D

cost(D, μ0+μ1

2 )

TV(tran(D,μ0), tran(D,μ1))
,

where μ0 ranges over probability distributions with support

f−1(0) and μ1 ranges over probability distributions with

support f−1(1). Observe that neither the top nor the bottom

depend on the leaf labels of D, so we can now assume D is an

unlabeled decision tree if we wish. Note also that cost(D,μ)
is linear in the second argument, so we can write

LR(f) = max
μ0,μ1

min
D

cost(D,μ0) + cost(D,μ1)

2TV(tran(D,μ0), tran(D,μ1))
.

We clearly have

LR(f) ≥ max
μ0,μ1

min
D

min{cost(D,μ0), cost(D,μ1)}
TV(tran(D,μ0), tran(D,μ1))

.

Lemma 7. For any fixed μ0 and μ1, we have

min
D

cost(D,μ1)

TV(tran(D,μ0), tran(D,μ1))

≤ 6min
D

cost(D,μ0)

TV(tran(D,μ0), tran(D,μ1))
.

Proof. See the full version of this article [BDBGM22].

Corollary 8.

LR(f) ≥ max
μ0,μ1

min
D

min{cost(D,μ0), cost(D,μ1)}
TV(tran(D,μ0), tran(D,μ1))

and

LR(f) ≤ 6 max
μ0,μ1

min
D

min{cost(D,μ0), cost(D,μ1)}
TV(tran(D,μ0), tran(D,μ1))

One useful property of LR complexity is that up to a

multiplicative factor of 2, we can consider only randomised

decision trees that always query at least one bit of their input.

Lemma 9. For every non-constant partial function g, there is
a randomised decision tree A that always queries at least one
bit of g’s input and satisfies, for every x,

cost(A, x)

bias(A, x)
≤ 2 · LR(g).

Proof. See the full version of this article [BDBGM22].

As a corollary, we obtain a universal lower bound on the

LR complexity of every non-constant function.

Corollary 10. For every non-constant partial function g,
LR(g) ≥ 1

2 .

Proof. By Lemma 9, there exists a randomised decision tree

A that always queries at least one bit of its input and satisfies

cost(A, x)/bias(A, x) ≤ 2·LR(g) for all x in the domain of g.

But since A always makes at least one query, cost(A, x) ≥ 1.

And by definition, bias(A, x) ≤ 1, so the cost-bias ratio of A
is always bounded below by 1.

III. AN OVERVIEW OF THE COMPOSITION THEOREM

In the following sections, we prove our inner-optimal com-

position theorem, Theorems 1 and 2 restated below, along with

related results.

Theorem 1. R(f ◦g) ≥ Ω(R(f)LR(g)) for all partial boolean
functions f, g.

Theorem 2. Theorem 1 is optimal: If M is any complexity
measure such that R(f ◦ g) ≥ Ω(R(f)M(g)) for all partial
f, g, then LR(g) ≥ Ω(M(g)) for all partial g.

The heart of the proof of Theorem 1 is a simulation theorem

showing that for any two distributions μ0 and μ1 and any

decision tree T , it is possible to simulate T on inputs drawn

from μb for some initially unknown b ∈ {0, 1} while querying

the actual value of b with probability bounded by the total

variation distance between the two distributions μ0 and μ1.

This result, Theorem 11, is established in Section IV.

In Section V, we use the simulation theorem to complete

the proof of the main composition theorem, Theorem 13, a

slightly more general version of Theorem 1. We also use the

simulation theorem to establish the perfect composition for LR
complexity, Theorem 3, in this section.

The proof of Theorem 2 is completed in Section VI.

Finally, in Section VII, we establish the separation between

LR complexity and max-conflict complexity of Lemma 4.

IV. DECISION TREE SIMULATION THEOREM

An online decision tree simulator is a randomised algorithm

that is given two distributions μ0 and μ1 on inputs {0, 1}n,

oracle access to a bit b ∈ {0, 1}, and a stream of queries

i1, . . . , ik ∈ [n] that represent the queries made by a decision

tree T that is not known to the algorithm. The goal of an online

decision tree simulator is to answer the queries according to

the distribution μb while querying the value of b itself with

as small probability as possible. We think of this protocol as

having a big red button that gives b, and it tries to pretend to

have a sample from μb without pressing the button for as long

as possible.

Theorem 11. There exists an online decision tree simulator
that simulates the queries of T on μb while querying the value
of b with probability TV

(
tran(T, μ0), tran(T, μ1)

)
.

The algorithm that satisfies the theorem is stated below. In

the algorithm, x ∈ {0, ∗, 1}n is a partially defined boolean

string: the coordinates labelled with ∗ are undefined. Given a

string x ∈ {0, ∗, 1}n, an index i ∈ [n], and a value a ∈ {0, 1},
the notation x(i←a) denotes the string y which equals x on all

coordinates except i, where it takes the value yi = a.

Note that each vertex in a decision tree T corresponds to

the partial string x ∈ {0, 1, ∗}n of the values revealed on the

path to that vertex in T . Our main task is to show that each

vertex in T (including each leaf) is reached with probability

μb(x) in the algorithm and that the probability that we reach

x and don’t reveal b along the way is μmin(x).
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Algorithm 1: ONLINEQUERYSIMULATOR(μ0, μ1)

for all x ∈ {0, ∗, 1}n do
μmin(x)← min{μ0(x), μ1(x)};

x← ∗n;

b← ∗;
while more queries remain do

i← NEXTQUERY;

u← μmin(x
(i←0)) + μmin(x

(i←1));

if b = ∗ then
With probability 1− u/μmin(x), query the

value of b;

if b = ∗ then
xi ← Ber

(
μmin(x

(i←1))/u
)
;

else
xi ← Ber

(
μb(x

(i←1))−μmin(x
(i←1))

μb(x)−u
)

;

Lemma 12. For every x ∈ {0, 1, ∗}n, when we run the
ONLINEQUERYSIMULATOR, then

1) We reach the vertex x with probability μb(x), and
2) We reach the vertex x and don’t query the value b on the

way to x with probability μmin(x).

Proof. We prove the claim by induction on the number of

defined coordinates on x. The base case corresponds to x =
∗n, which trivially satisfies both conditions of the claim.

Consider now any x 	= ∗n. Let z be the parent of x in the

decision tree T , and let i denote the coordinate where zi = ∗
and xi 	= ∗. Define also y to be x’s sibling in T . Let us assume

that xi = 1. (The case where xi = 0 is essentially identical.)

By the induction hypothesis, the probability that we reach

z and don’t query the value b is μmin(z). With probability(
μmin(x) + μmin(y)

)
/μmin(z), we don’t query the value of b

while processing the query i either. And when this occurs the

algorithm next reaches x with probability μmin(x)/
(
μmin(x)+

μmin(y)
)
. So the overall probability that we reach x without

querying b along the way is

μmin(z)· μmin(x) + μmin(y)

μmin(z)
· μmin(x)

μmin(x) + μmin(y)
= μmin(x).

Next, by the induction hypothesis again the probability that

we query the value of b either on the way to z or while

processing the query i is

(μb(z)− μmin(z)) + μmin(z) ·
(
1− μmin(x) + μmin(y)

μmin(z)

)

= μb(z)−
(
μmin(x) + μmin(y)

)
.

Then the probability we output x conditioned on having

revealed b is

μb(x)− μmin(x)

μb(z)− (μmin(x) + μmin(y))
,

so that the overall probability that we reach x and reveal

b along the way is μb(x) − μmin(x). Therefore, the overall

probability that we reach x is μb(x).

The proof of Theorem 11 is now essentially complete, as it

just requires combining the lemma with a simple identity on

total variation distance.

Proof of Theorem 11. Lemma 12 implies that the Oracle-

QuerySimulator indeed reaches each leaf with the correct

probability μb(x). And the probability that it queries the

value of b is 1−∑
�∈T min{μ0(�), μ1(�)}, which is the total

variation distance between tran(T, μ0) and tran(T, μ1).

V. COMPOSITION THEOREMS

The inner-optimal composition theorem, Theorem 1, is

established in Section V-A. In fact, we establish a slight

generalization of that theorem, stated below in Theorem 13.

Then the perfect composition theorem for LR complexity,

Theorem 3, is established in Section V-B.

A. Composition for randomised query complexity

For a boolean string y ∈ {0, 1}n and a pair of distributions

μ0, μ1, we define y ◦ (μ0, μ1) to be the product distribution⊗n
i=1 μyi

. In particular, if μ0 and μ1 are hard distributions

for the 0- and 1-inputs of g respectively, and if y is an input

to f , then y ◦ (μ0, μ1) will give a distribution over the inputs

to the composed f ◦ g (all of which correspond to the same

f -input y).

We prove the following composition theorem, which is a

slightly more general version of Theorem 1.

Theorem 13. Let ΣI and ΣO be finite alphabets, and let
n,m ∈ N. Let f ⊆ {0, 1}n×ΣO be a (possibly partial)
relation on n bits, and let g : Dom(g) → {0, 1} be a
(possibly partial) boolean function, with Dom(g) ⊆ Σm

I . Let
ε ∈ [0, 1/2). Then

Rε(f ◦ g) ≥ Rε(f)LR(g)/6.

Proof. Let μ0 and μ1 be distributions over the 0-inputs and

1-inputs to g, respectively, that maximize the expression in the

right-hand side of Corollary 8. Let Π be the online decision

tree simulator from Theorem 11. Let R be a randomised

algorithm that computes f ◦ g to error ε using Rε(f ◦ g)
expected queries. We describe a randomised algorithm R′ for

computing f on worst-case inputs.

Given input y ∈ {0, 1}n, the algorithm R′ will instantiate n
copies of Π, which we denote Π1,Π2, . . . ,Πn, one for each

bit of the input; if protocol Πi presses the button, it gets yi
(and this causes R′ to make a real query to the real input).

Each of these copies of Π will assume the distributions to be

simulated are μ0 and μ1. Then R′ will run R, and whenever

R makes a query (i, j) (corresponding to querying bit j inside

of the i-th copy of g), the algorithm R′ will ask Πi to give

an answer to query j, and it will use that answer to determine

the next query of R.

Note that since the protocols Πi are guaranteed to be sound,

the outcome of the simulation of R made by R′ is precisely

the same (in distribution) as the outcome of running R on an

input sampled from y ◦ (μ0, μ1). Therefore, by the correctness

guarantee of R, the output will be a valid output for f(y)
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except with error probability ε. It remains to show that for

each y ∈ Dom(f), the expected number of real queries R′

makes when run on y is at most 6Rε(f ◦ g)/LR(g).

Fix any y ∈ Dom(f). Now, when R′ is run on y, let T be

the expected number of fake queries it makes; in other words,

let T = cost(R, y ◦ (μ0, μ1)) ≤ Rε(f ◦ g). For each i, let Ti

be the expected number of queries to Πi that R′ makes when

run on y, so that T1 + T2 + · · ·+ Tn = T . Let pi the overall

probability that Πi presses the button when R′ runs on y; the

sum q = p1 + p2 + · · ·+ pn is therefore the expected number

of real queries made by R′ on y. We would like to show that

q ≤ 6T/LR(g), or equivalently, T/q ≥ LR(g)/6.

Since T/q = (T1+ · · ·+Tn)/(p1+ · · ·+pn), there must be

some i such that T/q ≥ Ti/pi. It will therefore suffice to show

that Ti/pi ≥ LR(g)/6 for all i ∈ [n]. Fix such i, and recall that

Ti is the number of (fake) queries R′ makes to Πi when run

on y, and pi is the probability that Πi presses the button when

R′ is run on y. Consider the algorithm Ry,i which takes in an

input x in Dom(g), generates n−1 additional fake inputs to g
from the distributions μy�

for � 	= i, places the real input x as

the i-th input among the n inputs to g, and runs R on this tuple

(treating it as an input to f ◦ g). Note that when Ry,i is run

on an input from μyi , its behavior is exactly the same as the

behavior of R when run on y◦(μ0, μ1); therefore, it makes Ti

expected queries. Consider running Ry,i with query answers

generated by Π instead of by making real queries; then when

Π uses the hidden bit yi and simulates the distributions μ0, μ1,

the behavior of Ry,i is the same as when we run it on μyi
,

and hence the expected number of queries it makes to Π is Ti

and the probability that Π presses the button is exactly pi.

Now, by Theorem 11, we know that Π presses the button

with probability TV(tran(D,μ0), tran(D,μ1)) when simulat-

ing a deterministic decision tree D. For a random decision

tree such as the one given by Ry,i, the probability pi of

the button being pressed will be the mixture of the values

TV(tran(D,μ0), tran(D,μ1)) for the deterministic decision

trees D in the support of Ry,i. Also, the expected num-

ber of queries Ti that Ry,i makes is a matching mixture

of the expected number of queries made by the decision

trees D in the support of Ry,i; the latter is cost(D,μyi).
Hence to lower bound Ti/pi, it will suffice to lower bound

cost(D,μyi
)

TV(tran(D,μ0),tran(D,μ1))
for all deterministic decision trees D

acting on inputs in Dom(g). We now write

cost(D,μyi
)

TV(tran(D,μ0), tran(D,μ1))

≥ min{cost(D,μ0), cost(D,μ1)}
TV(tran(D,μ0), tran(D,μ1))

≥ LR(g)/6

(using Corollary 8). The desired result follows.

B. Composition for LR complexity

Theorem 3. LR(f ◦ g) ≥ Ω(LR(f)LR(g)) for all partial
boolean functions f, g.

We actually prove the more explicit result LR(f ◦ g) ≥
LR(f)LR(g)/6.

Proof. The proof is similar to that of Theorem 13. We fix hard

distributions μ0 and μ1 for LR(g), and we fix a randomised

algorithm R for f ◦g such that maxz cost(R, z)/bias(R, z) ≤
LR(f ◦ g). We then define a randomised algorithm R′ for f ;

this time, unlike in the proof of Theorem 13, we want R′ to

solve f in the LR(f) sense instead of being a randomised

algorithm that solves f to error ε. We define R′ as before:

on input y ∈ Dom(f), R′ instantiates n protocols Πi, one

for each bit of y; it instantiates each with the distributions

(μ0, μ1), and gives Πi the hidden bit yi if it presses the button.

Then R′ will run R, and whenever R makes a query (i, j) (to

the bit j inside the i-th input to g), R′ will ask Πi for bit j.
Note that by the soundness of the protocols Πi, we have

bias(R′, y) = bias(R, y ◦ (μ0, μ1)). We will next show that

cost(R′, y) ≤ 6 cost(R, y ◦ (μ0, μ1))/LR(g); This way, we

will have

LR(f) = max
y

cost(R′, y)
bias(R′, y)

≤ 6

LR(g)
max

y

cost(R, y ◦ (μ0, μ1))

bias(R, y ◦ (μ0, μ1))

≤ 6

LR(g)
max

z

cost(R, z)

bias(R, z)

≤ 6LR(f ◦ g)
LR(g)

.

Fix any y ∈ Dom(f); it remains to show that cost(R, y ◦
(μ0, μ1))/ cost(R

′, y) ≥ LR(g)/6. For every i ∈ [n], let Ti

be the expected number of queries R makes to the i-th input

on y ◦ (μ0, μ1), and let pi be the probability that R′ queries

the i-th bit when run on input y. Let T = T1 + · · · + Tn,

and let q = p1 + · · ·+ pn. We wish to show T/q ≥ LR(g)/6.

This precise statement was shown in the proof of Theorem 13,

which completes this proof as well.

VI. OPTIMALITY OF THE COMPOSITION THEOREM

We complete the proof of Theorem 2 in this section.

Theorem 2. Theorem 1 is optimal: If M is any complexity
measure such that R(f ◦ g) ≥ Ω(R(f)M(g)) for all partial
f, g, then LR(g) ≥ Ω(M(g)) for all partial g.

The proof of Theorem 2 is obtained by a characteriza-

tion of LR complexity in terms of the complexity of func-

tions composed with the approximate index partial function

APPROXINDEXk : {0, 1}k × {0, 1, 2}2k → {0, 1, ∗} where

APPROXINDEXk(a, y) = ya if if ya ∈ {0, 1}, yb = ya for

all |b − a| ≤ k
2 − 2

√
k log k and yb = 2 for all other b

and APPROXINDEXk(a, y) = ∗ else. The randomised query

complexity of the approximate index function is as follows.

Lemma 14 ([BB20b, Lemma 27]). R(APPROXINDEXk) =
Θ

(√
k log k

)
.

The key to the proof of Theorem 2 is the following

characterization of LR complexity in terms of composition

with the approximate index function.
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Lemma 15. For every partial boolean function g : Σm →
{0, 1, ∗}, when k ∈ N satisfies k

log k ≥ (36m)2 then

LR(g) = Θ

(
R(APPROXINDEXk ◦ g)

R(APPROXINDEXk)

)
.

Proof. The lemma trivially holds when g is a constant func-

tion. For the rest of the proof, fix g to be any non-constant

partial function. Theorem 1 implies the upper bound

LR(g) = O

(
R(APPROXINDEXk ◦ g)

R(APPROXINDEXk)

)
.

The goal of the remainder of the proof is to establish a

matching lower bound by showing that

R(APPROXINDEXk ◦ g) = O
(√

k log k · LR(g)
)
.

This bound suffices to complete the proof because R(f) =
Θ(R(f)) for every partial function f .

Let R denote a randomised algorithm that satisfies

cost(R, x) ≤ 2 · LR(g) · bias(R, x)

for all x in the domain of g and always queries at least one

bit of its input. Such an algorithm is guaranteed to exist by

Lemma 9. We define a new randomised algorithm A that

proceeds as follows: it runs the algorithm R sequentially on

the first instances x1, x2, . . . , x� of g which correspond to

the initial address bits of the input to APPROXINDEXk. It

continues this process until the total number of queries made

to the underlying inputs exceeds 36
√
k log k · LR(g). By the

choice of k and the trivial bound LR(g) ≤ m, this process

terminates when R has computed the first � instances of g
with some biases b1, . . . , b� for some � ≤ k. The algorithm

A then guesses the value of the remaining k − � bits of the

address. It finally computes the value of g on the instance

corresponding to the address obtained with error probability

at most 1
9 and returns that value.

Let c1, . . . , c� denote the query cost incurred by R when

running on the � computed instances of g. The random

variables (Xi)i≤k defined by Xi =
∑

j≤i cj − cost(R, xj)
form a discrete-time martingale and � is the stopping time of

this martingale. By the optional stopping theorem, E[X�] = 0.

So E[
∑

i≤� ci] =
∑

i≤� cost(R, xi). By Markov’s inequality,

the probability that the total cost exceeds 6 times the expected

cost on the same inputs is at most 1/6; let us consider from

now on only the case when this does not occur. In this case,

�∑
i=1

cost(R, xi) ≥ 1

6

�∑
i=1

ci ≥ 6
√
k log k · LR(g).

By our choice of R, the biases β1, . . . , β� on the values

g(x1), . . . , g(x�) satisfy
∑�

i=1 βi ≥ 3
√
k log k and so if we

let b ∈ {0, 1}k denote the address computed by the algorithm,

we observe that

E
[|b− a|] =

k∑
i=1

Pr[bi 	= g(xi)] ≤ k

2
− 3

√
k log k.

Furthermore, each of the k events bi 	= g(xi) are independent.

So by Hoeffding’s bound the probability that more than k
2 −

2
√
k log k of these events occur is at most e−2 log2 k, which

is less than 1
9 when k ≥ 3. When this event does not occur,

the address b computed by the algorithm satisfies xb = xa.

Since A lastly computes g(xb) with error at most 1
9 , in total

it computes APPROXINDEXk ◦ g with error at most 1
3 .

It remains to show that the expected query cost of the algo-

rithm A satisfies the desired bound. The first round of the algo-

rithm uses at most 36
√
k log k ·LR(g) queries plus the number

of queries of the instance of R run on x�. In expectation, this

additional number of queries is at most cost(R, x�) ≤ LR(g).
And then computing g(xb) requires another R(g) ≤ m <

√
k

queries. So the overall expected query complexity of A is

at most (36
√
k log k + 1) · LR(g) +

√
k. By Corollary 10,

LR(g) ≥ 1
2 for every non-constant function g so this query

complexity is bounded above by O
(√

k log k · LR(g)
)
, as

required.

The proof of Theorem 2 now follows easily from

Lemma 15.

Proof of Theorem 2. Let M be a measure that satisfies the

condition of the theorem. Then, choosing f to be the

APPROXINDEXk function for a large enough value of k and

applying Lemma 15, we obtain

M(g) = O

(
R(APPROXINDEXk ◦ g)

R(APPROXINDEXk)

)
= O (LR(g)) .

VII. SEPARATION FROM χ

In this section, we exhibit a polynomial separation between

LR and χ, the max conflict complexity introduced by Gavin-

sky, Lee, Santha and Sanyal in [GLSS19] (see Section VII-A

for a formal definition of χ).

Lemma 4. There exists a partial f such that LR(f) ≥
Ω(χ(f)1.5).

Proof. The function f we build takes input of size n2 +
√
n

with format (x1, . . . , xn2 , a1, . . . , a√n). The function value

is given as the parity of GAPMAJ(x) and XOR(a), i.e.:

f(x1, . . . , xn2 , a1, . . . , a√n)

= GAPMAJ
n2

n−1/2(x1, . . . , xn2)⊕ XOR√n(a1, . . . , a
√
n)

GAPMAJ
n2

n−1/2(x) is the majority function on n2 bits with

promise that |x| /∈ [n2/2−n3/2, n2/2+n3/2] so that returning

the value of a random index holds bias at least n−1/2. Thus,

f is a partial function whose domain is constrained by the gap

majority instance. Lemma 16 shows that LR(f) ≥ Ω
(
n3/4

)
and Lemma 17 that χ(f) ≤ O(n1/2), as desired.

Lemma 16. LR(F ) ≥ Ω
(
n3/4

)
Proof. See the full version of this article [BDBGM22].

633



A. An upper bound for χ

We recall here the definition of max conflict complexity (but

see [GLSS19] for an in-depth treatment of the measure). Let

f be a fixed boolean function, μ0, μ1 a pair of distribution

over f−1(0) and f−1(1) respectively and D a deterministic

decision tree solving f . For each node v in D, we let

μ0|v, μ1|v be the distributions conditioned on reaching v and

q(v) be the index queried at node v. Furthermore, we associate

to each v ∈ N (D) a number RD
μ (v) inductively. If v is the

root of D, we let RD
μ (v) = 1 and if v is the child of w which

is reached when the query answer to q(w) is b ∈ {0, 1}:
RD

μ (v)

= RD
μ (w) ·min

{
Pr

x∼μ0|w
[xq(w) = b], Pr

x∼μ1|w
[xq(w) = b]

}

Finally, we define ΔD
μ (v) for each v ∈ N (D) with:

ΔD
μ (v) :=

∣∣Prx∼μ0|w [xq(v) = 0]− Prx∼μ1|w [xq(v) = 0]
∣∣

RD
μ (v) can be interpreted as the probability of reaching node

v in a random walk that starts at the root and with probability

min{Prx∼μ0|v [xi = 0],Prx∼μ1|v [xi = 0]} moves left, with

probability min{Prx∼μ0|v [xi = 1],Prx∼μ1|v [xi = 1]} moves

right and with remaining probability ΔD
μ (v) stops. As such,

it holds that
∑

v∈N (D) Δ
D
μ (v)RD

μ (v) = 1 and that for any

partition Γ of {0, 1}n we have
∑

γ∈Γ R
D
μ (γ) ≤ 1. The max

conflict complexity χ(f) is defined as:

χ(f) := max
Q

min
D∈D(f)

E
μ∼Q

[∑
v∈N (D)

|v|ΔD
μ (v)RD

μ (v)

]

Where Q ranges over distributions of pairs of distributions

over f−1(0) and f−1(1) and D(f) is the set of all decision

tree solving f correctly.

Lemma 17. χ(F ) ≤ O(n1/2)

Proof. See the full version of this article [BDBGM22].
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