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Abstract 

 
Job-shop scheduling problem (JSSP) is one of the most difficult scheduling problems, as it is classified as NP-hard 
problem. In this paper, a hybrid approach based on a genetic algorithm and some heuristic rules for solving (JSSP) is 
presented. The scheduling heuristic rules are integrated into the process of genetic evolution. The algorithm is 
designed and tested for the scheduling process in two cases in which the first generation the initial population is 
either random generation or the results obtained from some active heuristics rules. To speed up the generation of 
heuristics rules, a weighted priority rules are used as heuristic rules for achieving better performances for generating 
feasible schedules. The results of the purposed hybrid algorithm of this paper are promising where these results are 
compared to benchmark problems results. 
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1. Introduction      
Scheduling is a well-known problem that deals with the efficient allocation of resources with respect to time in order 
to perform a collection of tasks. Job shop scheduling is one of the widely studied and most complex combinatorial 
optimization problems, as it is classified as NP-Hard problem and therefore no deterministic algorithms can solve 
them in a reasonable amount of time [1]. Job shop scheduling was primarily treated by the branch-and bound 
method [2], and some heuristic procedures based on priority rules. In the recent years, many researchers have 
become interested in such problems. Many complex problems have been studied and solved by met heuristic search 
techniques such as Tabu Search (TS), Genetic Algorithm (GA) [3, 4, and 1] and Simulated Annealing (SA). These 
techniques have been employed to deal with complex scheduling problems which are capable of producing high 
quality solutions with a reasonable computational effort [5]. Genetic algorithm proposed by Holland (1975) and 
Goldberg (1989) have been applied in a number of fields, e.g. mathematics,  engineering, biology, and social science 
as mention by Zandieh et al [6]. GA is an optimization search method motivated by natural selection and natural 
evolution. It maintains a population where each individual is characterized by its chromosome. Each chromosome 
consists of a sequence of genes. The idea is to get a new population with better desired characteristics than the 
previous. The process is repeated for the newly obtained set of solutions until a desired level of performance is 
obtained. Genetic algorithms have proven their efficiency in solving high complexity combinatorial optimization 
problems, thus many researchers have applied them also to the scheduling problems [7, 3, and 8]. The 
implementation time of the GA can be defined as the time required by the algorithm to render an optimal or 
satisfactory solution. This time reflects the solution quality comprising each generation. If the quality of solutions is 
poor, i.e. the individuals are beyond the fitness function or imposed constraints, then the results seem to be hopeful 
but, the GA will take more time to render or reach the best solution. Some techniques and operators are used to 
improve the solutions quality. The performance of GAs solutions depends on the quality of the initial population [9-
12] on which the quality and performance of the next populations generations will depend on. This article focuses on 
this fact and tries to use some recommended heuristics and developed heuristic rules in the current article for 
generating good solutions for JSSP and then used these generated solutions rendered by heuristics as initial 
population for the genetic algorithm.   The remainder of the paper is organized as follows. Section 2 describes 
problem structure. Sections 3, 4 present the optimization approach for the JSSP. Section 5 tests the optimization 
approach on benchmark problem. Finally, conclusion and remarks are given in Section 6. 
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2. Job-Shop Scheduling Problem 
JSSP can be stated as a set of n jobs to be processed on a set of m machines, where each job j visits a number of 
machines in a predetermined order. The processing times for each job at each machine are given and no machine can 
process more than one job at a time. If a job is started on a machine, then it cannot be interrupted [6]. The problem is 
finding a schedule of the jobs on the machines. The assumptions of the present problem are:  

• Every job has a unique sequence on m machines. There are no alternate routings. 
• There is only one machine of each type in the shop.  
• Processing times for all jobs are known and constant.  
• All jobs are available for processing at time zero. 
• Machine absences are not allowed. 
• Transportation time between machines is zero. 
• Each machine can perform only one operation at a time on any job. 
• An operation of a job can be performed by only one machine.  
• Operation cannot be interrupted. 
• A job does not visit the same machine twice. 
• An operation of a job cannot be performed until its preceding operations are completed. 
• Each machine is continuously available for production. 
• There is no restriction on queue length for any machine. 
• There are no limiting resources other than machines/workstations 
• The machines are not identical and perform different operations [6]. 

  
3. Generating Dispatching Rules 
 
3.1 Common priority rules  
Priority dispatching rules are actually the most widely used for solving JSSP where all the operations available to be 
scheduled are assigned a priority. The operation with the highest priority is chosen to be sequenced first. The 
heuristic rules used in the current work and of promising results as indicated by many researchers and of a 
significant optimization capacity are listed in Table 1 [3, 1, and 13]. 
 

Table 1. Common priority rules 
 
 

 

Expression Description 

Shortest Processing Time (SPT) 
The job with shortest time on machines selected. 
Pi  ≤ Pi+1 ≤   Pi+2     ≤ …………≤ Pn 

 

Longest Processing Time (LPT) 
The job with longest  processing time on machine is selected. 
Pi  ≥Pi+1 ≥Pi+2     ≥…………≥ Pn 

 
Minimum Slack Time Per  Operation 
(MINSOP) 

Time remaining until the due date - processing time remaining 

Minimum Due Date (MINDD) 
The job with the earliest due  dates processed first. 
Di  ≤ Di+1 ≤   Di+2     ≤ …………≤ Dn 

 
RANDOM  (random selection) Selects the next job to be processed at random. 

Critical Ratio (CR) Remaining due date / Remaining processing time 

Most work remaining (MWKR) 
select the operation associated with the job of the most work 
 remaining to be processed. 
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Least work remaining (LWKR) 
select the operation associated  with the job of the least work 
 remaining to be processed 

Most Operation  Remaining (MOPNR) 
select the operation that has largest number of successor. 
operations. 

Shortest Remaining 
 Minimum  Processing Time (SRMPT) 

Min (processing time remaining – min processing time). 

Longest Remaining Maximum  Processing 
Time (SRMPT) 

Max (processing time remaining – max processing time). 

Fewest Number of Operation  Remaining 
(FOPNR)  

Min Ratio (operation remaining for job / sum of operations). 

Greatest Number of Operation  Remaining 
(GOPNR)  

Max Ratio (operation remaining for job / sum of operations).  

SPT/WKR  (smallest weight ratio of  processing   time to work remaining) 

Shortest Weight Process Time (SWPT) 
 

Pj ≤ 
Pj+1 

Wj Wj+1 

Longest  Weight Process Time (LWPT) 

 

Pj ≥ 
Pj+1 

Wj Wj+1 

Shortest Weight Mean Processing Time 
(SWMPT) 

 
 Pk ≤ 

Pk+1 
Wk Wk+1 

Longest  Weight Mean Processing Time 
(LWMPT) 
 

 

Pk ≥ 
Pk+1 

Wk Wk+1 
 
 
3. 2 Developed priority rules 
Nine priority rules are proposed in the current work and tested on seventy instance cases representing job shop 
problem. Fifty percent of these seventy cases are classical job shop problem while the other fifty percent are 
flexible job shop problem. Also the previous eighteen priority rules are used for scheduling the instance cases under 
consideration.  The rendered results on the instance cases under consideration by either the common priority rules 
(eighteen) or the new proposed priority rules are compared under six measuring performance criteria. These 
measuring performance criteria are makespan, lateness, number of late/tardy jobs, tardiness, earliness, and number 
of early jobs. Also two scenario conditions are considered for the experimental study. These scenarios are based on 
the considered weight of each job where this weight is based on either the significant importance or based on its 
relative time to other times. Based on this assumption the first experimental scenario has been done based on 
randomized weight  values for the jobs to be scheduled while the second scenario is based on relative  time of the 
job to other jobs times. These two scenarios are considered for the experimental work in this study and compared to 
see the influence of weight on the scheduling process. However, the mathematical equations for the proposed rules 
are listed as follows: 

• Minimum Weighted Due Date (MINWDD): for this rule, the job with the earliest weighted due date is 
processed first. WiDi ≤ WI+1 Di+1 ≤ Wi+2 Di+2     ≤ ……≤ WnDn 
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• Weighted Shortest Processing Time (WSPT): for this rule, job with weighted shortest processing time on 
machine is selected. WiPi  ≤ Wi+1 Pi+1 ≤ Wi+2 Pi+2     ≤ ……≤ WnPn 

• Weighted Longest Processing Time (WLPT): for this rule, the job with weighted longest processing time 
on machine is selected. WiPi  ≥ Wi+1 Pi+1 ≥Wi+2 Pi+2     ≥………≥WnPn 

• Minimum Weighted Slack Time Per Operation (MINWSOP): The weighted time remaining until the due 
date minus weighted processing time remaining. 

• Weighted Critical Ratio (WCR):  
 
 
 
WiCRi≤Wi+1CRi+1≤Wi+2CRi+2 ≤..……≤WnCRn 
The job with the minimum value of WCR is scheduled next .This rule calculates the weighted ratio of 
demand time to supply time. When the weighted ratio exceeds a value of 1, there is sufficient time a 
available to complete The job if the queue times are properly managed. If the weighted ratio is less than 1, 
the job will be late unless processing times can be compressed. The WCR rule has slightly more intuitive 
appeal, since the WCR itself has a precise meaning. 

• Fewest Weighted Number of Operation Remaining (FWOPNR). 
• Greatest Weighted Number of Operation Remaining (GWOPNR). 
• Most Weighted Work Remaining (MWWKR): the operation associated with the job having the most 

weighted work remaining to be processed. 
• Least Weighted Work Remaining (LWWKR):  the operation associated with the job having the least 

weighted work remaining to be processed. 
The twenty seven rules are tested on seventy case instances of benchmark problems. The experiments are performed 
under two scenarios. The results clearly show that the developed heuristic rules are very promising and achieved 
better results than the most common and recommended heuristics used for many different instances [14]. The 
problem instances are tested through a software program that is designed and built in a structure of a decision 
support system. This system is capable of running all the twenty seven rules for any problem in the aim of achieving 
the minimum make span or the best solution that can be obtained by these embedded 27 rules for the tested or 
considered problem. The resulted solutions from the common priority rules (eighteen) and the developed priority 
rules are considered the first generation the initial population of the presented genetic algorithm. 
 
4. Genetic Algorithm Features 
In this research a hybrid genetic algorithm (HGA) based on rendered solutions as a first population for the genetic 
algorithm is presented. Figure 1 presents the flow chart of the proposed algorithm. The next sections introduce the 
genetic algorithm features. 
 
4.1 Chromosome representation 
The representation of a chromosome follows the genetic representation as given by [15] where each gene 
corresponds to one of n jobs and a chromosome corresponds to a solution (a sequence of jobs).The chromosome 
length is the sum of all the operations on all jobs. A string of triples (J, I, M) is used, one for each operation, where J 
is the considered job, I is the progressive number of that operation within job j, and M is the machine assigned to 
that operation. Table 2 presents one of the benchmark problems used in testing the genetic algorithm [3]. For such 
scenario, the chromosome representation is given in Figure 2. Each chromosome is represented by a list of job order, 
respective operation and machine sequence. In figure 2, the chromosome consists of five jobs each of five 
operations. The order of the job to be done is the first job, job 4 followed by Job5, Job2, Job3 and Job1. In Job4, the 
first operation (i.e. O1) is to be done at machine Mc2, then followed by operation two (i.e. O2) at machine Mc1,then 
followed by O3 at machine Mc5, then followed by O4 at machine Mc4, then followed by O5 at machine Mc3. 
Similarly, for job number 5 (i.e. Job5), the first operation is to be done at Mc2 and the second operation is to be done 
at Mc4, then followed by O3 at machine Mc5, then followed by O4 at machine Mc1, then followed by O5 at machine 
Mc3. The same procedure is applied for the other jobs.  
 
 

WCR = 
 

Remaining due date  ×weight Remaining processing time 
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Table 2. Machine order and processing time 
 

Job 
Operation 

1 2 3 4 5 
1 3,1 1,3 2,6 4,7 5,6 
2 2,8 3,5 5,4 4,4 1,1 
3 3,5 4,2 5,3 2,1 1,2 
4 2,5 1,4 3,2 4,3 5,1 
5 2,3 4,3 5,4 1,4 3,1 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
4.2 Initial population generation 
The first population currently set to (27) solutions is generated in two scenarios, in the first one the initial population 
is randomly generated for each instance based on JSP domain search space.  In second scenario, the initial 
population is generated based on the results obtained of both considered twenty seven heuristics rules. This allows 

Parent  = 

J4 J4,O1,M2 J4O2,M1 J4O3,M5 J4,O4,M4 J4O5,M3 

  

J5 J5,O1,M2 J5O2,M4 J5O3,M5 J5,O4,M1 J5O5,M3 

  

J2 J2,O1,M2 J2O2,M3 J2O3,M5 J2,O4,M4 J2O5,M1 

  

J3 J3,O1,M3 J3O2,M4 J3O3,M5 J3,O4,M1 J3O5,M2 

  

J1 J1,O1,M3 J1O2,M1 J1O3,M2 J1,O4,M4 J1O5,M5 

 Figure 2: Chromosome representation of solution 

Figure 1: Proposed algorithm flow chart 
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of the capability of the proposed genetic algorithm (GAs) for vastly obtaining a good initial set of feasible schedules 
(individuals). All the solutions in first population have not the same sequence order in order to maintain the diversity 
of individuals. 
 
4.3 Evaluation function  
The evaluation function is a measure of the fitness and quality of a chromosome relative to the other chromosome in 
a population. For a job shop, the make span (Cmax) is a good way to determine machine utilization. The chromosome 
with the least fitness function value is the most desired or considered as the best rendered solution. 
 
4.4 Selection strategy 
The proposed genetic algorithm uses a ranking strategy for chromosome selection; the population is ranked 
according to the fitness values of its members. Two individuals based on minimum make span are selected from the 
population for reproduction process. This is a process used to determine the number of trials for one particular 
individual used in reproduction. This means that all individuals in the population have the chances to reproduce. In 
each generation, a selection scheme is used to select the survivors to the next generation according to their fitness 
values. 
 
4.5 Crossover operators 
Offspring of crossover should represent solutions that combine substructures of their parental solutions. Many 
various crossover operators can be used such as single-point crossover ,two-point crossover, partial - mapped 
crossover (PMX),order crossover (OX), cycle crossover (CX), edge combination crossover (ERX) and job based 
order crossover etc. In the current research two methods of crossover operators are applied, single point crossover 
and multi-point crossover.  Both the applied crossover operators are selected randomly for each instance and remain 
constant. After the crossover is done, the new part chromosomes are checked for the validity of being new comer.  If 
not then, a repairing action is performed. This process is done to assure that the resulting string presents a complete 
sequence for processing the jobs. 
 
4.6 Mutation operators 
To maintain the genetic diversity from one generation to the next, the offspring solutions are mutated. In general, in 
this operation two genes are selected at random and their positions are exchanged. The need of mutation is to ensure 
that no item/task occurs more than once in the chromosome. Every mutation operator is applied to one chromosome 
and results in a different chromosome. Several mutation operators have been proposed for permutation 
representations, such as inversion, insertion, displacement, reciprocal exchange mutation, and shift mutation. The 
reciprocal exchange mutation is applied for the GA with probability 0.3 in this paper. 
 
4.7 Termination criterion 
The most common method is to stop after a predetermined number of generations have been evaluated. Another 
commonly used method is to terminate when the solution crosses a desired threshold or fitness value. In this paper 
200 generations are used as stopping criteria where it was a balance level and no more enhancements can be 
achieved. The final and the most important step in the proposed algorithm is to choose the individual to be replaced 
by child. In this paper, if the child has the same fitness value with the member of population it is considered as the 
worst individual in the population. In this case and instead of dropping that child, it is replaced by the old one to 
given another chance for the old individual to reproduce. However, if the makespan for the child is less than the 
worst one and not equal to any member of population, replace the worst individual with child’. If there is a member 
having the same makespan value, then replace it by the member with the child [16]. To test the performance of the 
proposed algorithms, 70 benchmark problems are tested and compared with several heuristic rules and proposed 
rules. The problems are of 5×5 (N×M represents N jobs and M machines). 
 
5. Computation Results   
The proposed algorithm is applied on benchmark problems to determine its effectiveness. Two scenarios are 
considered for the implementation process as cited before. In order to compare the performance between the HGA in 
two scenarios and heuristic rules, both approaches on several job shop scheduling problems are applied. The results 
of the implementation process for the two scenarios are shown in Table 4. In this table column 1 presents 
recommended heuristic rules while column 2 presents developed heuristic rules. Column 3 presents the results based 
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on GA of first generation rendered by heuristics while column 4 presents the results of GA of first generation of 
random selection. The best solutions are indicated from the resulted data and it is found by the GA based on both the 
recommended and developed heuristic rules.  Also these rendered results of GA based on both the recommended 
and developed heuristic rules are founded to be the best of all the implemented scenarios and cases. It achieves the 
best for 62 instances of all the seventy considered instances (89%), compared to 66% when applying GA based on 
randomization population from the domain search space. In case of applying only the developed heuristic rules the 
best solution are obtained by 40% while it is 37% when applying the recommended heuristic rules. Figure.2. 
exhibits comparison measures for the considered cases and the degrees of optimality of obtained solutions and the 
robustness of the proposed GA in the current research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. The comparison results between different approaches  
P 1 2 3 4 P 1 2 3 4 
1 31 31 29 30 36 32 30 30 30 
2 44 45 38 38 37 37 35 35 36 
3 23 23 23 23 38 23 23 23 23 
4 34 35 33 33 39 19 19 18 18 
5 37 39 37 37 40 19 19 19 23 
6 36 37 35 36 41 26 26 26 28 
7 45 47 40 41 42 24 24 22 22 
8 19 23 19 20 43 27 27 27 27 
9 35 37 35 32 44 31 33 30 30 
10 40 40 40 39 45 25 25 25 25 
11 35 38 31 30 46 28 31 26 27 
12 28 32 27 27 47 39 39 39 39 
13 29 29 29 29 48 38 38 38 41 
14 33 33 31 31 49 37 38 37 39 
15 41 44 41 41 50 41 36 36 36 
16 41 41 41 41 51 79 79 54 55 
17 26 32 26 26 52 56 56 56 56 
18 33 33 33 33 53 31 31 31 31 
19 24 22 22 24 54 30 28 23 27 
20 32 32 27 32 55 15 15 15 15 
21 28 31 28 29 56 29 30 29 29 
22 45 44 44 43 57 31 31 31 31 
23 26 26 25 26 58 24 26 21 25 
24 36 36 36 34 59 27 25 25 25 
25 28 27 27 26 60 29 29 28 27 
26 43 51 39 43 61 29 26 26 29 
27 38 37 37 38 62 23 23 22 22 
28 38 38 38 38 63 32 31 31 31 
29 63 63 57 57 64 26 27 26 26 
30 14 14 13 14 65 42 42 42 40 
31 38 46 38 41 66 27 24 24 24 
32 37 38 37 42 67 28 27 24 24 
33 25 25 25 25 68 46 49 46 46 
34 23 23 23 24 69 52 47 47 50 
35 23 22 22 21 70 52 47 47 50 
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Figure 2: The comparison results obtained in Table 4 
 
6. Conclusions 
A hybrid algorithm model based on an integration of a genetic algorithm and some developed and recommended 
heuristic rules is proposed in this paper. The main objective of this research is to explore more effective and 
efficient approach or tool for solving scheduling problems in job shops. The most prominent feature of the presented 
algorithm is a combination of heuristic rules with genetic operators to generate new individuals, which can 
effectively guide and speed up the genetic search. Different scenarios and cases are considered for evaluation 
process. The best results have been achieved when integrating the proposed genetic algorithm with the developed 
and recommended heuristic rules. Other achievements have been obtained in the other studied cases and scenarios 
but with little value of the fitness function value. 
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