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1. Introduction

A lower bound for the independence number of a graph is a graph invariant l
such that, for every graph G, l(G) ≤ α(G). Similarly, an upper bound for the
independence number is a graph invariant u such that, for every graph G, α(G) ≤
u(G). Many efficiently computable upper and lower bounds, called α-bounds here,
have been published and these are surveyed in the following section. They can be
used to predict the value of α. Suppose l1, l2, . . . , lk are efficiently computable lower
bounds for the independence number of a graph; then l = max{l1, l2, . . . , lk} is also
an efficiently computable lower bound for the independence number. Similarly, if
u1, u2, . . . , um are efficiently computable upper bounds for the independence number,
then u = min{u1, u2, . . . , um} is also an efficiently computable upper bound for the
independence number. For some graphs G, l(G) = u(G) and, in such cases, it
follows that the independence number α(G) = l(G) = u(G) can be directly computed
from its bounds. For instance, consider the graph consisting of the cycle C4 with a
diagonal. It is known that, for every graph αc ≤ α and, for every graph, α ≤ αf ,
where αc is the critical independence number and αf is the fractional independence
number. These bounds are both efficiently computable and, for this graph, equal 2.
Thus the theory implies that α = 2.

New efficiently computable independence number bounds are also of practical in-
terest: they can lead to faster independence number computations. New bounds can
lead to new exact predictions of the independence number of a graph, without any
need for computer search of subsets of vertices or calculating independence num-
bers of subgraphs of the given graph. If it is known that α must lie in the interval
[l, u] then only subsets of sizes in this range must be considered. In some instances
theoretical upper and lower bounds for α can be used to predict the independence
number with no further search (in this case the theory predicts that α lies in an
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interval where l = u). It is known that the independence of a graph is equal to the
larger of the independence numbers of two proper subgraphs [43]. So computation of
the independence number depends on the computation of the independence number
of two proper subgraphs G1 and G2. If the theoretical bounds predict that either of
these has independence number no more than l then no further computation for that
graph is needed and, if the theoretical bounds imply that one of these graphs has
independence number u then the original graph must have independence number u.

2. α-Upper Bounds

The following bounds are all efficiently computable.

(1) α ≤ n − e
∆

. This bound is credited to Kwok in [47], but may belong to
“folklore.” Here ∆ is the maximum degree of the graph and e is the number
of edges.

(2) α ≤ p0 +min{p−, p+} [6]. Here p−, p0, p+ denote the number of eigenvalues of
the adjacency matrix of a graph G smaller than, equal to, and greater than
zero respectively. This is the Cvetković bound and is very good for many
graphs. For the Petersen graph there are 4 non-positive eigenvalues. Thus,
α ≤ 4. In fact, α = 4 for this graph.

(3) α ≤ b1
2

+
√

1
4

+ n2 − n− 2ec [17].

(4) α ≤ αf . Here αf is the fractional independence number of a graph. It is
the sum of the largest weights in [0, 1] that can be assigned to the vertices
of a graph such that the sum of the weights on the vertices of any edge
does not exceed 1. It can be formulated as the optimal value of a linear
program and can, thus, be computed efficiently. The number is not explicitly
defined in [37], but all of these ideas can be found there. Larson has found a
characterization of graphs where these invariants are equal: a graph is König-
Egerváry if, and only if, α = αf [28]. Thus it is possible in polynomial-time
to check if these invariants are equal.

(5) α ≤ a [38]. Here a is the annihilation number of a graph. If the degree
sequence of a graph is listed in non-decreasing order d1 ≤ d2 ≤ . . . ≤ dn
then a is the largest index such that the sum of the first a degrees is no more
than the sum of the remaining degrees. Larson and Pepper have found a
polynomial-time characterization of graphs where α = a [30].

(6) α ≤ n − µ [33]. Here µ is the matching number of the graph, the largest
number of independent edges. This is an early result of König. For bipartite
graphs the König-Egerváry Theorem states that α = n− µ.

(7) α ≤ n−
⌈
n−1
∆

⌉
=
⌊ (∆−1)n+1

∆

⌋
[2].

(8) α ≤ n− δ. Here δ is the minimum degree of the graph. This bound probably
belongs to “folklore”.
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(9) α ≤ Θ [31, 32, 26]. This is the Lovász Theta Function bound, perhaps the
most important upper bound in both theory and practice.

(10) α ≤ min{
∑n

i=k+1
−λmin(A)

λi(A)−λmin(A)
× [(e+ y)Tui]

2 : y ∈ Y } [35]. Here e is a vector

of all 1’s, ui is an orthonormal eigenvector associated with eigenvalue λi, and
Y = {y : y ≥ 0 and (e+ y)Tui = 0,∀i = 1 . . . k}.

(11) α ≤ n− C
2
− 1

2
[29]. Here C is the number of cut vertices of the graph.

(12) α ≤ n + ∆ − d2
√
n− 1e [1]. This is a conjecture of the AGX graph theory

conjecture-making software.
(13) α ≤ ∆

2
dn

2
e (for graphs with at least 3 vertices) [1]. This is a conjecture of the

AGX graph theory conjecture-making software.
(14) α ≤ n− M

2
− 1

2
[29], where M is the median degree.

(15) α ≤ n − 1
2
rank [3], where rank is the rank of any adjacency matrix of the

graph.

3. α-Lower Bounds

The following bounds are all efficiently computable.

(1) α ≥ n
1+d̄

[44, 15]. Here d̄ is the average degree of the graph. This may be the
oldest non-trivial bound and is a consequence of the celebrated theorem of
Turán.

(2) α ≥
∑

v∈V
1

1+d(v)
[4, 45]. This is the Caro-Wei bound. Here d(v) is the degree

of vertex v. Griggs improved this bound for triangle-free graphs not including
odd paths or cycles [14].

(3) α ≥ n
1+λ1

[48]. Here λ1 is the largest eigenvalue of the graph.

(4) α ≥
⌈
n− 2e

(1+b2e/nc)

⌉
+

⌈
n−
⌈
n− 2e

1+b2e/nc

⌉
·(1+b2e/nc)

(2+b2e/nc)

⌉
=

⌈
2n− 2e

d2e/ne
d2e/ne+1

⌉
[17].

(5) α ≥ D̄ [5]. Here D̄ is the average distance between distinct vertices of the
graph. This bound was conjectured by Graffiti [10].

(6) α ≥ R [13]. Here R is the residue of the graph, namely the number of
zeros remaining after termination of repeated application of the Havel-Hakimi
process. This bound was conjectured by Graffiti [10]. Several proofs of this
bound have now been published. [15] illuminates the connection between the
residue of a graph and applications of the greedy heuristic Maxine.

(7) α ≥ r [8, 12]. r is the radius of a graph. This bound was conjectured
by Graffiti [10]. [11] gives a useful characterization of radius-critical graphs
which then led to a characterize those graphs where α = r bt DeLaVina,
Larson, Pepper and Waller [7].

(8) α ≥ αc [27]. Here αc is the critical independence number of a graph.

(9) α ≥ 1
2
[(2e+ n+ 1)−

√
(2e+ n+ 1)2 − 4n2] [19].
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(10) α ≥ n− 2µ. Again µ is the matching number of the graph.

(11) α ≥
∑

v∈V
1

1+d(v)
(1 +max{0, d(v)

d(v)+1
−
∑

v∈V
1

1+d(v)
}) [40]. This is an improve-

ment of the Caro-Wei bound.
(12) α ≥ n2

n(∆+1)+(∆+1−λl1) max{(U+
1 )2,(U−1 )2} [34]. Here U+

1 = min(uj)i>0
1

(uj)i
and U−1 =

min(uj)i<0
1

|(uj)i| . For 1 ≤ j ≤ n, where uj is the normalized eigenvector

corresponding to λj, (uj)i is the ith-entry of uj.

(13) α ≥ (CW (G))2

CW (G)−
P

ij∈E(G)(di−dj)2q2i q
2
j

[18]. Here CW (G) denotes the value of the

Caro-Wei Bound for a graph G, and qi = 1
1+di

where di is the degree of vertex
vi .

(14) α ≥ S2

S2+λ1
[49]. Here λ1 be the maximum eigenvalue of the adjacency ma-

trix and S is given by the sum of the entries of the normalized eigenvector
corresponding to λ1.

(15) α ≥ 1 + C
2

[23]. Here C is the number of cut vertices of the graph. This
bound was conjectured by Graffiti [10].

(16) α ≥ max{e(v) − eh(v)} [10]. Here e(v) is the number of vertices at even
distance from vertex v, and eh(v) is the number of even horizontal edges
with respect to v, that is, the number of edges e where both end-points of e
are at even distance from v. This bound was conjectured by Graffiti. This
is often a very good bound for regular graphs, a class of graphs where other
bounds often fail to predict the independence number. Michelle Grigsby has
many interesting results related to this bound, including a polynomial-time
characterization of those König-Egerváry graphs where equality holds [16].
The characterization seems to be true for general graphs, but the conjecture
is open.

(17) α ≥ d2
√
ne−∆ [1]. This is a conjecture of the AGX graph theory conjecture-

making software.
(18) α ≥ n−1

∆
(for graphs with at least 5 vertices) [1]. This is a conjecture of the

AGX graph theory conjecture-making software.
(19) α ≥ CW + CW−1

∆(∆+1)
[36], where CW is the Caro-Wei bound.

(20) α ≥ 2n

(d̄+1+ 2
n

)+
√

(d̄+1+ 2
n

)2−8)
[20], where d̄ is the average degree.

(21) α ≥ r + p
2
− 1 [30], where r is the radius, and p is the number of pendants.

This is an improvement on the radius lower bound in p ≥ 3.
(22) α ≥ n

max{min{di+1,i}:i=1,...,i=n} [46], where the di’s are the degrees of the vertices.

This is the Welsh-Powell bound.
(23) α ≥ n

1+maxG′⊂G δ(G′)
[42], where the maximum is taken over all subgraphs G′

of the given graph G. This is the Szekeres-Wilf bound.
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4. Special α-bounds

.
The following efficiently computable bounds for the independence number only

apply to graphs with special properties. In each case, testing whether a graph has
the specified property is itself efficient.

(1) If a graph is triangle-free and ∆ ≥ 4 then α ≥ 4n
3

[25].

(2) If a graph is regular, then α ≤ −nλmin

λmax−λmin(A)
[35], where λmin and λmax are the

smallest and largest eigenvalues of the graph. The bound is known as the
Hoffman-Lovász bound.

(3) If a graph is triangle-free then α ≥ CW + CW+e−n
∆(∆+1)

[36], where CW is the

Caro-Wei bound.
(4) If a graph is triangle-free and ∆ ≤ 3 then α ≥ 5n

14
[9, 25, 22, 21].

(5) If the girth of a graph is at least 6 then α ≥ (2∆−1)n
∆2+2∆−1

[24].
(6) If a graph is a connected triangle-free graph and neither an odd cycle nor an

odd path then α ≤ CW + n
∆(∆+1)

[14].

(7) If the girth of a graph is 2k+ 3 (k ≥ 2) then α ≥ 2−( k−1
k

)[
∑

v∈V (G) d(v)
1

k−1 ]
k−1

k

[41].

(8) If the graph is K1,r+1-free then α ≤ 1
2
(2n+ 2r − 1−

√
8e+ (2r − 1)2) [39].
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