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This article is aimed at finding analytical solution to the dynamics of the epidemic model. The 

autonomous nonlinear differential equation was reduced to algebraic equation via Laplace transform 

method subject to the initial condition. The LADM was then employed to obtain the approximate 

analytical solution for the pertinent parameters of interest. In view to match the obtained solution as 

far as possible, the Padé approximant is applied to the partial sum of the obtained analytical solution 

to improve its convergence. Maple is used in the computation and the results are presented 

graphically and in tables. The result obtained agrees with literature and shows the adopted method is 

accurate, flexible, and reliable.  

Keywords: Epidemic model, Adomian decomposition, LaplaceAdomian decomposition, Padé 

Approximation, Runge-Kutta, Decomposition series, Laplace Transformation 

 

I. INTRODUCTION 

From prehistoric times until now, the world has been ravaged by diverse kinds of epidemics ranging 

from malaria, Ebola, Dengue, HIV-AIDS, COVID-19, and others. These diseases have caused 

mankind problems in their wake with severe fatalities especially in the third world countries who 

neither have the wherewithal nor the technology to nip them in the bud. For example, the world health 

organization in their latest bulletin stressed if the scourging effects of malaria is not mitigated by 

increased vaccination and qualified personnel, an estimated half a billion infant mortality wouldn’t be 

averted in Africa and North America. Equally, the report painted a gory picture of paucity of funds from 

third world countries and donor organization to tackle frontally polio myelitis which have been 

prevalent and been the major cause of child mortality in sub-Saharan Africa.  

Infectious diseases have adverse and tremendous effect on human population. Millions of human 

beings either suffer or die from diverse infectious disease every year [1]. Among these diseases, the 

childhood diseases are the most common form of killer infectious diseases. They include measles, 

mumps, chicken pox, polio myelitis etc... to which every child under age five is born susceptible to and 

contracts [2]. These diseases spread faster among children because they are always in close contact 

either at school or during play. Therefore, containing these childhood diseases to protect children from 

contracting them by way of early vaccination been the viable and effective strategy became a front 

burner among health authorities especially in the third world countries which are most prone [3]. 

Equally, aside early vaccination against these diseases, mathematical models have also been used 

extensively to study the dynamics and spread of these epidemics and diseases. The models can 

quantitatively predict how the disease spread and the factors responsible for their progression. The 

result obtained from these models are useful in the implementation of strategy to curb the spread and 

development of these diseases.Kermack and McKendrick developed the classical SIR model for 
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epidemic diseases in 1927. The framework for these model fits exactly how various diseases spread 

and affects humanity even after vaccination. In this model, the total population denoted 𝑁 is 

subdivided into three class namely: Those susceptible to the disease denoted 𝑁, the infected number 

of people, 𝐼 and the removed number or people immune to the disease after treatment, 𝑅. This model 

has been successfully used to describe several epidemiological diseases. [4-10].  

The Adomian decomposition method introduced by G. Adomian [11-13] has shown great potential in 

solving a wide variety of problems ranging from linear as well as nonlinear differential and partial 

differential equations. This method requires writing the unknown function as a decomposition series, 

the nonlinear terms as an Adomian polynomial and matching both sides to obtain a recursive 

algorithm where the rapidly convergent series solution is then obtained which is equivalent to the 

closed form or exact solution of the problem if it exists. It has been successfully applied to solve 

problems in many scientific fields such as plasma physics, fluid mechanics, solid state physics, 

chemical kinetics, population dynamics and engineering. Equally, most recently most authors adore 

its appeal and has applied it to the following areas: A Comparison between Adomian decomposition 

method and Taylor series method in the series solutions, Analytical solution of a time-fractional 

Navier-Stokes equation by Adomian decomposition, delay differential equations, systems of nonlinear 

equations, nonlinear integro-differential equations, nonlinear analytical techniques, convergence of 

nonlinear equations and Falkner-Skan equation for a Wedge. [14-21]. This method is advantageous 

over other methods in that it does not require linearization, perturbation, and discretization. 

 

The hybrid Laplace transform, and the domain decomposition method introduced by Khuri [22-23] has 

equally be given considerable attention. This method is powerful and preferable to Adomian 

decomposition because it accelerate the rapid convergence of the series solution. [24] employed the 

Laplace Adomian decomposition method to solve linear and nonlinear systems of PDEs. Coupled 

systems of PDEs have been examined using LADM by [25], [26] explored the Duffing equation 

numerically using the combined Laplace Adomian decomposition method. [27] used LADM to 

examine the HIV model. The Newell-Whitehead-Segel have been investigated using LADM by [28]. 

Combined Laplace transform and Adomian decomposition method have been used to analyze 

systems of systems of ordinary differential equation [29].  [30-38] have also employed LADM to 

investigate the following problems viz: linear and nonlinear Volterra integral equations with weak 

kernel, nonlinear Volterraintegro-differential equations, nth order integro-differential equations, 

integro-differential equations, two-dimensional viscous fluid with shrinking sheet, numerical solution of 

logistics differential equations, convection diffusion-dissipation equation, nonlinear fractional 

differential equation and numerical solution of the crime deterrence model in society. 

In this article, we use the Laplace Adomian decomposition method to seek analytical solution of the 

SIR epidemic model. The nonlinear differential equations are solved for the governing parameters for 

the problem. The article is composed as follows. The introduction and fundamentals of the Adomian 

decomposition methods are in sections 1& 2. The combination of Laplace and Adomian 

decomposition method is contained in section 3. Sections 4& 5 presents the Padé approximation and 

application of LADM to the model. Section 6 presents the graphical representation of the analytical 

solution and its comparison in tables. Finally, the conclusion in section 7. 

 

II. BASICS OF THE ADOMIAN DECOMPOSITION METHOD 

Consider a functional inhomogeneous differential equation of the form 

𝐹𝑦 = 𝑔 𝑥              (1) 

Where 𝐹 is a nonlinear differential operator and 𝑦, 𝑔 are the unknown function and the source term. 

Dividing the operator as the sum of 𝐿 + 𝑅 + 𝑁 as follows. Eq. (1) now become 

𝐿𝑦 + 𝑅𝑦 +𝑁𝑦 = 𝑔 𝑥           (2) 

Where 𝐿 is the highest order derivative that’s invertible, 𝑅 is a linear differential operator, 𝑁 is a 

nonlinear term and 𝑔 is the source term. 

Rewriting Eq. (2) in the form 
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𝐿𝑦 = 𝑔 𝑥 − 𝑅𝑦 − 𝑁𝑦            

(3)Applying 𝐿−1on both sides of the equation (3) to obtain 

𝐿−1(𝐿𝑦) = 𝐿−1 𝑔 𝑥  − 𝐿−1(𝑅𝑦) − 𝐿−1(𝑁𝑦)      (4) 

𝑦(𝑥) = 𝐿−1 𝑔 𝑥  − 𝐿−1(𝑅𝑦) − 𝐿−1(𝑁𝑦)      

Eq. (4) can be written alternatively as 

𝑦(𝑥) = 𝜙 − 𝐿−1(𝑅𝑦) − 𝐿−1(𝑁𝑦)         (5) 

Where ϕ represents the term arising from integrating the source term, 𝑔. That is, [𝐿−1(𝑔)] and from 

the given conditions. 

Using the standard Adomian decomposition method the zeroth component is written as, 

𝑦0 = 𝜙           

And the recursive relation is given by 

𝑦𝑛+1 = −𝐿−1 𝑅𝑦𝑛  − 𝐿
−1(𝑁𝑦𝑛), 𝑛 ≥ 0       (6) 

For 𝑛 = 0 

𝑦1 = −𝐿−1 𝑅𝑦0 − 𝐿
−1(𝑁𝑦0)       

For 𝑛 = 1 

𝑦2 = −𝐿−1 𝑅𝑦1 − 𝐿
−1(𝑁𝑦1)       

For 𝑛 = 2 

𝑦3 = −𝐿−1 𝑅𝑦2 − 𝐿
−1(𝑁𝑦2)       

Now, writing the unknown the solution of the problem as a decomposition series of the form 

𝑦 𝑥 =  𝑦𝑛 (𝑥)∞
𝑛=0           (7) 

Here, the nonlinear term can be determined by an infinite series of Adomian polynomials 

𝑁𝑦 =  𝐴𝑛
∞
𝑛=0           (8) 

where 𝐴𝑛
1 𝑠 are obtained from the relation 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁( 𝜆𝑖𝑛

𝑥=0 𝑦𝑖)]𝑡=0, 𝑛 = 0,1,2,3,…       (9)  

 

III. FUNDAMENTALS OF THE LAPLACE ADOMIAN DECOMPOSITION METHOD 

In this subsection, we discuss the use of the hybrid Laplace transformation and Adomian 

decomposition algorithm for the nonlinear autonomous first order differential equations governing 

the problem. For convenience, we consider a first order nonhomogeneous functional differential 

equation subject to initial condition of the form 

𝐿 𝑢 𝑥  + 𝑅 𝑢 𝑥  + 𝑁 𝑢 𝑥  = 𝑔 𝑥         (10) 

𝑢 0 = 𝑓 𝑥            (11) 

𝐿 𝑢 𝑥  = 𝑔 𝑥 − 𝑅 𝑢 𝑥  − 𝑁 𝑢 𝑥          (12) 

Applying Laplace transform to both sides of Eq. (10), and using the differentiation property, we get 

𝑠ℒ 𝑢 𝑥  − 𝑓 𝑥 = ℒ 𝑔 𝑥  − ℒ 𝑅𝑢 𝑥  − ℒ 𝑁𝑢 𝑥   

    

𝑠ℒ 𝑢 𝑥  = 𝑓 𝑥 + ℒ 𝑔 𝑥  − ℒ 𝑅𝑢 𝑥  − ℒ 𝑁𝑢 𝑥   

ℒ 𝑢 𝑥  =
𝑓 𝑥 

𝑠
+

1

𝑠
ℒ 𝑔 𝑥  −

1

𝑠
ℒ 𝑅𝑢 𝑥  −

1

𝑠
ℒ 𝑁𝑢 𝑥        (13) 

Applying the inverse Laplace transform to both sides of Eq. (13), we obtain 

𝑢 𝑥 = 𝜙 𝑥 − ℒ−1  
1

𝑠
ℒ 𝑅𝑢 𝑥  −

1

𝑠
ℒ 𝑁𝑢 𝑥          (14) 

Where 𝜙 𝑥  is the term arising from the first three terms on the right-hand side of Eq. (14). 
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Next, we assume the solution of the problem as a decomposing series in the form 

𝑢 𝑥 =  𝑢𝑛  𝑥 
∞
𝑛=0           (15) 

Similarly, the nonlinear terms are written in terms of the Adomian polynomials as 

𝑁𝑢 𝑥 =  𝐴𝑛
∞
𝑛=0           (16) 

Where the 𝐴𝑛
′𝑠  represents the Adomian polynomials defined in the form 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
 𝑁  𝜆𝑖𝑦𝑖

∞
𝑘=0   𝑖=0 , 𝑛 = 0,1,2,3      (17) 

Plugging Eqs. (15) and (16) into Eq. (17), we obtain 

 𝑢𝑛  𝑥 
∞
𝑛=0 = 𝜙 𝑥 − ℒ−1  

1

𝑠
ℒ 𝑅  𝑢𝑛  𝑥 

∞
𝑛=0  −

1

𝑠
ℒ 𝑁 𝐴𝑛

∞
𝑛=0                                                           (18) 

Matching both sides of Eq. (18), we obtain an iterative algorithm in the form 

𝑢0 𝑥 = 𝜙 𝑥  

𝑢1 𝑥 = −ℒ−1  
1

𝑠
ℒ  𝑅 𝑢0 𝑥 

∞

𝑛=0

 −
1

𝑠
ℒ  𝑁 𝐴0

∞

𝑛=0

   

𝑢3 𝑥 = −ℒ−1  
1

𝑠
ℒ 𝑅 𝑢2 𝑥 

∞
𝑛=0  −

1

𝑠
ℒ 𝑁 𝐴2

∞
𝑛=0         (19)

   

⋮ 

𝑢𝑛+1 𝑥 = −ℒ−1  
1

𝑠
ℒ  𝑅 𝑢𝑛  𝑥 

∞

𝑛=0

 −
1

𝑠
ℒ  𝑁 𝐴𝑛

∞

𝑛=0

   

Then the solution of the differential equation is obtained as the sum of decomposed series in the 

form 

𝑢 𝑥 ≈ 𝑢0 𝑥 + 𝑢1 𝑥 + 𝑢2 𝑥 +⋯        (20) 

IV. PADÉ APPROXIMATION 

In mathematics and other applied sciences, rational functions are functions which the degree of the 

denominator is either equal or greater than the degree of the numerator all expressed as polynomials. 

In seeking to write these functions in Taylor series form, difficulties often arise in the form of divergent, 

singularities and radius of convergence which blow up occur. To curtail these inherent difficulties, 

there was need for a new way of expressing rational functions. 

The Padé approximant is a particular and classical type of rational approximation originally credited to 

George Frobenius who  introduced the idea and study the features of the rational power 

approximation. Henri Padé around 1890 was the one who made significant contributions by 

expressing it as the quotient of two polynomials with varying degrees. It is superior to the Taylor 

series expansion in that it provides better approximation of the function than truncating the Taylor 

series especially where the Taylor series does not converge and when it contains poles. The 

approximation has been extensively applied to calculate time delay and in computer science. [39-43]. 

Now, given two polynomials, 𝑃𝐿 𝑥  and 𝑄𝑀 𝑥  with highest degrees of 𝑁 and 𝑀. Then the Pade 

approximant of function, 𝑓 𝑥 in each closed interval [𝑎, 𝑏] denoted  𝐿 𝑀   is the ratio of the 

polynomials in the form. 

 𝐿 𝑀  =
𝑃𝐿  𝑥 

𝑄𝑀  𝑥 
           (21) 



L. Ebiwareme et al. “International Journal of Innovation Engineering and Science Research” 

 
Volume 6 Issue 2 March-April 2022 20|P a g

e  

The power series of the given function is given as 

𝑓 𝑥 =  𝑎𝑘𝑥
𝑘∞

𝑛=0           (22) 

To determine the coefficients of the polynomials 𝑃𝐿 𝑥  and 𝑄𝑀 𝑥 , we use the equation 

𝑓 𝑥 =
𝑃𝐿 𝑥 

𝑄𝑀  𝑥 
+𝑂 𝑥𝐿+𝑀+1          (23) 

Using the standard normalization condition 

𝑄𝑀 0 = 1.0           (24) 

Expressing the coefficients of the two polynomials explicitly in the form 

 
𝑃𝐿 𝑥 = 𝑝0 + 𝑝2𝑥 + ⋯+ 𝑝𝐿𝑥

𝐿

𝑄𝑀 𝑥 = 1 + 𝑞1𝑥 + ⋯+ 𝑞𝑀𝑥
𝑀
          (25) 

In view of Eq. (25), multiplying both sides of Eq. (23) by 𝑄𝑀 𝑥  yield the system of equations and 

linearized the coefficient equation in the form. 

 

𝑞𝑚𝑎𝐿−𝑀+1 + 𝑞𝑀−1𝑎𝐿−𝑀+2 +⋯+ 𝑞0𝑎𝐿+1 = 0
𝑞𝑚𝑎𝐿−𝑀+2 + 𝑞𝑀−1𝑎𝐿−𝑀+3 +⋯+ 𝑞0𝑎𝐿+2 = 0
…………………………………………………
𝑞𝑀𝑎𝐿−𝑀+2 + 𝑞𝑀−1𝑎𝐿−𝑀+3 +⋯+ 𝑞0𝑎𝐿+2 = 0

        (26) 

We set 𝑞0 = 1, and if  𝑗 > 0, then 𝑎𝑖 = 0. The system in Eq. (26) reduced to the form 

 

𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+2 … . 𝑎𝐿+1

𝑎𝐿−𝑀+2 𝑎𝐿−𝑀+3……𝑎𝐿+2…………………………
𝑎𝐿 𝑎𝐿+1……………………..𝑎𝐿+𝑀

  

𝑞𝑚
𝑞𝑀−1

⋮
𝑞1

 =  

𝑎𝐿+1

𝑎 𝐿+2
⋮

𝑎𝐿+𝑀

        (27) 

Solving the system in Eq. (27) produces the solution in the form 

 

𝑎0 = 𝑝0

𝑎0 + 𝑎0𝑞1 + ⋯ = 𝑝1

………………………
𝑎𝐿 + 𝑎𝐿−1𝑞1 +⋯+ 𝑎0𝑞1 = 𝑝𝐿

          (28) 

The Padé approximant of different orders such as  2 2  ,  3 3  ,  4 4  ,  5 5   and  6 6   are obtained 

using Maple 20. 

V. APPLICATION OF LADM TO THE EPIDEMIC MODEL 

We consider the epidemiological disease model as follows 

 
 
 
 
 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼

𝑑𝑅

𝑑𝑡
= 𝜇𝐼

           (29) 

Subject to the initial conditions 

𝑆 0 = 0.9, 𝐼 0 = 0.1, 𝑅 0 = 0        (30) 

Taking the Laplace transform of both sides of Eq. (29), we get 
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 ℒ  

𝑑𝑆

𝑑𝑡
 = ℒ −𝛽𝑆𝐼 

ℒ  
𝑑𝐼

𝑑𝑡
 = ℒ 𝛽𝑆𝐼 − 𝜇𝐼 

ℒ  
𝑑𝑅

𝑑𝑡
 = ℒ 𝜇𝐼 

          (31) 

 
 
 
 
 ℒ  

𝑑𝑆

𝑑𝑡
 = −𝛽ℒ 𝑆𝐼 

ℒ  
𝑑𝐼

𝑑𝑡
 = 𝛽ℒ 𝑆𝐼 − 𝜇ℒ 𝐼 

ℒ  
𝑑𝑅

𝑑𝑡
 = 𝜇ℒ 𝐼 

          (32) 

Applying the differentiation law of Laplace transforms, we obtain 

𝑤ℒ 𝑆 − 𝑆 0 = −𝛽ℒ 𝑆𝐼          (33) 

𝑤ℒ 𝐼 − 𝐼 0 = 𝛽ℒ 𝑆𝐼 − 𝜇ℒ 𝐼         (34) 

𝑤ℒ 𝑅 − 𝑅 0 = 𝜇ℒ 𝐼          (35) 

Using the initial condition to the above Eqs. (33) – (35), we get 

ℒ 𝑆 =
0.9

𝑤
−

𝛽

𝑤
ℒ 𝐴           (36) 

ℒ 𝐼 =
0.1

𝑤
+

𝛽

𝑤
ℒ 𝐴 −

𝜇

𝑤
ℒ 𝐼          (37) 

ℒ 𝑅 =
𝜇

𝑤
ℒ 𝐼           (38) 

Where 𝐴 = 𝑆𝐼           

Next, we represent the pertinent parameters as an infinite series of the form 

𝑆 =  𝑆𝑛 ,   𝐼 =  𝐼𝑛 ,   𝑅 =  𝑅𝑛
∞
𝑛=0

∞
𝑛=0

∞
𝑛=0        (39) 

Where the terms 𝑆𝑛 , 𝐼𝑛  and 𝑅𝑛  are to be determined recursively. 

Similarly, the nonlinear term is equally decomposed in the form 

𝐴 =  𝐴𝑛
∞
𝑛=0            (40) 

Where 𝐴𝑛are called the Adomian polynomials. The first five polynomials are considered as follows 

𝐴 = 𝑆𝐼 

𝐴0 = 𝑆0𝐼0 

𝐴1 = 𝑆0𝐼1 + 𝑆1𝐼0 

𝐴2 = 𝑆0𝐼2 + 𝑆1𝐼1 + 𝑆2𝐼0 

𝐴3 = 𝑆0𝐼3 + 𝑆1𝐼2 + 𝑆2𝐼1 + 𝑆3𝐼0        (41)

  

𝐴4 = 𝑆0𝐼4 + 𝑆1𝐼3 + 𝑆2𝐼2 + 𝑆3𝐼1 + 𝑆4𝐼0 

𝐴5 = 𝑆0𝐼5 + 𝑆1𝐼4 + 𝑆2𝐼3 + 𝑆3𝐼2 + 𝑆4𝐼1 + 𝑆5𝐼0 

𝐴6 = 𝑆0𝐼6 + 𝑆1𝐼5 + 𝑆2𝐼4 + 𝑆3𝐼3 + 𝑆4𝐼2 + 𝑆5𝐼1 + 𝑆6𝐼0 

Substituting Eqs (39) and (40) into Eqs (36) – (38) yield 

ℒ  𝑆𝑛
∞
𝑛=0  =

0.9

𝑤
−

𝛽

𝑤
ℒ  𝐴𝑛

∞
𝑛=0          (42) 
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ℒ  𝐼𝑛
∞
𝑛=0  =

0.1

𝑤
+

𝛽

𝑤
ℒ  𝐴𝑛

∞
𝑛=0  −

𝜇

𝑤
ℒ  𝐼𝑛

∞
𝑛=0        (43) 

ℒ  𝑅𝑛
∞
𝑛=0  =

𝜇

𝑤
ℒ  𝐼𝑛

∞
𝑛=0           (44) 

Matching the sides of Eqs. (42) – (44) yield the following iterative algorithm 

ℒ 𝑆0 =
0.9

𝑤
 

ℒ 𝑆1 = −
𝛽

𝑤
ℒ 𝐴0  

ℒ 𝑆2 = −
𝛽

𝑤
ℒ 𝐴1           (45) 

ℒ 𝑆3 = −
𝛽

𝑤
ℒ 𝐴2  

 ⋮ 

ℒ 𝑆𝑛+1 = −
𝛽

𝑤
ℒ 𝐴𝑛   

 

ℒ 𝐼0 =
0.1

𝑤
 

ℒ 𝑆1 =
𝛽

𝑤
ℒ 𝐴0 −

𝜇

𝑤
ℒ 𝐼0  

ℒ 𝑆2 =
𝛽

𝑤
ℒ 𝐴1 −

𝜇

𝑤
ℒ 𝐼1          (46) 

ℒ 𝑆3 =
𝛽

𝑤
ℒ 𝐴2 −

𝜇

𝑤
ℒ 𝐼2  

 ⋮ 

ℒ 𝐼𝑛+1 =
𝛽

𝑤
ℒ 𝐴𝑛  −

𝜇

𝑤
ℒ 𝐼𝑛   

 

ℒ 𝑅0 = 0 

ℒ 𝑅1 =
𝜇

𝑤
ℒ 𝐼0  

ℒ 𝑅2 =
𝜇

𝑤
ℒ 𝐼1           (47) 

ℒ 𝑅3 =
𝜇

𝑤
ℒ 𝐼2  

 ⋮ 

ℒ 𝑅𝑛+1 =
𝜇

𝑤
ℒ 𝐼𝑛  

 

Applying the inverse Laplace transform to the first Eqs. (45) – (47), we get 

 

ℒ 𝑆0 =
0.9

𝑤
 , ℒ 𝐼0 =

0.1

𝑤
 , ℒ 𝑅0 = 0        (48) 

Substitution of the above values of 𝑆0 , 𝐼0 and 𝑅0 into the second and third Eqs (45) – (47), we get 

 

ℒ 𝑆1 = −
0.18

𝑤 3  , ℒ 𝐼1 =
0.18

𝑤 3 −
0.05

𝑤 2  , ℒ 𝑅1 =
0.05

𝑤2       (49) 

 

ℒ 𝑆2 =
0.1

𝑤3
−

0.144

𝑤5
 

 

ℒ 𝐼2 =
0.144

𝑤 5 −
0.02

𝑤3 −
0.018

𝑤 4 +
0.001

𝑤 3         (50) 

ℒ 𝑅2 =
0.018

𝑤4
−

0.001

𝑤3
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Substituting the Laplace transform of the quantities on the right-hand side of Eqs (44) – (47) and 

applying the inverse Laplace transform, we obtain the values 

𝑆2 𝑡 , 𝐼2 𝑡 , 𝑅2 𝑡 . Similarly, the other remaining terms𝑆3 𝑡 , 𝑆4 𝑡 … 𝑆𝑛  𝑡 , 𝐼3 𝑡 , 𝐼4 𝑡 … 𝐼𝑛  𝑡 and 

𝑅3 𝑡 , 𝑅4 𝑡 …𝑅𝑛  𝑡  can be recursively obtained. 

 

VI. NUMERICAL APPLICATION 

In this section, we apply the LADM to the epidemiological model. Taking 𝑆 0 = 0.9, 𝐼 0 = 0.1 

and 𝑅 0 = 0 for the three parameters of interest. Setting 𝛽 = 2, 𝜇 = 0.5 and the first few 

calculations for 𝑆 𝑡 , 𝐼 𝑡  and 𝑅 𝑡  are calculated and presented below 

 

𝑆 𝑡 =
0.9

𝑤
−

0.16

𝑤3
−

0.144

𝑤5
 

𝐼 𝑡 =
0.1

𝑤
−

0.01

𝑤 2 +
0.161

𝑤 3 −
0.018

𝑤 4 +
0.144

𝑤 5         (51) 

𝑅 𝑡 =
0.1

𝑤2
−

0.001

𝑤3
+

0.018

𝑤4
 

 

Applying the inverse Laplace transform on both sides of Eq. (51), we obtain the analytical 

solutions for the governing parameters. 

𝑆 𝑡 = 0.9 − 0.08𝑡2 − 0.006𝑡4 

𝐼 𝑡 = 0.1 − 0.01𝑡 + 0.0805𝑡2 − 0.003𝑡3 + 0.0006𝑡4      (52) 

𝑅 𝑡 = 0.1𝑡 − 0.0005𝑡 + 0.003𝑡2 

 

Using symbolic computational software Maple 20, we calculate the  5 5   Pade approximant of the 

infinite series of Eq. (52) which gives the following rational approximations to the solution. 

 

𝑆𝑃𝑎𝑑𝑒  𝑡 

=
0.91234 − 1.45 × 10−16𝑡 − 0.080101𝑡2 − 3.69 × 10−15𝑡3 − 0.00112345𝑡4 + 5.7 × 10−16𝑡5

1 − 1.6 × 10−16𝑡 − 1.2 × 10−15𝑡2 − 4.1 × 10−15𝑡3 − 7.3 × 10−17𝑡4 + 3.07 × 10−16𝑡5
 

 

𝐼𝑃𝑎𝑑𝑒  𝑡 =
0.1 − 0.00981𝑡 + 0.080𝑡2 − 0.0021782𝑡3 + 0.00059392226𝑡4 + 0.00000120892𝑡5

1 + 0.020𝑡 − 2.32 × 10−13𝑡2 − 2.045 × 10−14𝑡3 + 8.42 × 10−16𝑡4 + 4.3 × 10−17𝑡5
 

 

𝑅𝑃𝑎𝑑𝑒  𝑡 =
0.1𝑡 − 0.0005𝑡2 + 0.00297𝑡3 + 3.014 × 10−7𝑡4 − 8.910731504 × 10−7𝑡5

1 + 0.0059𝑡 − 0.0297𝑡2 − 5.174 × 10−15𝑡3 + 9.68 × 10−17𝑡4 + 1.559 × 10−16𝑡5
 

 

 

 

Table 1: Numerical comparison for Susceptible using six iterates 

t LADM LADM-Padé 4
th

 Order R-K 

0 0.900000 1.0000 1.0000 

0.2 0.896790 0.896790 0.896800 

0.4 0.88705 0.887046 0.887045 

0.6 0.870422 0.870350 0.870421 

0.8 0.846342 0.846344 0.8463450 

1.0 0.814000 0.814000 0.814000 

1.2 0.772358 0.772357 0.772350 
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Table 2: Numerical comparison for Infected using six iterates 

t LADM LADM-Padé 4
th

 Order R-K 

0 0.10000 0.10000 0.10000 

0.2 0.101197 0.1011641 0.101198 

0.4 0.108703 0.108704 0.108705 

0.6 0.122410 0.122410 0.122410 

0.8 0.142230 0.142240 0.142235 

1.0 0.16810 0.168100 0.168910 

1.2 0.19998 0.19990 0.202882 

 

 

Table 3: Numerical comparison for Removed using six iterates 

t LADM LADM-Padé 4
th

 Order R-K 

0 0.0000 0.0000 0.0000 

0.2 0.020004 0.0200023 0.0200040 

0.4 0.040112 0.04112 0.040038 

0.6 0.604680 0.603870 0.604680 

0.8 0.081216 0.081215 0.0812160 

1.0 0.102500 0.102501 0.102500 

1.2 0.124464 0.1244640 0.1244604 

 

 

 

 
Figure 1. Comparison of LADM solution of Susceptible for six iterates 
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Figure 2. Comparison of LADM solution of Infected for six iterates 

 

 

 
 

  Figure 3. Comparison of LADM solution of Removed for six iterates 
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   Figure 4. Comparison of Susceptible against Infected for six iterates 

 

 

 

 

 
    

Figure 5. Comparison of Susceptible against Removed for six iterates 
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Figure 6. Comparison of Infected against Removed for six iterates 

 

 

 

 
  Figure 7. Comparison of Susceptible, Infected and Removed against Time 

 

VII. CONCLUSION 

In this research article, we proposed the Laplace Adomian decomposition method and the Padé 

approximant to find analytical solution to the SIR epidemic model. The governing nonlinear 

autonomous differential equations comprising the parameters of interest were solved using the LADM. 

The obtained results were approximated using the Padé approximant to validate the earlier result and 

improve upon it. Comparison is then made between the results with the fourth order Runge-Kutta 

method. The solution obtained agreed with literature, simple, efficient, and applicable for a large time 

interval. 
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