Ruhr-University Bochum

Post Quantum Cryptography on
Embedded Devices:
An Efficient Implementation of the
McEliece Public Key Scheme based on
Quasi-Dyadic Goppa Codes

Olga Paustjan

July 1, 2010

Diploma Thesis
Ruhr-University Bochum

Chair for Embedded Security
Prof. Dr.-Ing. Christof Paar
Dipl.-Ing. Stefan Heyse

Gesetzt am July 1, 2010 um 14:59 Uhr.

Eidesstaatliche Erklirung / Statement

Hiermit versichere ich, dass ich meine Diplomarbeit selbst verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe. Die Arbeit wurde bisher keiner anderen Priifungsbehorde vorgelegt
und auch nicht verdffentlicht.

[hereby certify that the work presented in this thesis is my own work and that to
the best of my knowledge it is original except where indicated by reference to the
other author. This theses has not been presented to any other examination board
or published before.

Bochum, den July 1, 2010

Olga Paustjan

Contents

Introduction

1.1 Motivation L o
1.2 Existing Implementations
1.3 Goals of this Study oL
1.4 Outline.

The McEliece cryptosystem

2.1 Scheme definition Lo
2.1.1 Key generation L.
2.1.2 Encryption
2.1.3 Decryption o
2.1.4 Correctnesso

2.2 Recommended parameters and key sizes

2.3 Reducing public key sizes. L.

2.4 Security of the McEliece PKC

Aspects of coding theory
3.1 Linearcodes
3.2 Punctured and shortened codes
3.3 Subfield subcodes and Trace codes
3.4 Goppacodes.
3.5 Dyadic Goppacodes
3.6 Quasi-Dyadic Goppacodes
3.7 Goppadecoding
3.7.1 Patterson’s decoding algorithm
3.7.2 Finding roots of the error locator polynomial

McEliece-type PKC based on quasi-dyadic Goppa codes

4.1 Hiding the structure of the private code

4.2 Scheme definition of QD-McEliece
4.2.1 Key generation L0
4.2.2 Encoding
423 Decoding

4.3 Parameter choice and key sizes

4.4 Security of QD-McEliece

Lo W W =

—
— O 000~ ~IT OO O

—_

13
14
15
16
19
20
22
22
24

vi Contents
5 Conversions for CCA2-secure McEliece variants 37
5.1 Kobara-Imai’s specific conversion v 38
5.1.1 Encryption 39

5.1.2 Decryption 40

5.2 Constant weight coding, 41

6 Implementation aspects 45
6.1 Field arithmetic 45
6.2 Implementation of the QD-McEliece variant 50
6.2.1 Key generation 50

6.2.2 Encryption o 54

6.2.3 Decryptiono 56

6.3 Implementation of the KIC~ 64
6.3.1 Encryption o 65

6.3.2 Decryption oo 66

7 Implementation on an 8-bits AVR microcontroller 67
7.1 Portingto AVR 67
7.2 Side channel security oL 69

8 Results 73
9 Conclusion and further research 77
A Bibliography 79
B List of Tables 85
C Listings 87
D List of Algorithms 89

1 Introduction

1.1 Motivation

In the last years, the need for embedded systems has arisen continuously. Span-
ning all aspects of modern life, they are included in almost every electronic device:
mobile phones, personal digital assistants (PDAs), domestic appliances, and even
in cars. This ubiquity goes hand in hand with increased need for embedded se-
curity. For instance, it is crucial to protect a car’s electronic door lock from
unauthorized use. These security demands can be solved by cryptography. In
this context, many symmetric and asymmetric algorithms, such as AES, DES,
RSA, ElGamal, and ECC, are implemented on embedded devices.

Most public-key cryptosystems frequently implemented have been proven secure
on the basis of the presumed hardness of two mathematical problems: factoring
the product of two large primes (FP) and computing discrete logarithms (DLP).
Both problems are well known to be closely related. Hence, solving these prob-
lems would have significantly ramifications for classical public-key cryptography,
and thus, for embedded devices the algorithms are implemented on. Nowadays,
both problems are believed to be computationally infeasible with an ordinary
computer. However, a quantum-computer having the ability to perform compu-
tations on a few thousand gbits could solve both problems by using Shor’s al-
gorithm [Sho97]. Although a quantum computer of this dimension has not been
reported, development and cryptanalysis of alternative public-key cryptosystems
seem suitable. Cryptosystems not breakable using quantum computers are called
post-quantum cryptosystems.

Most published post-quantum public-key schemes are focused on the following ap-
proaches [BBD08|: Hash-based cryptography (e.g. Merkle’s hash-tree public-key
signature system [Mer79]), Multivariate-quadratic-equations cryptography (e.g.
HFE signature scheme [Pat96|), Lattice-based cryptography (e.g. NTRU encryp-
tion scheme |[HPS98|), and Code-based cryptography (e.g. McEliece encryption
scheme |[McET78|, Niedereiter encryption scheme [Nie86]).

In this thesis, we concentrate on Code-based cryptography. The first code-based
public-key cryptosystem was proposed by Robert McEliece in 1978. The McEliece
cryptosystem is based on algebraic error-correcting codes, namely Goppa codes.
The hardness assumption of the McEliece cryptosystem is that decoding of Goppa

2 Introduction

codes is easily performed by an efficient decoding algorithm, but when disguising
a Goppa code as a general linear code by means of several secret transformations,
decoding becomes NP-complete. The problem of decoding linear error-correction
codes is neither related to the factorization nor to the discrete logarithm problem.
Hence, the McEliece scheme is an interesting candidate for post-quantum cryp-
tography, as it is not effected by the computational power of quantum computers.

To achieve acceptance and attention in practice, post-quantum public-key
schemes have to be implemented efficiently. Furthermore, the implementations
have to perform fast while keeping memory requirements small for security levels
comparable to conventional schemes. The McEliece encryption and decryption
do not require computationally expensive multiple precision arithmetic. Hence,
it is predestined for an implementation on embedded devices. Indeed, there exist
efficient implementations of this public-key cryptosystems on a microcontroller

and FPGA [EGHP09).

The chief disadvantage of the McEliece public-key cryptosystem is its very large
public key of several hundred thousands of bits. For this reason, the McEliece
PKC has achieved little attention in the practice, yet. Particularly, with regard
to bounded memory capabilities of embedded systems, it is essential to improve
the McEliece cryptosystem by finding a way to reduce the public key size. An
ongoing research is to replace Goppa codes by other codes having a compact and
simple description. For instance, there are proposals based on quasi-cyclic codes
[Gab05] and quasi-cyclic low density parity-check codes [BC07]. Unfortunately,
all these proposals have been broken by structural attacks [OTDO08|. Barreto and
Misoczki propose in a recent work [MBO09| using Goppa codes in quasi-dyadic
form. When constructing a McEliece-type cryptosystem based on quasi-dyadic
Goppa codes the public key size is significantly reduced. For instance, for a 80-bit
security level the public key used in the original McEliece scheme is 437.75 Kbytes
in size. The public key size of the quasi-dyadic variant is 2.5 Kbytes which is a
factor 175 smaller compared to the original McEliece PKC. For this reason, it is
interesting how the quasi-dyadic McEliece variant performs on embedded devices.

Another disadvantage of the McEliece scheme is that it is not semantical secure.
The quasi-dyadic McEliece variant proposed by Barreto and Misoczki is based
on systematic coding. It allows to construct CPA and CCA2 secure McEliece
variants by using additional conversion schemes, such as Kobara-Imai’s specific
conversion vy [NIKMO8§].

In this thesis we provide an implementation of this alternative public-key cryp-
tosystem. In addition, we apply the Kobara-Imai’s specific conversion v on the
quasi-dyadic McEliece variant to achieve semantical security. The KIC-v has also
been implemented within the scope of this thesis.

1.2 Existing Implementations 3

1.2 Existing Implementations

Only few implementations of the original McEliece public-key cryptosystem
have been reported. For instance, there exist two software implementations
for 32-bit architectures: an 1386 assembler implementation [PBGV92| and a C-
implementation [Pro09]. Recently, the McEliece PKC achieves more and more
attention by researchers analyzing the security of McEliece variants. Hence, we
assume that there exist other implementations for frequently used CPUs, but
non of them has been published. Two excellent implementations of the original
McEliece PKC on an 8-bits AVR microcontroller and an FPGA have been pro-
vided by the Chair for Embedded Security at the Ruhr-University Bochum. The
microcontroller implementation encrypts with 3,889 bits/second and decrypts
with 2,835 bits/second at a 32 MHz clock frequency. The main disadvantage of
this implementation is the use of external memory for encryption. As explained
above, the public-key of the original McEliece PKC is 437.75 Kbytes in size such
that external memory has to be used to store the key. The quasi-dyadic variant
should solve the problem of large public keys, increasing the practicability of the
McEliece public-key cryptosystem. To the best of our knowledge, no implemen-
tations of the quasi-dyadic McEliece variant have been proposed targeting an
embedded device.

1.3 Goals of this Study

The aim of this thesis is a proof-of-concept implementation of a McEliece-type
cryptosystem based on quasi-dyadic Goppa codes on an 8-bits AVR microcon-
troller. Particularly, an interesting task is to overperform the implementation of
the original McEliece variant in both, encryption and encryption.

1.4 Qutline

The remainder of this thesis is organized as follows. Chapter 2 introduces the
classical McEliece public key scheme and motivates the need of public key re-
duction. Chapter 3 introduces some basic concepts of coding theory. In further
progress of this chapter we describe how binary dyadic and quasi-dyadic Goppa
codes are constructed. Chapter 4 gives the scheme definition of the quasi-dyadic
McEliece variant consisting of three basic algorithms: key generation, encryption
and decryption. Chapter 5 describes the Kobara-Imai’s specific conversion v also
implemented within the scope of this thesis. In Chapter 6, our implementation of
the McEliece PKC with quasi-dyadic Goppa codes on an 8-bits AVR microcon-
troller is explained. We provide the results of our implementation, with respect to
memory requirements and performance, in Chapter 8 and conclude in Chapter 9.

2 The McEliece cryptosystem

The McEliece cryptosystem [McE78] was developed by Robert McEliece in 1978
and was the first proposed public-key cryptosystem (PKC) based on error-
correcting codes.

The idea behind this scheme is to pick randomly a code from a family of codes
with an existing efficient decoding algorithm and to use the description of this
code as a private key. To obtain the public key the private key is disguised as
a general linear code by means of several secret transformations. The decoding
of general linear codes is known to be N'P-hard. Hence, the purpose of these
transformations is to hide any visible structure of the private key which might be
used to identify the underlying code.

McEliece’s approach was to use binary Goppa codes as private key. These codes
are known to be easy to decode using e.g. Patterson’s decoding algorithm [Pat75]
or Bernstein’s list decoding method [Ber08]. The public key is obtained from the
private key by two linear transformations: a scrambling transformation and a
permutation transformation. The hardness of the McEliece scheme is the in-
distinguishability of modified Goppa codes from general linear codes for which
decoding is N'P-hard.

The McEliece PKC has some advantages compared to classical public-key schemes
such as RSA and ECC. In general, the encryption and decryption can be done
faster. In addition, with growing keys the security level increases faster. Another
major advantage of the McEliece PKC is the resistance to attacks performed by
quantum computers.

The remainder of this chapter is organized as follows. Section 2.1 gives an
overview about the original McEliece’s scheme and presents the key generation,
encryption and decryption algorithms. Furthermore, this section provides the
correctness proof of the McEliece scheme. Section 2.2 presents recommended
parameters and the resulting key sizes while Section 2.3 motivates the need to
reduce the size of the public key. In the last Section 2.4 the security of the original
McEliece PKC is discussed.

6 The McEliece cryptosystem

2.1 Scheme definition

The McEliece public-key cryptosystem consists of three algorithms presented in
this section:

e Probabilistic polynomial-time key generation algorithm generating public
and private parameters

e Probabilistic polynomial-time encryption algorithm that takes as input the
recipient’s public key K., and a message M and outputs a ciphertext ¢

e Deterministic polynomial-time decryption algorithm that takes as input
the private key K, and a ciphertext c and outputs the message M. The
decryption must undo the encryption, i.e., dec(K,, enc(Kpup,m)) = m
must hold for any generated key pair (K., K,,5) and any message m (see
Section 2.1.4).

2.1.1 Key generation

The common system parameters for the McEliece PKC are parameters of the
underlying [n, k, d] binary Goppa code defined by an (irreducible) polynomial of
degree t over GF'(2™) called Goppa polynomial. Corresponding to each such poly-
nomial there exist a binary Goppa code of length n = 2™, dimension k > n — mt
and minimum distance d = 2t 4+ 1 where ¢ is the number of errors correctable by
an efficient decoding algorithm (see Chapter 3 for more information).

At first, the key generation algorithm (Algorithm 2.1.1) chooses a random binary
[n,k,d|-Goppa code C defined by a Goppa polynomial of degree t. The generator
matrix for the code C can serve as private key. In the next step the key generation
algorithm selects a random scrambling matrix S which transforms G and sends
it to another matrix G’ = S-G. As S is an invertible k£ x k matrix, the matrix G’
is still a generator matrix for the same code C'. Furthermore, the key generation
algorithm selects randomly an n x n permutation matrix P which reorders the
columns of G/ to obtain the matrix G = S-G-P. As P is a permutation,
the resulting matrix G is the generator matrix for an equivalent linear code C.
This code has the same rate and minimum distance as C but no existing efficient
decoding algorithm. The problem of code equivalence can be reduced to the
graph isomorphism problem which is supposed to be in P/NP [PR97]. Hence,
G can serve as public key.

2.1 Scheme definition 7

Algorithm 2.1.1 Original McEliece PKC: Key generation algorithm
Input: Fixed common system parameters: ¢, n, k
Output: private key K,,, public key Ky,

Choose a binary [n,k,d]-Goppa code C capable of correcting up to t errors
G «— k x n generator matrix for C

Select a random non-singular binary k x k scrambling matrix S

Select a random n X n permutation matrix P

Compute the k x n matrix G =5 -G- P

return K,. = (S, G, P), Ky = (G, t)

S Gk w N

The running time (in binary operations) to generate a key pair for the McEliece
PKC is O(k*n +n? + t3(n — k) + (n — k)3) [EOS07].

2.1.2 Encryption
The McEliece encryption is done by multiplying a k-bits message vector by the

recipient’s public generator matrix G and adding a random error vector with
Hamming weight at most .

Algorithm 2.1.2 Original McEliece PKC: Encryption algorithm
Input: Message M, recipient’s public key Ky, = (é, t)
Output: Ciphertext ¢

1. Represent M as a binary string m of length &

2. Choose a random error vector e of length n and hamming weight
wt(e) <t

3. Compute the binary ciphertext vector ¢ = m - G+e

4. return c

The time complexity of the McEliece encryption algorithm is O(k/2 - n + t)
[EOS07].

2.1.3 Decryption

The decoding problem is the problem of decoding a linear code C equivalent to
a binary Goppa code C. The knowledge of the permutation P is necessary to
solve this problem. After reversing the permutation transformation, the decoder
for C can be used to decode the permuted ciphertext ¢ to a message m = S - m.
The original message m is then obtained from m by reversing the scrambling
transformation in step 3 of the decryption algorithm.

8 The McEliece cryptosystem

Algorithm 2.1.3 Original McEliece PKC: Decryption algorithm
Input: Ciphertext c, private key K, = (S, G, P)
Output: Message M

1. Compute ¢ = ¢- P71

2. Use the decoding algorithm for the code C to obtain the message vector
m=m-.S from ¢

3. Compute m =1 - S~!

4. Represent the binary string m as message M

5. return M

The decryption of a ciphertext of a McEliece instance generated by a [n = 2™k, d]
binary irreducible Goppa code requires O(ntm?) binary operations [EOS07].

2.1.4 Correctness

Any cryptosystem should satisfy the correctness property. This means that the
decryption works correctly for any honest recipient of the ciphertext c. In the
following, we show the correctness proof for the McEliece PKC.

¢ = c-P!
= (m-G+e)- P!
= (m-S-G-P+e)-P1
= m-S-G-P-Pl+4+e.-P!
= m-S- G+e p1

As P is a permutation matrix, so is P~!. Hence, the Hamming weight of the
permuted error vector e - P71 is still at most t. An efficient decoding algorithm
for C can be used to detect the permuted error, and thus, to obtain m from ¢.
Multiplying 7 by the inverse of S gives m - S~ = m - S-S~ = m which yields
the message vector. Hence, the McEliece scheme works correctly.

2.2 Recommended parameters and key sizes

The parameters influencing the security of the McEliece PKC are the code length
n, the code dimension k, and the number of added errors ¢. In his original
paper [McE78] McEliece suggests using [n = 2™ k = n — mt,d = 2t + 1] =
[1024,524,101] Goppa codes over GF(2™) where m = 10 and ¢ = 50. In a re-
cent paper [BLP08| Bernstein, Lange and Peters present an improved attack on
the McEliece scheme. This new attack reduces the number of operations needed
to break the McEliece scheme with original parameters to about 2% instead of

2.2 Recommended parameters and key sizes 9

280 being assumed before. To achieve 80-bit, 128-bit, 256-bit security level the
authors suggest using [2048,1751,55], [2960,2288,113], and [6624,5129,231] binary
Goppa codes, respectively. The new parameters also exploit Bernstein’s list de-
coding algorithm [Ber08] capable of correcting about n — y/n(n —2t —2) >t +1
errors in a binary [n,k,d]-Goppa code. This decoding method allows senders to
introduce more errors into ciphertexts, leading to higher security with the same
key size, or alternatively the same security with lower key size. Note that the
so far most efficient decoding algorithm due to Patterson [Pat75] is capable of
correcting t errors at most.

Table 2.1 summarizes all suggested parameters as well as the resulting key sizes
for specific security levels.

Security [n,k,d]-Code Added Size of K, Size of K,, = (G(z),P,S5)
Level errors in Kbits in Kbits
hardly 80-bit [1632,1269,67] 34 2022 (0.34,15.94,1573)
80-bit [2048,1751,55] 27 3502 (0.30,22,2994)
128-bit [2960,2288,113| 56 6614 (0.61,31.80,5112)
256-bit [6624,5129,231| 117 33178 (1.38,77.63,25690)

Table 2.1: Recommended parameters and key sizes for the original McEliece PKC

There are several ways to store the secret key. It is advisable to store directly the
inverses P~! and S~! of both transformation matrices to enhance the performance
of decryption. Since the (inverse) permutation matrix is sparse, it can be stored in
the form of a permutation sequence reducing memory requirements from n-n bits
to m - n bits. In [CC95| Canteaut and Chabaud pointed out that the scrambling
matrix has no cryptographic function in hiding the secret Goppa polynomial
G(z). Hence, in [Hey09] Heyse proposes generating the scrambling matrix on-
the-fly using a CPRNG and a prestored seed. The only restriction is that the
generated matrix has to be invertible. The seed length depends on the block size
of the cipher used as CPRNG, e.g. 80 bits for a PRESENT implementation. The
storage space occupied by a Goppa polynomial defining a private binary Goppa
code C is (t + 1)m bits. Hence, a private key can be stored compactly.

The major disadvantage of the McEliece public-key cryptosystem is its very large
public key of several hundred thousand bits. The complete public generator
matrix G of an (n,k) linear code occupies n -k bits storage space. For this reason,
the McEliece PKC has achieved little attention in the practice. Particularly with
regard to bounded memory capabilities of embedded devices, it is essential to
improve the McEliece cryptosystem by finding a way to reduce the public key
size.

10 The McEliece cryptosystem

2.3 Reducing public key sizes

The first naive approach to reduce the size of the public key is the use of a
public generator matrix in systematic (row-echelon) form. A systematic public
generator matrix is of the form Gsys = {I;|Q}, where I} is the k x k identity
matrix. It provides the following advantages:

1. As I is an identity matrix, it has not to be stored explicitly. The non-
trivial part Q) of Gsys is only k(n — k) bits in size. Hence, the storage space
occupied by the public key is reduced. For instance, the representation of
a [2048,1751,55] Goppa code occupies about 508 Kbits. That is a factor of
6.89 less than in general

2. The encryption can be performed more efficiently because only the multipli-
cation by a k x (n — k) submatrix @ of Gsys is necessary. Since the product
of a vector and an identity matrix is the vector itself this multiplication can
be omitted.

The problem with a public generator matrix in systematic form is that the multi-
plication m - G, results in a codeword of the form cw = (m||pcb) where the first
part of cw is the message itself and the second part are parity-check bits. This
is due to the special form of Gsys and is common case with systematic coding.
As the error vector added during the last step of the encryption algorithm is
sparse, the resulting ciphertext ¢ would immediately reveal the message. Hence,
additional steps have to be performed on the message before McEliece encryp-
tion. For this purpose the same conversions as for achieving CCA2-security can
be used (see Chapter 5).

But only using a public generator matrix in systematic form is not enough for
public key reduction. There is an ongoing research to replace classical irreducible
Goppa codes with ones that can be represented in a more compact way while
keeping the security level of the McEliece PKC. Increased efforts were made to
find such alternative codes. Most of them tried to replace the class of Goppa
codes by a family of other codes. For instance, Shokrollahi, Monico and Rosen-
thal examined in [SMROO0| a possible solution of using low density parity-check
codes (LDPC) and showed this solution to be unsafe. Other approaches are based
on the idea of using quasi-cyclic codes ([Gab05| proposed by Gaborit) or quasi-
cyclic low density parity-check codes ([BCOT7| proposed by Baldi and Chiaraluce).
The first approach considers subcodes of primitive BCH codes and uses a very
constrained permutation for hiding the secret code. The second approach uses
quasi-cyclic LDP-codes and more general one-to-one mappings instead of permu-
tation matrices. In [OTDO8| Otmani, Tillich, Dallot showed that both systems
can be broken totally by structural attacks exploiting the quasi-cyclic structure
of the code.

2.4 Security of the McEliece PKC 11

In a recent work |[MB09| Misoczki and Baretto describe another way to reduce
the public key size in McFEliece-type cryptosystems by using a subclass of Goppa
codes, namely quasi-dyadic Goppa codes. In contrast to many other proposed
code families, binary Goppa codes are cryptanalysis-resistant and remain still
unbroken.

The aim of this thesis is a proof-of-concept implementation of a McEliece-type
cryptosystem based on quasi-dyadic Goppa codes on an embedded microcon-
troller. In addition, a systematic public generator matrix is used. The construc-
tion of this cryptosystem is presented in Chapter 4.

2.4 Security of the McEliece PKC

The security of code-based cryptosystems depends on the difficulty of two basic
kinds of attacks:

e Structural Attack: Given the public generator matrix G recover the
secret transformation, also called trapdoor, and the description of the secret
code or an equivalent one. The difficulty of this attack is not related to any
known coding theoretic problem. It mainly depends on the class of private
codes used as well as on the secret transformation.

e Ciphertext-Only-Attack: Given a ciphertext and the public key recover
the corresponding message. This attack is related to the general decoding
problem. The general decoding problem is the problem of decoding a re-
ceived word to the closest codeword in an arbitrary code and is known to
be NP-complete [BMvT78|.

Hence, the main security issues in code-based cryptography are

e the use of secure private codes such that no attack exploiting the structure
of the private code is possible

e the hiding of the structure of a private code in order to obtain a public code
which is indistiguishable from a general linear code.

Using classical irreducible Goppa codes over Fy derived from codes over Fom no
efficient polynomial-time algorithm is known which can distinguish these codes
from general linear codes. The best known attack uses the support splitting
algorithm (SSA) [Sen00] to solve the permutation equivalence problem, and thus,
to recover the private key from the public key. This attack tests all possible Goppa
polynomials of degree < 2t and checks whether the corresponding Goppa code
is permutation equivalent to the public code by calling the SSA. If the SSA was
able to find a permutation, the attack was successful. The time complexity of
this attack can be estimated as O(n? (1 + o(1))) [? |, which is negligible for all
suitable McEliece parameters.

12 The McEliece cryptosystem

Several attacks are known trying to recover a message from a ciphertext only, and
thus, to solve the general decoding problem, e.g. the Generalized information-set-
decoding attack proposed by McEliece in his original paper as well as Finding-low-
weight-codeword attacks (Leon [Leo88|, Stern [Ste89], Canteaut and Chabaud
[CC98|, Bernstein, Lange, Peters [BLP08]). All these attacks require exponential
time, hence, no polynomial time algorithm is known which solves the general
decoding problem.

Indeed, the McEliece PKC has weaknesses which reduce the complexity of the
above ciphertext-only attacks. The first weakness appears when an adversary
has partial knowledge of the encrypted message. Let [and J denote two sets of
indexes such that I C {1,...,k} and J = {1,...,k}\I. Let an adversary A have
knowledge of the message bits m;c; such that mG =m;G; ®myG,. Then A
may try to recover my from ¢ = c® m;G; = m ;G ; @ € using one of the above
attacks. The attack complexity is obviously reduced.

Another weakness comes out when an adversary A has knowledge of a relation
R(mq,mz) of two messages my, mo, e.g. R(my,mz) = my & my. Then the
following holds

€1 = €24 = 0

d=c1PBca®R(mi,my) =e; ey =e with e} =0 if {
€1; = €24 = 1

where the second case is hardly probable due to low weights of the error vectors.
Hence, the adversary A can guess error bits efficiently.

Furthermore, the McEliece PKC does not satisfy the non-malleability property
even against passive attacks, such as chosen plaintext attacks. Let m and m/
denote two messages such that m’ = m @& Am. An adversary A knows the
ciphertext ¢ corresponding to m. Adding rows of the public generator matrix
to ¢ the adversary A can obtain another valid ciphertext ¢ for the message m’
without knowledge of m.

d=coGlil=m+AmGee=m'Goe
where i € I, and I = {iq,1s,--- } is a set of coordinates of one’s in Am.

In addition, the McEliece PKC is not semantically secure in the random oracle
model against adaptive chosen ciphertext attack. The adversary A can decrypt
any ciphertext cin the following way. He asks the decryption oracle for decryption
of the ciphertext ¢’ to obtain the corresponding message m’. If the ciphertext
¢ has been constructed as above, A can easily obtain the target message m =
m’ & Am.

To harden the McEliece PKC against weaknesses mentioned above and to achieve
(IND-)CPA and (IND-)CCA2 security Kobara and Imai proposed three specific
conversions [KI01|. Within the scope of this thesis the specific conversion + has
been implemented. This conversion is discussed in Chapter 5.

3 Aspects of coding theory

In this chapter a short introduction to the basic definitions of coding theory based
on [HPO03|, [Sti08], and [MBO09] is given.

3.1 Linear codes

Definition 3.1.1 Let F, denote a finite field and F a vector space of n tuples
over Fy. An [nk|-linear code C is a k-dimensional vector subspace of F. The
vectors (ay, ag, ..., ay) € C are called codewords of C.

An important property of a code is the minimum distance between two codewords.

Definition 3.1.2 The Hamming distance d(x,y) between two vectors x,y € Fy
15 defined to be the number of positions at which corresponding symbols
T, Yi, V1 < i < n are different. The Hamming weight wt(z) of a vector x € Fy
is defined as Hamming distance d(x,0) between x and the zero-vector.

The minimum distance of a code C is the smallest distance between two dis-
tinct vectors in C. A code C is called [nk,d|-code if its minimum distance
is d = mingyecd(z,y). The error-correcting capability of an [nk,d]-code is
= |d=1

2

The two most common ways to represent a code are either the representation by
a generator matrix or a parity-check matrix.

Definition 3.1.3 A matriz G € IF’;X” is called generator matrix for an [n,k[-
code C if it’s rows form a basis for C such that C ={x -G |z € IF’;} In general
there are many generator matrices for a code. An information set of C is a set of
coordinates corresponding to any k independent columns of G while the remaining
n — k columns of G form the redundancy set of C.

If G is of the form [I;|Q], where I it the k x k identity matrix, then the first k
rows of GG form the information set for C. Such a generator matrix G is said to
be in standard (systematic) form.

14 Aspects of coding theory

Definition 3.1.4 For any [n,k[-code C there exists a matric H € IFZX("*’“) with
(n — k) independent rows such that C = {y € ¥ | H-y" = 0}. Such a matriz H
is called parity-check matrix for C. In general, there are several possible parity-
check matrices for C.

If G is in systematic form then H can be easily computed and is of the form
[—QT|I,,_;] where I,,_y, is the (n — k) x (n — k) identity matrix.

Since the rows of H are independent, H is a generator matrix for a code C* called
dual or orthogonal to C. Hence, if G is generator matrix and H parity-check

matrix for C then H and G are generator and parity-check matrices, respectively,
for C*+.

Definition 3.1.5 A dual code C' to C is an [n,n-k[-code defined by
Ct={zeF, |z-y=0, VyeC}.

3.2 Punctured and shortened codes

There are many possibilities to obtain new codes by modifying other codes. In
this section we present two of them: punctured codes and shortened codes. These
types of codes are used for the construction of the quasi-dyadic McEliece variant
discussed in Section 4.

Let C be an |n,k,d]-linear code over F,. A punctured code C* can be obtained
from C by deleting the same coordinate ¢ in each codeword. If C is represented
by the generator matrix GG then the generator matrix for C* can be obtained by
deleting the i-th column of the generator matrix for C. The resulting code is an

e [n—1,k,d— 1]-linear code if d > 1 and C has a minimum weight codeword
with a nonzero i-th coordinate

e [n — 1,k d]-linear code if d > 1 and C has no minimum weight codeword
with a nonzero i-th coordinate

e [n — 1,k,1]-linear code if d = 1 and C has no codeword of weight 1 whose
nonzero entry is in coordinate ¢

e [n—1,k—1,d"|-linear code with d* > 1if d = 1, k > 1 and C has a codeword
of weight 1 whose nonzero entry is in coordinate ¢

It is also possible to puncture a code C on several coordinates. Let T" denote a
coordinate set of size s. The code C7 is obtained from C by deleting components
indexed by the set T" in each codeword of C. The resulting code is an [n—s, k*, d*]-
linear code with dimension k* > k — s and minimum distance d* > d — s by
introduction.

Punctured codes are closely related to shortened codes. Consider the code C and
a coordinate set T of size s. Let C(T) C C be a subcode of C with codewords

3.3 Subfield subcodes and Trace codes 15

which are zero on T. A shortened code Cr of length n — s is obtained from C by
puncturing the subcode C(7") on the set T

The relationship between shortened and punctured codes is represented by the
following theorem.

Theorem 3.2.1 Let C be an [n,k,d[-code over F, and T a set of s coordinates.
1. (CHr = (CT)L and (CH)T = (Cr)*, and
2. if s < d then CT has dimension k and (C*)r has dimensionn — s — k

3. if s =d and T 1s the set of coordinates where a minimum weight codeword is
nonzero, then CT has dimension k—1 and (C*)r has dimension n—d—k+1

3.3 Subfield subcodes and Trace codes

Many well-known and important codes can be constructed over a field F, by
restricting a code defined over an extension field IF,, where ¢ = p? for some prime
power p and extension degree d.

Definition 3.3.1 Let F, be a subfield of the finite field F, and let C C Fy be a
code of length n over F,. A subfield subcode Csyp of C over F, is the vector space
CNF,. The dimension of a subfield subcode is dim(Csyp) < dim(C).

Another way to derive a code over F, from a code over [, is to use the trace
mapping T'r : F, — F, which maps an element of F, to the corresponding element
of IF,.

Definition 3.3.2 Let T'r(a) denote the trace of an element a = (ag,ay, ..., a,) €
Fy such that Tr(a) = (Tr(ao), Tr(ai),...,Tr(a,)) € F,. A Trace code
Crr =Tr(C) :={Tr(c) | c€C} CF, is a code over I, obtained from a code C
over I, by the trace construction. The dimension of a Trace code is dim(Cr,) <
d - dim(C).

For instance, let C be a code over F, defined by the parity-check matrix H € FZX"
with elements h; ; € F, = F,[z]/g(x) for some irreducible polynomial g(z) € F,[z]
of degree d.

h0,0 hO,l e hO,n—l

T

hiio he—in oo hi—ipa

16 Aspects of coding theory

The elements h;; € F, of H can be represented as polynomials
hij(x) = hijya—1 -2 4o+ hijya - T+ hi gy of degree d— 1 with coefficients
in F,. The trace construction derives from C the Trace code Cp, by writing the
[F,, coefficients of each element h; ; onto d successive rows of a parity-check matrix
Hor, € IFZ”" for the Trace code. Consequently, Horp, is the trace parity-check
matriz for C.

h0,0),0 hono - hon-1)0
hoo,d—1 hoiyda1 - hon-1)d-1
Hepy i= : : :
hi—100 he—10 hu—10-1)0
h-1,0a-1 Mi-11)d-1 Ri—1n-1),d-1

The co-trace parity-check matrix H/.p, for C, which is equivalent to Horp, €]FZ“”
by a left permutation, can be obtained from H analogously, by writing the F,
coefficients of terms of equal degree from all components on a column of H onto
successive rows of H(p,.

h0,0),0 hono -+ hon-1)0
h—1,0),0 hi—1)0 - hu—10-1)0
H&'Tr = :) :
hooy,da-1 hoda-1 0 hon-1),d-1
h-1,00d-1 ha-1,1)d-1 R—1n-1),d—1

Subfield subcodes are closely related to Trace codes by the Delsarte-Theorem.

Theorem 3.3.3 (Delsarte) For a code C over Fy, (Csyp)t = (Clg,)" =
Tr(Ch).

That means, given an |n,t|-code C* defined by the parity-check matrix H € IE‘ZX”
dual to an |n,n-t]-code C defined by the generator matrix G €]Fé"’t)xn the trace
construction can be used to efficiently derive from C* a subfield subcode defined

by the parity-check matrix Hgyp € thxn.

3.4 Goppa codes

One of the most important families of codes are Goppa codes introduces by V. D.
Goppa in 1970 |[Gop70|. Binary Goppa codes form a family of binary linear codes

3.4 Goppa codes 17

generated by a Goppa polynomial G(z) = Y!_, g;x® of degree t with coefficients
taken in a finite field F, where ¢ = 2™ and a subset L = (Lo,...,L,1) € F,
whose elements L; are not roots of G(z). Lower bounds on their dimension and
minimum distance are known, as well as an efficient polynomial-time decoding
algorithm. Goppa codes can be defined in various ways.

Theorem 3.4.1 Let L be a sequence L = (Lo, ..., Ln1) € Fy of distinct ele-
ments and G(x) a Goppa polynomial of degree t where G(L;) # 0,V 0 <i <n—1.

For any vector ¢ = (cq,...,Cn1) € I, we define the syndrome of ¢ by
n-l C; G(ZL‘) — G(LZ) o n-! C;
S.(z) = — ; GL) +-L mod G(r) = ;) p— mod G(z).

The binary Goppa code I'(L, G(x)) is defined as the following subspace of F.

(L, G(r)) ={c€F, | Se(x) =0 mod G(r)}

Equivalently, a Goppa code can be defined by its parity-check matrix.

I'(L,G(z))={ceF, |H-c" =0 mod G(z)}

The parity-check matrix for a binary Goppa code can be derived from the equation
% used for the syndrome computation. We see that a vector c¢ is in
['(L,G(x)) if and only if

(g | t ,
2 (G(L-) 2 gng_H) G=0,Y0<s<t—1

i=0 j=s+1

Hence, if G(z) is a monic polynomial then H is of the form

1 e 1
G(Lo) G(Ln—l)
gt—1+Lo . gt—1+Ln_1
H := G(Lo) G(Ln-1) =
g1+g2Lo+..+ge 1L 2 +LE! g1+g2Ln—1+..Ag_1 LA +LEY
G(Lo) e G(Ln—l)
1 0 0 0 1 1
1
gt—1 1 0 0 Ly Ly G(Lo) 0
=92 g1 1 0] «| L§ L2 | « : . :
: : : : : R S
L i kS 0 L)
g G2 93 1 Ly L,

18 Aspects of coding theory

An alternative way to define Goppa codes is to treat them as subfield subcodes
of Generalized Reed-Solomon codes. In that special case Goppa codes are also
called alternant codes.

Definition 3.4.2 Given a sequence L = (Ly, ..., L,—1) € F of distinct elements
and a sequence D = (Dy, ..., D,_1) € F of nonzero elements, the Generalized
Reed-Solomon code GRS(L, D) is the [n,k,t+1] linear error-correcting code de-
fined by the parity-check matric Hy p = vdm(t,L) - Diag(D) where vdm(t, L)

denotes the t x n Vandermonde matriz with elements vdm;; = L;

Dy Dy - D,
DoLy DyLy --- Dyp_1L,
Hyp:= : : . :
DoLi" DyLE™' ... Dy Li7L

Definition 3.4.3 Given a prime power p = 2° for some s, ¢ = p® = 2™ where
m = s-d for some d, a sequence L = (Lo, ..., Ln1) € F of distinct elements
and a polynomial G(x) € F,[z] of degree t such that G(L;) # 0 for 0 <i < mn, the
Goppa code I'(L, G(x)) over IF, is the subfield subcode over I, corresponding to
GRSy(L, D) where D = (G(Lo)™",...,G(L,_1)""), and its minimum distance is
at least 2t +1. The Goppa code I'(L, G(z)) = Tr(GRS(L, D)) over F, is derived
from GRS,(L, D) over F, through trace construction. A dual code T'(L, G(x))* D
GRS,—(L,D")|, is a subfield subcode over F), of the Generalized Reed Solomon
code GRS, (L, D') where Dj = G(L;)/ I1;2;(Li — Lj).

In the original McEliece cryptosystem binary irreducible Goppa codes are used.
A Goppa code is irreducible if the used Goppa polynomial G(x) is irreducible
over [F,. In this case the Goppa code can correct up to ¢ errors.

If G(z) = [1'Z{(x — z) is a monic polynomial with ¢ distinct roots all in F, then

it is called separable ! over F,. In this case the Goppa code can also correct ¢
erTors.

A Goppa code generated by a separable polynomial over [F;, admits a parity-check
matrix in Cauchy form [MS97].

Definition 3.4.4 Given two disjoint sequences z = (29,...,21-1) €]FZ and
L= (Lo,...,Ln1) € F of distinct elements, the Cauchy matriz C(z, L) is the
t x n matriz with elements C;; = 1/(z; — L;), i.e.

!Note that every monic irreducible polynomial G(x) = 2t +g;_1-2'~1 +- -+ go with g; # 0
for some i # 0 mod Char(FF4:) is separable over an extension Fgs of Fy

3.5 Dyadic Goppa codes 19

Theorem 3.4.5 The Goppa code generated by a monic polynomial
G(z)=(xr —2z0) - (x — z1) without multiple zeros admits a parity-check
matriz of the form H = C(z,L), i.e. H;j =1/(zi —L;), 0<i<t,0<j<n.

71 DY 1
zo—Lo 20—Ln—1
C(z, L) = : : ;
zt—1—Lo 2t—1—Ln—1

3.5 Dyadic Goppa codes

In [MBO09| Barreto and Misoczki have shown how to build binary Goppa codes
which admit a parity-check matrix in dyadic form. The family of dyadic Goppa
codes offers the advantage of having a compact and simple description.

In this proposal the authors make an extensive use of the fact that using Goppa
polynomials separable over F, the resulting Goppa code admits a parity-check
matrix in Cauchy form by Theorem 3.4.5. Hence, it is possible to construct
parity-check matrices which are in Cauchy and dyadic form, simultaneously.

Definition 3.5.1 Let F, denote a finite field and h = (ho, hy, ..., hy—1) € Fy a
sequence of By elements. The dyadic matrix A(h) € Fy is the symmetric matriz
with elements A;; = higj. The sequence h is called signature of A(h) and coin-
cides with the first row of A(h). Given t > 0, A(h,t) denotes A(h) truncated to
its first t rows.

When n is a power of 2 every 1 x 1 matrix is a dyadic matrix, and for k£ > 0 any

2F % 2% matrix A(h) is of the form A(h) := (g ﬁ) where A and B are dyadic

2k=1 % 9k=1 matrices.

Theorem 3.5.2 Let H € F,™" with n > 1 be a dyadic matric H = A(h) for

some signature h € F and a Cauchy matriz C(z, L) for two disjoint sequences
z €l and L € F} of distinct elements, simultaneously. It follows that

F, is a field of characteristic 2

- 11,1, 1
h satisfies ey — i TR T

the elements of z are defined as z; = hi + w, and

the elements of L are defined as L; = % + ,710 +w for some w € F,

20 Aspects of coding theory

It is obvious that a signature h describing such a dyadic Cauchy matrix cannot be
chosen completely at random. Hence, the authors suggest only choosing nonzero
distinct hy and h; at random, where ¢ scans all powers of two smaller than n, and
to compute all other values for i by h;q; = W for 0 < j <.

In the following an algorithm for the construction of binary Goppa codes in dyadic
form is presented.

Algorithm 3.5.1 takes as input three integers: ¢, N, and t. The first integer
q = p? = 2™ where m = s - d defines the finite field F, as degree d extension
of F, = Fy.. The code length N is a power of two such that N < ¢/2. The
integer ¢ denotes the number of errors correctable by the Goppa code. Algorithm
3.5.1 outputs the support L, a separable polynomial G(x), as well as the dyadic
parity-check matrix H €]F';XN for the binary Goppa code I'(L, G(z)) of length
N and designed minimum distance 2¢ + 1.

Furthermore, Algorithm 3.5.1 generates the essence 1 of the signature h of H
where n, = % + i for r = 0,.. UgNj — 1 with nugn| = hio, so that, for

Z lgN g2k, 1 = Nugn| + ZLg V-1, #Me- The first |lgt| elements of 7
together W1th |lg Nj Completely specify the roots of the Goppa polynomial G(z),

namely, z; = npgn| + Zk:o Uk

The number of possible dyadic Goppa codes which can be produced by Algo-
rithm 3.5.1 is the same as the number of distinct essences of dyadic signatures
corresponding to Cauchy matrices. This is about [JX8/(¢ — 2/). The algo-
rithm also produces equivalent essences where the elements corresponding to the
roots of the Goppa polynomial are only permuted. That leads to simple re-
ordering of those roots. As the Goppa polynomial itself is defined by its roots
regardless of their order, the actual number of possible Goppa polynomials is

(5™ (= 29) /(g N).

3.6 Quasi-Dyadic Goppa codes

A cryptosystem cannot be securely defined using completely dyadic Goppa codes
which admit a parity-check matrix in Cauchy form. By solving the overdefined
linear system Hij = 2; + L; with nt equations and n + ¢ unknowns the Goppa
polynomial G(z) would be revealed immediately. Hence, Barreto and Misoczki
propose using binary Goppa codes in quasi-dyadic form for cryptographic appli-

cations.

Definition 3.6.1 A quasi-dyadic matriz is a possibly non-dyadic block matrix
whose component blocks are dyadic submatrices.

3.6 Quasi-Dyadic Goppa codes 21

Algorithm 3.5.1 Construction of binary dyadic Goppa codes
Input: ¢ (a power of 2), N < ¢/2,t
Output: L, G(x), H, n

LU —U\ {0}
> Choose the dyadic signature (ho,...,h,—1). Note that whenever h; with
j > 0is taken from U, so is 1/(1/h; + 1/hy) to prevent a potential spurious
intersection between z and L.
ho & U
MigN) < hio
U«—U\A{ho}
forr —0to |lgN]—1do
1 2"
Ny < hi + h%

i

h

hi TRy

® N o ok W

10. forj—1toi—1do

1
11. higj — To27=
Ry TRy Thg

12. U<—U\{hi@j711+1}

higj ho

13 w & F,
> Assemble the Goppa polynomial
14. fori —0tot—1do
15. Z; h% +w
t—1

16. G(z) — [[(z — 2)

1=0

> Compute the support
17. for j «— 0to N — 1 do
18, Ly o+ g T w
19. h < (ho,...,hny_1)
20. H «— A(t, h)
21. return L, G(z), H, n

A quasi-dyadic Goppa code over [F,, = [Fys for some s is obtained by constructing
a dyadic parity-check matrix Hgyqq €]F';X" over Fy = [F,0 = Fom of length n = It
where n is a multiple of the desired number of errors ¢, and then computing the
co-trace matrix Hy, = Tr'(Hgyaq) €]thx”. The resulting parity-check matrix

22 Aspects of coding theory

for the quasi-dyadic Goppa code is a non-dyadic matrix composed of blocks of
dyadic submatrices by Theorem 3.6.2.

Theorem 3.6.2 The co-trace matric Hf, €]thXlt of a dyadic matriz
Hyaa € F;Xlt 15 quasi-dyadic and consists of dyadic blocks of size t X t each.

Proof sketch:
To prove this theorem we consider a dyadic block B over [F, of size
2 x 2 which is the minimum block of a dyadic parity-check matrix for

a binary Goppa code.
[ho M
B = <h1 hg)

The co-trace construction (see Section 3.3) derives from B a matrix
of the following form.

hoo hio
hio hoo
hoi hin
hi1 hoa

/ R
BTT‘ T

It is not hard to see that B/, is no more dyadic but consists of dyadic
blocks over I, of size 2 x 2 each. The quasi-dyadicity of B, can
be shown recursively for all blocks B;. Consequently, the complete
co-trace matrix 77" (Hgyqq) is quasi-dyadic over F,,.

3.7 Goppa decoding

3.7.1 Patterson’s decoding algorithm

In [Pat75] Patterson introduced an efficient algorithm for decoding of binary
Goppa codes. The algorithm corrects, in polynomial time, ¢ errors in a classical
(irreducible) binary Goppa code of length n and degree ¢. In this section the
functionality of the Patterson’s decoding algorithm is explained.

The first step of the decoding algorithm is syndrome computation. For the syn-
drome of a ciphertext ¢ = v @ e where e is an error vector of weight at most ¢
added to the codeword v the following holds

Se(x) = Sy(x) + Se(z) = Se(x) mod G(x)

3.7 Goppa decoding 23

because the syndrome of a codeword v € I'(L, G(z)) is S,(z) =0 mod G(z) by
definition.

The goal of the decoding algorithm is to find a polynomial o(z) of degree ¢ <t
where ¢’ is the actual number of errors in ¢. The polynomial o(z) is called error
locator polynomial and defined as

o(x) = [[(z—n)

i€l

where E is a sequence of integers determining error positions in ¢ (equivalent,
the positions of ones in e). The roots ~; of the error locator polynomial are
then elements of the support L for the binary Goppa code I'(L, G(z)) where the
positions of these elements inside of L correspond to error positions in c.

The error locator polynomial o(x) satisfies the equation

o(2)Se(x) = o' () (3.1)

where o’(z) is the formal derivate of o(z). Since the characteristic of F, is 2 the
derivate ¢’(z) is obtained by splitting o(x) in squares and non-squares such that

o(z) = a(z)* + - b(x)?

where o (x) b(z)?. If ¢ is not a codeword the syndrome S.(z) has an inverse
T(z) = Sc(x)~! in F,. Hence, the Equation 3.1 can be written as
a(z)? = (T(z) + z)b(z)*> mod G(x) (3.2)

To solve Equation 3.2 in order to obtain a(z) and b(z), and thus to compute
o(z), the Decoding algorithm 3.7.1 proceeds as follows. It first computes the
inverse T'(z) of S.(z). In the next step it computes the square root R(x)
of T'(z) + x satisfying the equation a(x) = R(z)b(x) mod G(z). By an ob-
servation due to Huber [Hub96| the polynomial R(z) can be represented as
R(x) = Ry(z) + W(z)Ry(x) where W(x)? =z mod G(z) which can be precom-
puted for every Goppa polynomial. Hence, the square root computation can be
done by splitting R(z)? = T(z) +z = Ry(x)* + x - Ry(x)? in squares and non-
squares and computing square roots of both.

The extended Euclidean algorithm (EEA), e.g. presented in [MVO96|, can
be used to obtain a(z) and b(z) where deg(a(z)) < [t/2] and deg(b(x)) <
|(t—1)/2]. We start the computation with a_i(x) = 0, ao(x) = G(z),
b_1(z) = R(z), and bo(xz) = 1. After each step i of the EEA the degree of a;(x)
decreases while the degree of b;(x) increases. There is an unique point k where
the degree of both polynomials ax(x) and bx(x) is below the respective bound.

24 Aspects of coding theory

This is when the degree of a;(x) drops below | (¢t + 1)/2] for the first time. Thus,
we obtain both polynomials a(x) = a(x) and b(z) = bg(z) of desired degrees and
can compute o(x).

The next and the most computationally expensive step of the decoding algorithm
is root computation of the error locator polynomial. There are several ways to
do that, e.g. using Berlekamp trace algorithm, Chien search, Horner scheme, or
the simple polynomial evaluation method, explained in the next section.

Then errors can easily be corrected by finding the positions of roots 7; of o(z) in
L and flipping the corresponding bits of c.

Algorithm 3.7.1 Decoding Algorithm for binary Goppa codes
Input: ciphertext vector ¢, Goppa code ['(L, G(x))
Output: message vector m, error vector e

1. Compute the syndrome S.(z) of ¢, e.g. by

n—1
Se(z) =) S mod G(x), or by
i—0 T — L@
S.(z)=H-cT"
if S.(x) =0 mod G(x) then
> ¢ is a codeword
return (c,0)
else
> Get error locator polynomial
T(z) = S.(z)"' mod G(x)
R(z) =/T(z) + 2z mod G(x)
Compute a(z) and b(z) such that a(zx) = b(x)R(x) mod G(z).
Compute error locator polynomial o(z) = a(x)? + z - b(x)?
Find roots v = (y1,...,7) € th/ of o(z) where t' <t

© X N ok N

— =
- O

> Correct errors
12 Sete=0
13. fori« 1tot do
14. Find the position ¢ of v; in L
15. Set e[i] =1
16. return (c,e)

3.7.2 Finding roots of the error locator polynomial
Polynomial evaluation method

The easiest way to find roots of the error locator polynomial is the simple polyno-
mial evaluation method. Due to the fact that only elements of the support L for

3.7 Goppa decoding 25

the binary Goppa code I'(L, G(x)) can be roots of o(x) it is sufficient to evaluate
o(z) putting in elements L; € L for the variable x. If the evaluation result is
zero a root has been found. When using intermediate results L7 computed in
previous evaluation steps this method requires 2t — 1 field multiplications and ¢
field additions for an evaluation of a degree ¢t polynomial at a point L;. In the
worst case all n elements of L must be tested to find all roots of o(z). Hence, the
time complexity of this root finding method is n((2 - Cpu + Cuaa)t — Cr) Where
Cada and Ciy,,, are the time complexities of one addition and multiplication in F,,
respectively.

Horner scheme

The Horner scheme is a more sophisticated polynomial evaluation method. Every
polynomial o(z) = 0¢ + o1 + - - - + 02" can also be written as

o(x) =0co+z(or+a(oz+ - +a(a1+za)))

Making use of this nested form the Horner scheme proceeds as follows.

Q¢ — O¢
a1 < Oop1+L;-ay
ap, +— o1+ L;-as
ay <« oo+ L;-a;
O'(Lz) = Q

The Horner scheme involves t field additions and ¢ field multiplications which is
about factor two less compared to the simple evaluation method. In the worst
case the Horner scheme scans all n elements of the support L. Hence, the time
complexity of the Horner scheme is (Cygq + Cut) - t - 1 where Cyyq and Cpyy are
the time complexities of one addition and multiplication in F,, respectively.

Chien search

Another method frequently implemented in hardware is Chien search [Chi64].
The Chien search makes an extensive use of the following relationship which is
true for any element 3 = o' € F,\{0}.

This way, the evaluation of o(z) can be done at all points 5 € F,. We start the
search for roots of o(z) with ¢ = 0 and use the intermediate results 7, ; computed
while evaluation of o(z) at the point o’ to compute the next values ;11 = ;07
for the evaluation of o(x) at the next point a'™!. The result of the evaluation at

26 Aspects of coding theory

ola’) = oy + o(at) + + o (at)tl + o(at)
Yo0,i + M + + V-1 + M
s(@) = o +oo(aith) 4 oo (et ooty
o + o(a)a + + o (@)t + 0 o(ad)tal
Y0,i + Mo + + ettt + o
= Y,+1 T Vi1 + + Vi1t T Vit

the point o is obtained summing up the values ~;; for 0 < j < ¢. If the result is
0 then o' is a root of o(z).

The values (1,a,a?,...,at) can be precomputed and stored in an array. Hence,

Chien search involves t field additions and t field multiplications to evaluate
a degree t polynomial at a point 5. In the worst case Chien search scans all
qg—1=2m—1 field elements of F, = Fom. Hence, the time complexity of the
Chien search can be denoted as (Cygq + Crpw) - t - (2™ — 1) where Cugq and Cpy
are the time complexities of one addition and multiplication in F,, respectively.

Berlekamp trace algorithm

The Berlekamp trace algorithm was originally published in [Ber70| and is one of
the best known algorithms for the factorization of polynomials over finite fields
with small characteristic. As the error locator polynomial does not have multiple
roots, we can use this algorithm for root finding. In this section we concentrate
on finite fields of characteristic two.

Given a finite field F, where ¢ = 2™, the trace function Tr(-) of F, over Fy is
defined by

2m71

Tr(z) =z +a®+a% +- +u
and maps the field F, onto it’s base field .

Using the trace function every element o € [F, can uniquely be represented by
the binary m-Tuple (T7(B1«), ..., Tr(Bna)) where (By,. .., Bn)= (a,a?, ..., a™)
denotes any basis of F, over F; and « is a primitive element of Fom.

The core idea of the Berlekamp trace algorithm is that every polynomial
f(z) € F [x] where f(x)|(z*" — z) splits into two polynomials
9(x) = ged(f(x), Tr(53 - x)), and
hz) = ged(f(x), 1+ Tr(8 - x)) = f(x)/9(x)
for any element 3 € (1, .., Bm).

Repeating this recursively where (3 iterates through the basis of Fom over Fy all
roots of o(x) can be found. The first call of the Berlekamp trace algorithm given
below is BT'A(o(x),1).

The Berlekamp trace algorithm has time complexity O(m - t*) [BH09].

3.7 Goppa decoding

27

Algorithm 3.7.2 Berlekamp Trace Algorithm

Input: Polynomial f(x), integer i
Output: Roots (y1,...,%) € F,, of o(x)

1. if deg(f) <1 then
return rootof(f)
else
g — ged(f, Tr(fi - x))
h—f/g
return BT A(g,i+ 1)U BT A(h,i+ 1)

S Ok N

4 McEliece-type PKC based on
quasi-dyadic Goppa codes

In [MB09] Barreto and Misoczki proposed a new method for the reduction of the
public key size in the original McEliece PKC. This proposal is based on quasi-
dyadic Goppa codes (see Sections 3.5 and 3.6). The family of dyadic codes offers
the advantage of having a compact and simple description. The whole dyadic
generator matrix for such a code can be described by only its signature of n
elements. A cryptosystem cannot be defined securely by a parity-check matrix of
a completely dyadic Goppa code, therefore the authors use quasi-dyadic Goppa
codes in their proposal. A quasi-dyadic generator matrix for a binary Goppa
code is a non-dyadic matrix consisting of dyadic submatrices of size ¢ x t each.
A quasi-dyadic matrix is described by signatures of its dyadic submatrices of ¢
elements each.

The secret transformations of a private quasi-dyadic Goppa code used to obtain
a public code must not destroy the quasi-dyadicity. In this case the size of the
public key is roughly a factor ¢ smaller than in general. On the other hand, the
secret transformations has to be hard to recover so that no attack identifying the
underlying private code is possible.

This chapter first describes the transformations frequently used in McEliece vari-
ants to disguise a private code as well as the function of these specific transforma-
tions. In Section 4.2 the scheme definition of the quasi-dyadic McEliece variant
is given. Section 4.3 presents the recommended parameters while Section 4.4
discusses the security of the quasi-dyadic McEliece-type PKC.

4.1 Hiding the structure of the private code

The main security issue in code-based cryptography is hiding the structure of the
private code. Let G denote a generator matrix for a private code C, and let C
denote a public code obtained from C by one or more secret transformations. In
the following, some usual transformations are summarized, based on [OS08] and
[MBO09].

(1) Row Scrambler: Multiply the generator matrix G for the private code

30 McEFEliece-type PKC based on quasi-dyadic Goppa codes

C by a random invertible matrix S € F’;Xk from the left. As (G) = (SG),
the known error correction algorithm for C can be used. Publishing a
systematic generator matrix provides the same security against structural
attacks as a random S.

(2) Column Scrambler/ Isometry: Multiply the generator matrix G for
the private code C by a random invertible matrix P € IFZX” from the right,
where P preserves the norm, e.g. P is a permutation matrix. If G and P
are known then up to ¢ errors can be corrected in (GP).

(3) Subcode: Let 0 < | < k. Multiply the generator matrix G for the
private code C by a random matrix S € F quk of full rank from the left. As
(SG) C (G), the known error correction algorithm may be used.

(4) Subfield Subcode: Take the subfield subcode Csyp of the secret code
C for a subfield F, of F,. As before, one can correct errors by the error
correcting algorithm for the secret code. However, sometimes one can
correct errors of larger norm in the subfield subcode than in the original
code.

(5) (Block-)Shortening: Extract a shortened public code CT from a very
large private code C by puncturing C on the set of coordinates 7. In
particular, if C is a code defined by a t x N matrix H, where N = [-t, such
that H can be considered as a composition of [blocks of size t x t each,
then T} contains all those coordinates of blocks which have to be deleted
in order to obtain a block-shortened code C't.

To protect the secret code, a combination of several transformations is used, as
a rule. For instance, in the original McEliece cryptosystem a combination of
transformations (1), (2) and (4) is used.

In the following, we explain the role of these transformations in hiding the struc-
ture of the private code.

In [CCY5] Canteaut and Chabaud pointed out that the scrambling transformation
(1) has no cryptographic function. It just sends G to another generator matrix
G’ for the same code to assure that the public generator matrix G is not in
systematic form. Otherwise, most bits of the message would be revealed. Our
goal is to construct a systematic public generator matrix for a binary quasi-
dyadic Goppa code and to use a conversion for CCA2-secure McEliece versions
(see Chapter 5) to protect the message. Hence, this transformation is neither
useful nor necessary for our purpose.

In contrast, the permutation transformation (2) is essential when constructing
a trapdoor function. In the following, we consider the permutation equivalence
problem of two codes.

4.2 Scheme definition of (QD-McEliece 31

Let the symmetric group S, of order n be a set of permutations of integers
{0,...,n—1} and o € S,, be a permutation. P, denotes the n x n permutation
matrix with components p; ; = 1 if o(¢) = j and p; ; = 0 otherwise.

Definition 4.1.1 Two codes C; and Cy are permutation equivalent if there is a
permutation matrix P, such that Gy is a generator matriz for Cy if and only if
P x Gy is the generator matriz for Co. Thus, P sends Cy to Co by reordering the
columns of G.

The permutation equivalence problem is a decisional problem defined as follows.

Definition 4.1.2 Given two k x n matrices Gy and Go over I, does there exist
a permutation o represented as permutation matriz P, such that Gy X P, = G5 ?

This problem is closely related to the graph isomorphism problem which is as-
sumed to be in P/NP [PR97]. The Support splitting algorithm [Sen00] is the
only known algorithm which solves the permutation equivalence problem of two
codes in the practice. The success probability of the best known attack using the
Support splitting algorithm to distinguish a Goppa code from a general linear
code is negligible for all suitable McEliece parameters.

The transformation (4) is used implicitly in every McEliece-type cryptosystem
based on Goppa codes because Goppa codes can be considered as subfield sub-
codes of Generalized Reed Solomon codes.

The last transformation (5) is of great significance for the construction of a
CCA2-secure McEliece-type cryptosystem based on quasi-dyadic Goppa codes
as introduced in [MBO09] where the public code is equivalent to a subcode of a
Reed Solomon code. Combining the transformations (2) and (5) the equivalent
shortened code problem can be defined as follows.

Definition 4.1.3 Let H be a t x N matriz over F, and H at X n matriz over
F, with n < N, does there exist a set of coordinates T of length N —n and a
permutation o € S, such that H = H(T) x P, where H(T) denotes a matriz
obtained by deleting of components indexed by the set T in each row of H?

The equivalent shortened code problem has been proven to be N'P-complete by
Wieschbrink in [Wie06]. In contrast to the permutation equivalence problem
the equivalent shortened code problem cannot be solved by means of the Sup-
port splitting algorithm. Hence, no efficient algorithm is known that solves this
problem up to now.

4.2 Scheme definition of QD-McEliece

In this section the scheme definition of the quasi-dyadic McEliece variant, i.e.
key generation, encryption, and decryption, is given.

32 McEFEliece-type PKC based on quasi-dyadic Goppa codes

4.2.1 Key generation

The main difference between the original McEliece scheme and the quasi-dyadic
variant is the Key generation algorithm 4.2.1 shown below. It takes as input the
system parameters t, n, and k and outputs a binary Goppa code in quasi-dyadic
form over a subfield F, of F,, where p = 2° for some s, ¢ = p¢ = 2™ for some
d with m = ds. The code length n must be a multiple of ¢ such that n = [t for
some [> d.

Algorithm 4.2.1 QD-McEliece: Key generation algorithm
Input: Fixed common system parameters: t, n=10-1, k =n — dt
Output: private key K,,, public key K,
1. (Ldyad; G(.I) dead7 7]) — Algorlthm 3.5.1 <2m’ N, t),
where N >>n, N=1"-t < q/2

2. Select uniformly at random [distinct blocks {Biol e ‘Bi171:| in any order from
dead) '

3. Select [dyadic permutations 1170, .- II7:-1 of size t x t each

4. Select [nonzero scale factors oy, ...,0;-1 € [F,. Notice that, if p = 2, then all

scale factors are equal to 1.

5. Compute H = B [F°[-+ |B;_ Tl—1] € (FL")

6. Compute ¥ = Diag(ooly, ..., 01-11;) € (F,")>!

7. Compute the co-trace matrix Hj, = Tr'(HY) = Tr'(H)S € (F,*")>!

8. Bring H.. in systematic form H = [Q|I,_4], e.g. by means of Gaussian
elimination

9. Compute the public generator matrix G = [I;|Q”]

10. return K,,, = (G, t),
Kpr = (dead; Ldyad7 77, G(IL’), (io, e ,il_l), (jo, Ce >jl—l)7 (0’0, Ce 70l—1))

The key generation algorithm proceeds as follows. It first runs the Algorithm
3.5.1 to produce a dyadic code Cgyeq of length N >> n, where N is a multiple
of ¢t not exceeding the largest possible length ¢/2. The resulting code admits a
t x N parity-check matrix Hgyoq = {Bo| e |BN/t,1} which can be viewed as a
composition of N/t dyadic blocks B; of size t x t each.

In the next step the key generation algorithm uniformly selects [dyadic blocks
of Hgyqq of size t x t each. This procedure leads to the same result as puncturing
the code Cyyaq on a random set of block coordinates T; of size (N — n)/t first,
and then permuting the remaining [blocks by changing their order. The block
permutation sequence (i, ...,%;) is the first part of the trapdoor information. It
can also be described as an N X n permutation matrix Pg. Then the selection and
permutation of ¢ x ¢ blocks can be done by right-side multiplication Hgyqq X Pp.

4.2 Scheme definition of (QD-McEliece 33

Further transformations performed to disguise the structure of the private code
are dyadic inner block permutations.

Definition 4.2.1 A dyadic permutation IV is a dyadic matriz whose signature
is the j-th row of the identity matriz. A dyadic permutation is an involution, i.e.
()% = I. The j-th row (or equivalently the j-th column) of the dyadic matriz
defined by a signature h can be written as A(h); = hIl.

The key generation algorithm first chooses a sequence of integers (jo,...,ji—1)
defining the positions of ones in the signatures of the [dyadic permutations. Then
each block B; is multiplied by a corresponding dyadic permutation II’ to obtain a
matrix H which defines a permutation equivalent code Cy to the punctured code
ngjad. Since the dyadic inner-block permutations can be combined to an n x n
permutation matrix Py, = Diag(Il?, .- TI-1) we can write H = Hyyoq- Pg- Pap.

The last transformation is scaling. Therefore, first a sequence (o, ...,0,-1) € F),
is chosen, and then each dyadic block of H is multiplied by a diagonal matrix
Ui[t such that H' = H - ¥ = dead . PB . Pdp -3

Finally, the co-trace construction derives from H’ the parity-check matrix H/,
for a binary quasi-dyadic permuted subfield subcode over F,. Bringing H},. in
systematic form, e.g. by means of GGaussian elimination, we obtain a systematic
parity-check matrix H for the public code. H is still a quasi-dyadic matrix
composed of dyadic submatrices which can be represented by a signature of length
t each and which are no longer associated to a Cauchy matrix.

The generator matrix G obtained from H defines the public code Cpup of length
n and dimension k over [F,, while H defines a dual code C;l
dimension k = n — dt.

, of length n and

The trapdoor information consisting of the essence 71 of the signature hgyqq, the
sequence (i, .. .,7_1) of blocks, the sequence (jo, ..., 7_1) of dyadic permutation
identifiers, and the sequence of scale factors (oy, ..., 0,_1) relates the public code
defined by H with the private code defined by Hyqq.

The public code defined by G admits a further parity-check matrix
Vi o = vdm(L*, G(z)) - Diag(G(L;)™') where L* is the permuted support ob-
tained from Lgyaq by L* = Lgyaa - Pp - Pap- Bringing Vi« ¢ in systematic form
leads to the same quasi-dyadic parity-check matrix H for the code Cpub-

The matrix Vi« is permutation equivalent to the parity-check matrix
Vi.¢ = vdm(L,G(z)) - Diag(G(L;)~") for the shortened private code Cp = Cg,jad
obtained by puncturing the large private code Cg4yqq On the set of block coordi-
nates 7. The support L for the code Cp, is obtained by deleting all components
of Lgyqq at the positions indexed by T;.

Classical irreducible Goppa codes use support sets containing all elements of F,.
Thus, the support corresponding to such a Goppa code can be published while

34 McEFEliece-type PKC based on quasi-dyadic Goppa codes

only the Goppa polynomial and the (support) permutation are parts of the secret
key. In contrast, the support sets L and L* for C,, and C,,;, respectively, are not
full but just subsets of I, where L* is a permuted version of L. Hence, the support
sets contain additional information and have to be kept secret.

4.2.2 Encoding

The encryption algorithm of the QD-McEliece variant is the same as that of the
original McEliece cryptosystem explained in Section 2.1.2. First a message vector
is multiplied by the systematic generator matrix G for the quasi-dyadic public
code Cpyp to obtain the corresponding codeword. Then a random error vector of
length » and hamming weight at most ¢ is added to the codeword to obtain a
ciphertext.

4.2.3 Decoding

The decryption algorithm of the QD-McEliece version is essentially the same
as that of the classical McEliece cryptosystem explained in Section 2.1.3. The
following decryption strategies are conceivable.

Permute the ciphertext and undo the inner block dyadic permutation as well as
the block permutation to obtain an extended permuted ciphertext of length N
such that ctperm, = ct - Pp - Pgy,. Then use the decoding algorithm of the large
private code Cgyeq to obtain the corresponding codeword. Multiplying ctperm
by the parity-check matrix for Cgyqq yields the same syndrome as reversing the
dyadic permutation and the block permutation without extending the length of
the ciphertext and using a parity-check matrix for the shortened private code C,,.

A better method is to decrypt the ciphertext directly using the equivalent parity-
check matrix Vi« ¢ for syndrome computation. The Patterson’s decoding algo-
rithm can be used to detect the error and to obtain the corresponding codeword.
Since G is in systematic form, the first & bits of the resulting codeword correspond
to the encrypted message.

4.3 Parameter choice and key sizes

For an implementation on an embedded microcontroller it is the best choice to use
Goppa codes over the base field Fy. In this case the matrix vector multiplication
can be performed most efficiently. Hence, the subfield [F, = Fys should be chosen
to be the base field itself where s = 1 and p = 2. Furthermore, as the register size
of embedded microcontrollers is restricted to 8 bits it is advisable to construct

4.3 Parameter choice and key sizes 35

subfield subcodes of codes over Fos or Fyi6. In the following, we consider which
of both extension fields is the best choice for the construction of quasi-dyadic
subfield subcodes.

There are some restrictions on the choice of parameters [and n. For in-
stance, the security parameter [must be greater than the extension degree d
of F; = Fja = Fym, and thus greater than m, because m =s-d =1-d = d when
constructing subfield subcodes over the base field. Furthermore, it is suggested
that the designed number of errors ¢ is chosen as a power of two to achieve best
possible key size reduction. In addition, in this case further optimizations within
the scope of the implementation are possible (see Section 6).

Let N be the largest possible length ¢/2 such that for the code length n of the
subfield subcode N >> n is true.

Let us consider the extension field Fos. If ¢ = 2% then N is at most 27 and

lé d = 8. But in this case the number of errors ¢ is at most 23 such that
n=2%-1< N wherel € {9,...16}. It follows that the resulting subfield subcode
is of length 72 < n < 128 and has code dimension k = n — dt where 8 < k < 64.
It is not hard to see that these parameters cannot provide a high level of security.
Patently, the extension field Fqs is too small to securely derive subfield subcodes
from codes defined over it.

For subfield subcodes over the base subfield Fy of Fqi6 Barreto and Misoczki
suggest using the parameters summarized in Table 4.1.

level ¢t n=1t¢t k=n-mt key size
(m - k bits)

80 20 36-20=12304 20-20=1280 20-2' bits = 20 Kbits
112 27 28-27=23584 12-27=1536 122! bits = 24 Kbits
128 27 32.27=4096 16-27 =2048 16 -2 bits = 32 Kbits
192 2% 28.28 =7168 12-2% =3072 12-2' bits = 48 Kbits
256 28 3228 =8192 16-2% =4096 16-2'? bits — 64 Kbits

Table 4.1: Suggested parameters for McEliece variants based on quasi-dyadic
Goppa codes over FFy

As the public generator matrix G is in systematic form, only its non-trivial part
@ of length n — k = m - t have to be stored. This part consists of m(l — m)
dyadic submatrices of size ¢ x t each. Storing the t-length signatures of) only
the resulting public key size is m(l — m)t = m - k bits in size. Hence, the public
key size is a factor of ¢t smaller compared to the generic McEliece version where
the key is n - k bits in size.

36 McEFEliece-type PKC based on quasi-dyadic Goppa codes

4.4 Security of QD-McEliece

A recent work [FOPT09| presents an efficient attack recovering the private key
in specific instances of the quasi-dyadic McEliece variant. Due to the structure
of a quasi-dyadic Goppa code additional linear equations can be constructed.
These equations reduce the algebraic complexity of solving a multidimensional
system of equations using Grobner bases [AL94]. In the case of the quasi-dyadic
McEliece variant there are [— m linear equations and [— 1 unknowns Y;. The
dimension of the vector space solution for the Y/s is m — 1. Once the unknowns
Y; are found all other unknowns X; can be obtained by solving a system of linear
equations. In our case there are 35 unknowns Y;, 20 linear equations, and the
dimension of the vector space solution for the Y/s is 15.

The authors remark that the solution space is manageable in practice as long as
m < 16. The attack was not successful when m = 16. Hence, up to day the
McEliece variant using subfield subcodes over the base field of large codes over
Fs16 is still secure.

5 Conversions for CCA2-secure
McEliece variants

In [KI0O1| Kobara and Imai considered some conversions for achieving security
against the critical attacks discussed in Section 2.4, and thus CCA2-security, in a
restricted class of public-key cryptosystems. The authors reviewed these conver-
sions for applicability to the McEliece public key cryptosystem and showed two
of them to be convenient. These are Pointcheval’s generic conversion |Poi00] and
Fujisaki-Okamoto’s generic conversion [FO99|. Both convert partially trapdoor
one-way functions (PTOWF) ! to public key cryptosystems fulfilling the CCA2
indistinguishability.

The main disadvantage of both conversions is their high redundancy of data.
Hence, Kobara and Imai developed three further specific conversions decreasing
data overhead of the generic conversions even below the values of the original
McEliece PKCs for large parameters.

Data redundancy = ciphertext size - plaintext size

Conversion scheme

(n,k),t,r (2304,1280),64,160 (2304,1280),64,256
Pointcheval’s generic conv. n+|r| 2464 2560
Fujisaki-Okamoto’s n 2304 2304
generic conversion
Kobara-Imai’s specific n+|r|—k 1184 1280
conv. o and S
Kobara?Imal s specific n+ |r| +T|LC0nst\ 927 1023
conversion y - Llog2 (t)J —k
McEliece scheme w/o conv. n—k 1024 1024

Table 5.1: Comparison between conversions and their data redundancy

Table 5.1 gives a comparison between the conversions mentioned above and their
data overhead where r denotes a random value of typical length |r| equal to the
output length of usual hash functions, e.g. SHA-1, SHA-256, and C'onst denotes a
predetermined public constant of suggested length |C'onst|=160 bits. In addition,

A PTOWF is a function F(z,y) — 2 for which no polynomial time algorithm exists
recovering x or y from their image z alone, but the knowledge of a secret enables a partial
inversion, i.e., finding x from z.

38

Conversions for CCA2-secure McFEliece variants

the data redundancy of the original McEliece system is given. The table shows
clearly that the Kobara-Imai’s specific conversion v (KIC-) provides the lowest
data redundancy for large parameters n and k. In particular, for parameters
n = 2304 and k = 1280 used in this thesis for the construction of the quasi-
dyadic McEliece-type PKC the data redundancy of the converted variant is even
below that of the original scheme without conversion.

In the next section the scheme definition of the Kobara-Imai’s specific conversion
v is given, followed by the description of a constant weight coding technique used
for the implementation of the KIC-v in this thesis.

5.1 Kobara-Imai's specific conversion ~

We first define some notations used in the scheme definition of the KIC-~.

]
MSB,(x)
LSB,(z)
Const

Prep(m)

Rand

Gen(z)

Hash(x)

Conv(z)

Evcr(z,e)

Dyce (C)

Bit length of x

The y rightmost bits of z

The y leftmost bits of x
Predetermined public constant

Preparation of the message m, e.g. padding, data compression.
Prep(m)~! denotes the inverse function of Prep(m).

Source generating a (pseudo) random sequence of fixed length

PRNG which produces cryptographically secure pseudo-random sequences
of arbitrary length from a fixed length seed .

One-way hash function mapping an arbitrary length binary string = to a
fixed length binary string.

Bijective conversion function mapping a message x to the corresponding
error vector e of fixed length n and Hamming weight wt(e) < ¢.
Conv(y)~! denotes the inverse function of Conv(x).

McEliece encryption function, taking as first argument the message x to
be encrypted and as second one the error vector e and outputting the
corresponding ciphertext.

McEliece decryption function, taking the ciphertext ¢ and outputting the
decrypted message and the error vector.

5.1 Kobara-Imai’s specific conversion 39

5.1.1 Encryption

Algorithm 5.1.1 encrypts a message m to the ciphertext c. The message m should
be of length |m| > {log2 (?)J + k — |r| — |Const| to decrease data overhead.
Otherwise, the preparation function is called first to bring m in desired form.

Algorithm 5.1.1 KIC-vy Encryption
Input: message m, predetermined public constant C'onst
Output: the target ciphertext c

1. m « Prep(m)
2. r <~ Rand
3. y1 < Gen(r) @ (m||Const)
4. Yo < 7 G Hash(y)
5. if |m| + |Const| + |r| > Uog2 (?)J + k then
6. (ysl[yallys) = (y2llyr) where
lys| =k, [ual = [logs (1), lus| = || + [Const| + 7| — |ya| — &
e < Conv(yy)
8. ¢ ys||Emcr(ys,)
9. else
10 (yallys) = (v2lly1) where
lys| =k, |yal = Uogz (?)J
11. e« Conv(yy)

12. C SMCE(yg,e)
13. return c

=~

In [NIKMO8] it has been proven that padding the plaintext with a random bit-
string provides semantic security against chosen plaintext attack for the McEliece-
type cryptosystems under standard assumptions. This is based on the observation
that if some fixed part of the plaintext is made random then the ciphertext is
pseudo random from the attacker’s point of view due to the construction of the
McEliece cryptosystem. Hence, the first step of the encryption algorithm is ran-
domization of the (possibly) prepared message m padded with a predetermined
public constant C'onst. Then the hash value of the randomized message is xored
with a random value. The aim of the conversion v is the reduction of the overhead
data. Hence, both the error vector and the "‘plaintext"’ for the McEliece encryp-
tion are taken from (y1||y2). When |r|+|Const| < {log2 (TZ)J this reduces the data
overhead even below that of the original McEliece scheme without conversion. A
k-size part of (y1||y2) can be taken as message for McEliece encryption without
any changes. The error vector is obtained from another part of (y1]|y2) by calling
a constant weight encoding function Conv(-) which transforms an input string
of length about {log2 (’Z)J into a vector of fixed length n and Hamming weight
t. A possible method for the realization of the Conv(-) function is discussed in

40 Conversions for CCA2-secure McFEliece variants

Section 5.2. If the length of (yi||y2) is greater than {log2 (?)J + k such that not
all input bits are used as plaintext or as error vector all remaining bits are used
as padding for the output of Eyck.

5.1.2 Decryption

Algorithm 5.1.2 describes the decryption of a ciphertext c.

Algorithm 5.1.2 KIC-vy Decryption
Input: ciphertext ¢, predetermined public constant C'onst
Output: the target message m

1. y5 < MSBM,n(C)

> (ys may be empty)
2. (’y3, 6) — D]\icEliece<LSBn(C))

Yy < Conv!(e)

©w

(y2/ly1) = (ys||yallys) where [y,| = [Hash(:)[, |y2| = |r|
7 12 ® Hash(y,)

(m||Const’) =y, @ Gen(r)

if Const’ = Const then

8. return Prep !(m)

9. else
10. reject c

S ok

~

If the ciphertext length is larger than n then ¢ has been padded during the
encryption and the n — |c¢| most significant bits of ¢ correspond to the most
significant bits of (y2||y1). The remaining n bits of ¢ are then decrypted using the
decryption function for the McEliece scheme to a plaintext y3 and an error vector
e. To obtain the message part y, from the error e the constant weight decoding
function Conv(-)~! is called.

The remainder of the decryption algorithm undoes the KIC-vy encryption because

Y1 © Gen(y, G Hash(y1)) = 1 @ ((r ©Hash(y1)) & Hash(y))
= 1y ® Gen(r)
= (Gen(r) ® (m||Const)) @ Gen(r)
= ml||Const o

Hence, if the decrypted constant C'onst’ is the same as the predetermined con-
stant C'onst the decryption algorithm returns the message m, after reversing the
preparation, if necessary.

5.2 Constant weight coding 41

5.2 Constant weight coding

In [Sen05] Sendrier proposed an efficient method for encoding information into
constant weight words. We use this proposal to implement the Conv(-) function
for the KIC-v. In the following, the essentials of the Sendrier’s proposal are given.

Let W, ; denote a set of words of fixed length n and Hamming weight at most ¢.
The aim of the proposal is to construct a function which takes as input any binary
string B, and maps it to a sequence of words in W, ; where W, ; is equipped with
uniform distribution. This way a message = can be converted into a vector e of
fixed length n and weight at most ¢ which can be used as error vector for McEliece
encryption.

The proposal is based on Golombs run-length coding [Gol66] which is a form
of lossless data compression for a memoryless binary source with highly unbal-
anced probability law, e.g. such that p = Prob(0) > 1/2. The run-length en-
coding routine encodefd shown in Algorithm 5.2.1 encodes a source sequence
0%10°210 - - - 010% by encodefd(d)||- - - ||encodefd(d,) where §;s denote the dis-
tances between ones in the sequence. The resulting binary stream B is very sim-
ilar to that produced by a memoryless binary source with uniform distribution.
The value d denotes the length of the longest expectable string of consecutive
zeros in the source sequence. As the probability of any sequence of zeros to have
the length > d is (1 — p)? Golomb suggests choosing d ~ —1/log,(1 — p) in order
that (1 —p)?~ 1/2.

Algorithm 5.2.1 Run-length coding: function encodefd
Input: two integers 6 and d
Output: a binary stream B

1. u — [log,(d)]

2. if 6 < 2" — d then
3 u<~—u—1

4. else

5 0«0+ (2" —d)
6. return LSB,(d|r,)

Conversely, the run-length decoding routine decodefd shown in Algorithm 5.2.2
transforms a binary stream B into a sequence (1, ..., ds) from which the original
binary stream with long runs of zeros is obtained.

The function read(B, z) moves forward and reads x bits in the binary stream B
and returns the integer whose binary decomposition has been read.

For the construction of a function, taking any binary string B as input and
outputting an element of the uniform binary source W, ,, Sendrier makes an
extensive use of the fact [Cov73| that every element e € W,,,, represented as an

42 Conversions for CCA2-secure McFEliece variants

Algorithm 5.2.2 Run-length coding: function decodefd
Input: a binary stream B, an integer d
Output: an integer 0

1. u — [logy(d)]
2. 0 «— read(B,u—1)
3. if § > 2% — d then
4. 0« 20 +read(B,1)— (2" —d)
5. return ¢
array of integers (i1, ...,7;) where i; are coordinates of ones in e, can be written

with about [< [log2 <’t‘ﬂ bits, in average, by using the run-length encoding

function with d = (?) The distances between ones in e are given by 6; =i, — 1,
09 =i9—i1—1, ..., 0 = 1;—1i;_1— 1. Hence, the run-length decoding function can
be used to transform an arbitrary binary stream B produced by a memoryless
binary source into a word of fix length n and hamming weight ¢ in W,, ;.

In the following, the functions CWtoB 5.2.3 and BtoCW 5.2.4 are given, converting
an element e € W,,; into a binary string and converting a binary string of length

about Uog2 (?)J into an element e € W, ; of fixed length and weight, respectively.

However, it is very expensive to compute the binomial coefficients for d = (?)
on-the-fly as suggested in [Cov73]. On the other hand, the precomputation of
these values for d requires a memory quadratic in [log2 (?ﬂ Hence, in Sendrier’s
proposal the value for d changes depending on the parameters n and ¢ in every
recursive call of the functions CWtoB and BtoCW. The function best_d determines

an optimal d such that d ~ (n - ﬂ) (1 - ﬁ) ~ @) (n — 1), Both functions

2 t
terminate even if d has not been chosen optimal, with only negligible loss of

efficiency, as long as the difference to the optimal value is not large.

Algorithm 5.2.3 Constant weight coding: function CWtoB
Input: two integers n and t, and a t-tuple (dy,...,d)
Output: a binary string B

if t=0o0rn <t then
return
. d < best_d(n,t)
if §; > d then
return 1||CWtoB(n —d,t, (61 —d,da,...,d;))
else
s« 0] lencodefd(d;,d)
return s||CWtoB(n —d; — 1,t —1,(ds,...,0;))

® N ook W=

The first call of BtoCW is BtoCW(n,t,0, B).

5.2 Constant weight coding 43

Algorithm 5.2.4 Constant weight coding: function BtoCW
Input: three integers n, ¢, and J, a binary stream B
Output: a t-tuple of integers (d1,...,0;)

1. if t = 0 then
return
else if n <t then
return §, BtoCW(n —1,t — 1,0, B)
else
d < best_d(n,t)
if read(B,1)=1 then
return BtoCW(n —d,t,d + d, B)
else
i «— decodefd(d, B)
return § +i,BtoCW(n —7—1,t —1,0,B)

© ® N ook w N

— =
- O

The main disadvantage of this proposal is that the length of the input string for
the conversion function BtoCW is not fix. The number of bits of the binary string
B which can be "put" in a word of W,,, is upper bounded by the entropy of W,, ,
equipped with uniform distribution H(W,,;) = log, (?) Though, it is possible
to determine the minimum length of the input string that can be encoded in any
case, experimentally.

6 Implementation aspects

In this chapter we discuss aspects of our implementation of the McEliece variant
based on quasi-dyadic Goppa codes of length n = 2304, dimension k£ = 1280,
and correctable number of errors ¢ = 64 over the subfield Fy of Fyi6 providing
80-bit security level. Target platform is the ATxmega256A1, a RISC microcon-
troller frequently used in embedded systems. This microcontroller operates at a
clock frequency up to 32 MHz, provides 16 Kbytes SRAM and 256 Kbytes Flash
memory. We first implemented the quasi-dyadic McEliece variant on a PC using
Notepad++ v5.5.1 and the GCC compiler version v3.4.5. Then we ported the
implementation to the AVR micro architecture.

This chapter is organized as follows. Section 6.1 describes how field arithmetic can
be implemented on embedded microcontrollers. Section 6.2 presents our imple-
mentation of the quasi-dyadic McEliece variant. At the beginning of this section
we present the key generation algorithm implemented in the Magma computer
algebra system. Then we describe the encryption and the decryption algorithms.
Section 6.3 describes the implementation of the Kobara-Imai’s specific conversion
~ and its application to the quasi-dyadic McEliece variant.

6.1 Field arithmetic

Let F, denote the finite field Fom = Fs[z]|/p(x) where p(z) is an irreducible
polynomial of degree m over Fy. Furthermore, let o denote a primitive element
of .

Every element a € F, has a polynomial representation a(x) = ap_12™ ' +
-+ + a1z + ap mod p(x) where a; € F,. The addition of two field el-
ements a and b is done using their polynomial representations such that
a+b=a(x)+b(xr) mod p(x) = c(x) with ¢; = a; ® b;, Vi € {0,...,m—1}. The
field addition can be implemented efficiently by performing the exclusive or op-
eration of two unsigned m-bits values. For simplicity, the coefficient ay should
be stored in the least significant bit and a,,_; in the most significant bit of an
unsigned m-bits value.

Furthermore, any element a € [, except the zero element can be represented
as a power of a primitive element o € F, such that a = o' where i € Zgm_;.
The exponential representation allows to perform more complex operations such

46 Implementation aspects

as multiplication, division, squaring, inversion, and square root extraction more
efficiently than using polynomial representation.

The field multiplication of two field elements a = o' and b = o/ is easily performed
by addition of both exponents ¢ and j such that

L -
a-b=a" ol =t md2"l = ccF,.

Analogously, the division of two elements a and b is carried out by subtracting
their exponents such that

a o
—=—=a
b od

o m_
i—j mod 2 1EC,C€Fq

The squaring of an element a = o' is done by doubling its exponent and can be
implemented by one left shift.

CL2 — (ai)Q = aQi mod 2" —1

Analogously, the inversion of a is the negation of its exponent.

CLil — (ai)fl = Oéii mod 2" —1

The square root extraction of an element a = o' is performed in the following
manner.

e If the exponent i of a is even, then \/a = (af)2 = a3 med 2”1

o If the exponent i of a is odd, then /a = (a/)2 = o5 mod 271,

If the exponent of a is even the square root extraction can be implemented by
one right shift. If the exponent is odd, it is possible to extend it by the modulus
2™ —1, which leads to an even value. Then the square root extraction is performed
as before through shifting the exponent to the right for one time.

To implement the field arithmetic on an embedded microcontroller most efficiently
both representations of the field elements of IF,, polynomial and exponential,
should be precomputed and stored as log- and antilog table, respectively. Each
table occupies m - 2™ bits storage.

Unfortunately, we cannot store the whole log- and antilog tables for Fsis be-
cause each table is 128 Kbytes in size. Neither the SRAM memory of the
ATXmega256A1 (16 Kbytes) nor the Flash memory (256 Kbytes) would be
enough to implement the McEliece PKC when completely storing both tables.
Hence, we make use of tower field arithmetic. Efficient algorithms for arithmetic
over tower fields were proposed in [Afad1|, [MK89|, and [Paa94].

It is possible to view the field Fy2r as a field extension of degree 2 over Fyr where
k=1,2,3. The idea is to perform field arithmetic over Fy2x in terms of operations

6.1 Field arithmetic 47

in a subfield Fyr. Thus, we can consider the finite field Fais = F(os)2 as a tower of
Fys constructed by an irreducible polynomial p(x) = 22 + x + py where py € Fas.
If 5 is a root of p(z) in Fais then Fois can be represented as a two dimensional
vector space over Fos and an element A € Fyi6 can be written as A = a1 + ag
where aq,ag € Fas. To perform field arithmetic over 16 we store the log- and
antilog tables for Fos and use them for fast mapping between exponential and
polynomial representations of elements of Fos. Each table occupies only 256 bytes,
therefore both tables can smoothly be copied into the fast SRAM memory of the
microcontroller at startup time.

The field addition of two elements A and B in Fas is then performed through
A+ B = (a1 + ag) + (b1 + bo) = (a1 + b1) B + (ao + bo) = c18 + co
and involves two field additions over Fys which is equal to two xor-operations of

8-bits values.

The field multiplication of two elements A, B € 16 is carried out through

A . B = (alﬁ —+ ao)(blﬁ —+ bo) HlOd p(ZL’) = (aobl + boa1 -+ albl)ﬁ + (aobg + alblpo).
and involves three additions and five multiplications over Fys when reusing the
value a;b; which already has been computed in the (-term.

The squaring is a simplified version of the multiplication of an element A by itself
in a finite field of characteristic 2, and is performed as follows

A? = (18 + a0)2 mod p(z) = agﬁz + af mod p(z) = agﬁ + (a% + po)-

One squaring over Fy16 involves two square operations and one addition over Fos.

The field inversion is more complicated compared to the operations described
above. An efficient method for inversion in tower fields of characteristic 2 is
presented in [Paa94]. The inversion of an element A is performed through

|
A1 — (OX) G+ o Aal = ¢13 + ¢o where A = ag(a; + ag) + poa’

and involves two additions, two divisions, one squaring, and two multiplications
over Fos, when reusing the value (ag + ay).

The division of two elements A, B € Fy16 can be performed through multiplication
of A by the inverse B~! of B. This approach requires five additions, seven multi-
plications, two divisions, and one squaring over Fos. To enhance the performance
of the division operation we provide a slightly better method given below.

A/B=AB' = (ao(bo +blA)+a1b1p0> ﬁ+<aob1za150

) where A = bo(b1+b0)—|—p0b?

48 Implementation aspects

This method involves one less addition compared to the naive approach mentioned
above.

The last operation we need for the implementation of the McEliece scheme is
the extraction of square roots. We could not find any formula for square root
extraction over tower fields in the literature, therefore, we developed an own one
for this purpose. For any element A € Fyi6 there exists a unique square root, as
the field characteristic is 2. Hence, the following holds for the square root of A

VA = \Jaf+ao= a8+ as mod p(x)
Vai(B+v/po) + vag mod p(x)
= VaiB + (vaiy/po + v/ao).

Proof:

As Char(Fqu) is 2,
VA= \Ja1f+ay= (018 +ag)? ™71 =a2p" +a2 (6.1)
For any element gy in IFas the trace function is defined by
7
i 1
Tr(y)=>_y" = {o
i=0

Furthermore, 3 satisfies 3% = 3 + po, as (3 is root of p(z). Hence, we
can write

6 .
527 = (52>26 = (5"‘?0)26 = (ﬂ+p8+po)25 = = ﬁ+Zpol =
i=1

B+pd L if Tr(p) =1
B+1+p2 L if Tr(py) =0
We assume that Tr(pg) = 1. Otherwise, the polynomial p(z) would
not be irreducible, and thus, unsuited for the field construction.

7
i 7
B+> pp +1+py =
=0

Applying the intermediate results to the Equation 6.1 we obtain

7 8__ 7 8__ 7 8_
\/Z = CL% mod 2 1(5_,[_]9(2) mod 2 1)+CL(2) mod 2°—1

_ 21 mod 28—1 21 mod 28—1, 21 mod 28—-1 21 mod 28—1
= a B+ ay Do + ag

= Vaif +Vaiypo + vao

The next question is how to realize the mapping ¢: A — (ay,a0) of an element
A € Fyi6 to two elements (ay, ag) € Fys, and the inverse mapping o~ 1: ay,a9 — A
such that A = a,8+4a¢. Both mappings can be implemented by means of a special
transformation matrix and its inverse, respectively [Paa94|.

6.1 Field arithmetic 49

As the input and output for the McEliece scheme are binary vectors, field elements
are only used in the scheme internally. Hence, we made an informed choice against
the implementation of both mappings. Instead, we represent each field element
A of Fais as a structure of two uint8 t values describing the elements of Fys and
perform all operations on these elements directly.

typedef struct {
uint8_t highByte;
uint8_t lowByte;
tgfl16_t;

An element A of type gf16_t is defined by gf16_t A={A.highByte,A.lowByte}.
The tower field arithmetic can be performed through direct access to the elements
a; = A.highByte and ay = A.lowByte. The specific operations over Fos are
carried out through lookups in the precomputed log- and antilog tables for this
field. The result of an arithmetic operation is an element of type gf16_t again.

Polynomials over Fyi6 are represented as arrays. For instance, we represent a
polynomial G(x) = Gyz' + - -+ + Gix + Gy as an array of type gf16_t and size
t + 1 and store the coefficients G; of G(x) such that array[i] .highByte = G}
and array[i] .lowByte = G, where p(G;) = (G;1,Gi1)-

The main problem when generating log- and antilog tables for a finite field is
that there exist no exponential representation of the zero element, and thus, no
explicit mapping 0 — ¢ such that 0 = o', and vice versa. Hence, additional steps
have to be performed within the functions for specific arithmetic operations to
realize a correct zero-mapping. These additional computation steps reduce the
performance of the tower field arithmetic but there is no way to avoid them.

In the following, a Magma setup routine is given generating the field Fyi6 as a
tower of Fys using the irreducible polynomial p(z) = 2? + z + 3''. The poly-
nomial p(z) is obtained through testing polynomials of the form 22 4+ x + 3* for
irreducibility.

Listing 6.1: Tower field arithmetic: Field setup

polyl<y> := PrimitivePolynomial (GF(2) ,8);
F := ExtensionField<GF(2),y|polyl >;
P<x> := PolynomialRing (F);

poly2<x> := x"2 + x + b~ {11};

GFg<a> := ExtensionField <F,x|poly2 >;
PR<z> := PolynomialRing (GFq);

To save space, we give a simplified Magma procedure for the generation and
printing of the log- and antilog tables for Fys. The procedure outputs unfor-
matted tables and stores them in a file denoted by the file object FP where
FP = Open("filename","w"). The original procedure implemented in this the-
sis generates full formated tables. The zero element has a (mathematically incor-

50 Implementation aspects

255

rect) exponential representation a*°. Thus, the value 255 is stored in the antilog

table at the position 0.

Listing 6.2: Printing the log- and antilog tables for Fas

procedure print tables(field ,FP)
//Print log table
logtable :=[Seqint(ChangeUniverse(Eltseq(b~i,GF(2)),Integers()),2):
i in [0..#F-2]];
Append(~logtable ,0);
fprintf FP, "%o,", logtable;

//Print antilog table
Sort(“logtable);
for x in logtable do
if x eq 0 then
fprintf FP, "%o,", #field —1;
else
obj:=Log(Seqelt (ChangeUniverse (Intseq (x,2,8) ,GF(2)) ,F));
fprintf FP, "%o,", obj;
end if;
end for;
end procedure;

6.2 Implementation of the QD-McEliece variant

6.2.1 Key generation

The Key generation algorithm 4.2.1 for the quasi-dyadic McEliece variant includ-
ing Algorithm 3.5.1 for the generation of dyadic Goppa codes has been imple-
mented using the Magma computer algebra system. It takes as input the common
system parameters d = 16, ¢t = 64,1 =36, ¢q=2" N =21 n=1-t,k=n—d-t
¢ =n — k and outputs the following parameters: systematic quasi-dyadic gener-
ator matrix for the public code as well as its essential part used as public key,
secret permutation P, secret Goppa polynomial G(z), permuted support sequence
L* for the Goppa code T'(L*, G(x)). It also precomputes a parity-check matrix
H123 and a scrambling matrix S which can be used to speed up the syndrome
computation within the Patterson’s decoding algorithm (see Section 3.7.1).

6.2 Implementation of the QQD-McEliece variant 51

The first steps of the key generation algorithm compute the signature h of a fully
dyadic matrix H = A(h,t) of length N and dimension t.

Listing 6.3: QD-McEliece: Key generation algorithm (Magma)

nuSize := Ilog2(N);

U := [x : x in GFq];

Remove(~U, Index (U, Zero(GFq)));
b= [GFq];

nu - [GFq|]:

h[1] := Random(U);
nu[nuSize+1] := h[1]" —1;

Remove(~U, Index (U, h[1]));

for s := 0 to nuSize—1 do
i= 2"s;
h[i+1] := Random(U);
nu[s+1] := h[i+1]"—1 4+ nu[nuSize+1];

Remove(~U, Index (U, h[i+1]));
Remove(~U, Index (U, nu[s+1]"—1));
for j := 1 to i—1 do
h[i+1+j] = (nu[s+1] + h[j+1]"=1)"—1;
Remove(~U, Index (U, h[i+1+j]));
Remove (U, Index (U, (h[i+1+j]"—1 4 nu[nuSize+1])"~ —1));
end for;
end for;

Then an offset is chosen at random to generate roots of a Goppa polynomial

depending on the first ¢ values of h. The Goppa polynomial is obtained by

t_(z —rootsli]).

offset := Random(GFq);
roots:=[GFq|h[i]"—1+offset:i in [1..t]];
goppa := One(PR);

for i := 1 to t do
goppa := goppax(z—roots[i]);
end for;

In the next steps of the key generation algorithm the support L and the parity-
check matrix H for the large code Cgyqq are computed.

L:=[GFq|h[]j]"—=1 + nu[nuSize+1] + offset: j in [1..N]];

H := Zero(KMatrixSpace (GFq, t, N));
seq:=[GFq|h[xor_Integer(i,j)+1]: j in [0..N—1], i in [0..t—1]];
H:=KMatrixSpace (GFq, t, N)!seq;

To obtain a permuted binary systematic quasi-dyadic parity-check matrix for
the public code the key generation algorithm first choses a block permutation
sequence B_ind of length n consisting of distinct integers i € [1, N/t]. Next, a
sequence P_ind of integers j € [1,t] is chosen identifying the positions of ones

52 Implementation aspects

in the signatures of dyadic permutations. It is not necessary to choose a ran-
dom non-zero sequence of scale factors because we generate Goppa codes over
the base field and all scale factors have to be 1. Then it holds ¥ = I, and
Tr'(H)Y =Tr'(H). From B_ind and P_ind two permutation matrices PB and
PD, respectively, are obtained in the next step of the key generation algorithm.
The function dyadic_Permutation takes as input an integer x identifying the
position of 1 in the signature of a dyadic permutation as well as the target field
and generates the corresponding dyadic permutation matrix of size ¢ xt. Through
multiplication of both permutation matrices we obtain another permutation ma-
trix P which is used to puncture and to permute H.

From the resulting matrix pubH the function GFq2Bin derives a binary quasi-
dyadic parity-check matrix pubHbin for the subfield subcode. The function
get_systematic_matrices brings pubHbin= [LS|R] in systematic form and out-
puts the systematic parity-check matrix sysPubHbin= [R™'LS|I, ;] for the pri-
vate code. For this reason, the (n —k) x (n — k) submatrix R of pubHbin must be
non-singular. Should R be found singular another permutation must be chosen.
Furthermore, the function get_systematic_matrices outputs the systematic
quasi-dyadic binary generator matrix sysPubGbin for the public code. The sig-
natures of the quasi-dyadic submatrices of sysPubGbin are stored in the array
essPart which serves as public key for the McEliece encryption.

repeat
//Get random block permutation sequence
nbrBlocks := N div t;

B all := [Integers ()|l .. nbrBlocks];
B _ind := [Integers ()]|];
for i := 1 to 1 do

elt := Random(B_all);
Append(~B_ind, elt);
Remove(™ B _all, Index(B_all,elt));

end for;

//Get new dyadic permutation sequence
P _all := [Integers ()|l .. t];
P_ind := [Integers ()|Random(P _all): i in [1..1]];

//Get a permutation matrix P:=PbxPd
PB :=Zero(KMatrixSpace (GFq,N,n));
for i in [1..#B_ind] do
InsertBlock ("PB, IdentityMatrix (GFq,t),
(B _ind[i]—1)*t+1,(i—-1)*t+1);

end for;
PD := Zero(KMatrixSpace(GFq,n,n));
i:=1;

for x in P_ind do
block:=dyadic_Permutation (x,GFq);
InsertBlock ("PD, block ,i,1);
=i+t

6.2 Implementation of the QQD-McEliece variant 53

end for;

P:=PBx*PD;

//Get a permuted punctured dyadic parity —check matrix
pubH:=HxP;

//get a systematic quasi—dyadic public generator matrix
pubHbin := GFqg2BinMatrix (pubH);
echMats := get systematic matrices (pubHbin);

until #echMats eq 4; //pubH = [LS|R] where R is non—singular

sysPubHbin := echMats[1];
sysPubGbin := echMats[2];

//Get the essential part of sysPubGbin serving as K pub

essPart := [GF(2)]];
for i := 1 to Nrows(sysPubGbin) by t do
essPart := essPart cat
Eltseq (Submatrix (sysPubGbin i ,k+1,1,n-k));
end for;

To obtain the permuted support sequence L*=L_new_perm for the Goppa code
['(L*, G(x)) the key generation algorithm punctures the large support L using the
permutation matrix P. When prepermuting the support sequence the permuta-
tion P is required no more for decoding. In this particular case the ciphertext
does not have to be permuted before decoding.

L new perm:=Eltseq ((VectorSpace (GFq,N)!L)«P);

To speed up the syndrome computation we can precompute a private parity-check
matrix H123 obtained through multiplication of the three matrices GoppaMat,
VdmH, and Diag. The first one is a lower triangular matrix consisting of the co-
efficients of the Goppa polynomial, the second one is the Vandermonde matrix
vdm(L*, G(x)), and the last one is the diagonal matrix Diag(G(L;)™!) (see Sec-
tion 3.4). The binary representation binH123 of H123 can then be used for the
syndrome computation within the Patterson’s decoding algorithm.

seq:=[GFq|L_new perm[j]~(i—1): j in [1..n], i in [1..t]];
VdmH := KMatrixSpace (GFq,t,n)!seq;

seq:=[GFq|1/ Evaluate (goppa ,L_new_perm[i]): i in [1..n]];
Diag := DiagonalMatrix (seq);

seq:=|GFq| Coefficients (goppa)[t+l—i+j]:j in [1..i],i in [1..t]];
GoppaMat:—LowerTriangularMatrix (seq);

H123:=GoppaMat*VdmH=Diag ;
binH123:=GFq2BinMatrix (H123);

54 Implementation aspects

When bringing binH123 in its systematic form using a scrambling matrix S the
same systematic quasi-dyadic parity-check matrix is obtained as for the public
code. If we want to use this parity-check matrix for decoding, the scrambling
matrix should be precomputed and used as a part of the private key.

privmats := get systematic_ matrices(binH123);
S:=privmats [3];

6.2.2 Encryption

The first step of the McEliece encryption is codeword computation. This is
performed through multiplication of a plaintext p by the public generator matrix
G which serves as public key. In our case the public generator matrix G = [I,,|M]
is systematic. Hence, the first k& bits of the codeword are the plaintext itself,
and only the submatrix M of G is used for the computation of the parity-check
bits. M € (F5**)4<(=d) can be considered as a composition of d - (I — d) dyadic
submatrices A(hy,) of size t x t each, represented by a signature h,, of length ¢
each. It also can be seen as a composition of | — d dyadic matrices A(hy,,t) of
size dt X t each, represented by a signature of length dt = n — k each.

mgo ce mgo,n-k-1
: A(hg,t)
my—1,0 ce My—1n—k—1
my o T my n-k-1
. A(hy, t)
M =
mat—1,0 s Mot—1,n—k—1
Mmad-1t,0 - M-d-1)t,n-k-1
: ’ : A(hl—da t)
mai—dy—1,0 - Mi-d)t—1,n—k-1

In both cases the compressed representation of M serving as public key K, for
the McEliece encryption is

Kpub = [(mo,m T 7m0,n—k—1)7 R (m(l—d—l)t,Oa T >m(l—d)t—1,n—kz—1)]-

The public key is 2.5Kbytes in size and can be copied into the SRAM of the
microcontroller at startup time for faster encryption.

The plaintext p = (po, -, Pr—1,Pt, "+, P2t—1," " > Pli—d—1)t, " ** »P(1—dy—1) is a bi-
nary vector of length k& = 1280 = 20 - 64 = (I — d)t. Hence, the codeword
computation is done by adding the rows of M corresponding to the non-zero bits
of p. As we don’t store M but just its compressed representation, only the bits p;

6.2 Implementation of the QQD-McEliece variant 55

for all 0 <i < (I —d—1) can be encrypted directly by adding the corresponding
signatures. To encrypt all other bits of p the corresponding rows of M have to
be reconstructed from K, first.

The components h; ; of a dyadic matrix A(h,t) are normally computed through
hij = hig; which is a simple reordering of the elements of the signature h. Un-
fortunately, we cannot use this equation directly because the public key is stored
as an array of (n —k)(l — d)/8 elements of type uint8_t. Furthermore, for every
t = 64 bits long substring of the plaintext a different length-(n — k) signature has
to be used for encryption.

In the following, we provide an efficient method for the codeword computation
using a compressed public key.

Algorithm 6.2.1 QD-McEliece encryption: Codeword computation
Input: plaintext array p of type uint8_t and size k/8 bytes, public key K,
Output: codeword array cw of type uint8_t and size n/8 bytes

1. INIT: set the k/8 most significant bytes of cw to M.SBys(cw) < p. Set the
remaining bytes of cw to 0
2. for j «— 0to k/8—1Dby 8 do

3. Read 8 bytes = 64 bits of the plaintext
4. Determine the block key (signature of A(h;,t))
5. fori:+0to7do
6. for all non-zero bits x of pli| do
7. > compute the (i -8 + z)-th row of A(h;, 1)
> Bit permutations
8. if x is odd then
9. ry < (h;,&0xAA)/2)|((h;,&0%55) - 2), Yy € {0,...,(n — k)/8}
10. else
11. r <« h;
12. if x&0x02 then
13. ry < ((r,&0xCC)/4)|((r,&0x33) - 4), Vy € {0, ..., (n — k)/8}
14. if x&0x04 then
15. ry < ((r,&0xF0)/16)|((r,&0x0F) - 16), Vy € {0,...,(n — k)/8}
> Byte permutations
16. rowy, < ryai, Vy € {0,...,(n —k)/8}
> Add the row to the codeword
17. CW «— cw + row

The encryption of a kbits plaintext requires [— d = 20 iterations. In each it-
eration step the encryption function reads an 8 bytes (t bits) long message block
(pj, - .., pj+7) and determines the signature h; of the corresponding dyadic subma-
trix A(h;,t) serving as block key for this encryption round. Next, the encryption

56 Implementation aspects

function scans through all bits of the plaintext block and, if the bit is one, com-
putes the corresponding row of the submatrix A(h;,t). The row number is used
to determine which permutations have to be performed on the bits and bytes
of the signature h;, respectively, to obtain the row looked for. The three most
significant bits of the row number identify the block permutation while the three
least significant bits are used to determine the bit permutations.

After codeword computation an error vector is added to obtain the ciphertext. We
implement a CCA2-secure McEliece variant where the error vector is not chosen
at random but computed within the Kobara-Imai’s specific conversion . Hence,
our implementation of the McEliece encryption function takes an arbitrary error
vector as input and adds it to the codeword by flipping the corresponding bits.
We first tested the encryption function using a fixed error vector. In Section 6.3.1
we describe the modifications of the McEliece encryption function we have done
to apply the KIC-y most efficiently.

6.2.3 Decryption

For decryption we use the equivalent shortened Goppa code I'(L*, G(x)) defined
by the Goppa polynomial G(x) and a (permuted) support sequence L* C Fae
(see Chapter 4.2.3). The support sequence consists of n = 2304 elements of Fyus
and is 4.5 Kbytes in size. We store the support sequence in an array of type
gf16_t and size 2304.

The Goppa polynomial is a monic separable polynomial of degree t = 64. As t
is a power of 2, the Goppa polynomial is sparse and of the form G(z) = Gy +

8 ,Gyx?'. Hence, it occupies just 8-16 bits storage space. We can store both the
support sequence and the Goppa polynomial in the SRAM of the microcontroller.

Furthermore, we precompute the sequence Diag(G(L§)™', ..., G(L:_;)~"!) for the
parity-check matrix V;,,(L*, D). Due to the construction of the Goppa polynomial
G(z) = [I'Z¢(x — z) where z; = 1/h; + w with a random offset w, the following

holds for all G(L}, ;)"

t—1 t—1 t—1 jttt—1
G(L;tﬂ')il = H(L;t+i+zr)il = H(l/h}hﬁl/hrﬂ/ho)*l = H h;tw = H h:
r=0 r=0 r=0 r=jt

h* denotes a signature obtained by puncturing and permuting the signature h
for the large code Cgyqq such that h* = h - P where P is the secret permutation
matrix. Hence, the evaluation of the Goppa polynomial on any element of the
support block (L%, ..., L}, 1) where j € {0,..., 1 —1},i € {0,...,t — 1} leads
to the same result. For this reason, only n/t = [= 36 values of type gf16_t need
to be stored.

6.2 Implementation of the QQD-McEliece variant 57

Another polynomial we need for Patterson’s decoding algorithm is W (z) sat-
isfying W(z)?> = 2 mod G(x). As the Goppa polynomial G(x) is sparse, the
polynomial W (z) is also sparse and of the form W (x) = Wy + S0, Waiz?'.

Proof:
We can split the Goppa polynomial G (x) in squares and non-squares
such that G(z) = G3(x) + x - G3(z). Then we obtain

éo(l’) = \/G>o+z5:\/ng‘+1x2i+l
— \/>+Z:c \/@

and
Ch(z) = \/Gh.

Hence, in this particular case, we obtain W (x) by

GL L
\/_ 2“ 72 Wﬁ%szx

The polynomial W (z) occupies 7 - 16 bits storage space.

Syndrome computation

The first step of the decoding algorithm is the syndrome computation. We have
implemented two different methods explained in the following section.

Normally, the syndrome computation is performed through solving the equation

Se(@) = S.(@) = 3 -

zGE

I mod G(x) where E denotes a set of error positions.
— L

satisfies the equation

The polynomial 7L*

1 1 ¢ -
= E G-L;‘J_S_1 mod G(z), V0 <s<t-—1 6.2
T — L? G(L;k) j=s+1 ’ ()

The coefficients of this polynomial are components of the ¢ — th column of the
Vandermonde parity-check matrix for the Goppa code I'(G(x), L*). Hence, to
compute the syndrome of a ciphertext ¢ we perform the on-the-fly computation
of the rows of the parity-check matrix. As the Goppa polynomial is a sparse
monic polynomial of the form G(z) = Gy + X5 Gax® with Ggy = 1, we can
simplify the Equation 6.2, and thus, reduce the number of operations needed for
the syndrome computation.

58 Implementation aspects

Algorithm 6.2.2 presents the syndrome computation procedure implemented in
this thesis.

Algorithm 6.2.2 On-the-fly computation of the syndrome polynomial

Input: Ciphertext array ¢ of type uint8_t and size n/8 bytes, support set L*,
Goppa polynomial G(z) = Gy + X5, Goix? with Ggy = 1
Output: Syndrome S.(r) = 3!27 S,

1. for i =0 to n/8 do

2. for j=0to 7do

3 if Ci84j = 1 then

4 > compute the polynomial S'(x) = ﬁ mod G(x)
5. Go — 1 ’
6 See — Lisy;

7 for r =61 to 33 by —2, s =1 to 15 do

8 Svl" — S7l“+s2

9. r—1 < S Shyet

10. for r=32to 1 by —1 do

11. Sl — S/ Lt

12. if » = 2° then > for all powers of 2 only
13. o1 Sp_g + Gas

4 Sua) — Sa) 1 S'(@)/G(LY)

15. return S.(z)

The main advantage of this computation method is that it is performed on-the-
fly such that no additional storage space is required. To speed-up the syndrome
computation the parity-check matrix can be precomputed at the expense of ad-
ditional n(n — k) = 288 Kbytes memory. As the size of the Flash memory of
ATxmega256A1 is restricted to 256 Kbytes, we cannot store the whole parity-
check matrix. It is just possible to store 52 coefficients of each syndrome polyno-
mial at most, and to compute the remaining coefficients on-the-fly.

A better possibility is to work with the systematic quasi-dyadic public parity-
check matrix H = [Q|I,,_] from which the public generator matrix G' = [I|Q] is
obtained. To compute a syndrome the vector matrix multiplication H-T =¢ HT
Q

Infk

holds, where () is the quasi-dyadic part composed of dyadic submatrices. Hence,
to compute a syndrome we proceed as follows. The first £ bits of the ciphertext
are multiplied by the part) which can be represented by the signatures of the
dyadic submatrices. The storage space occupied by this part is 2.5 Kbytes. The
multiplication is performed in the same way as encryption of a plaintext (see
Section 6.2.2) and results in a binary vector s’ of length n— k. The last n— k bits

is performed. For the transpose parity-check matrix H” = [QT|I,_4|T =

6.2 Implementation of the QQD-McEliece variant 59

of the ciphertext are multiplied by the identity matrix [,, ;. Hence, we can omit
the multiplication and just add the last n — k bits of ¢ to s’. To obtain a valid
syndrome the vector s first have to be multiplied by a scrambling matrix S (see
Section 6.2.1). We stress that this matrix brings the Vandermonde parity-check
matrix for the private code I'(G(z), L*) in systematic form which is the same as
the public parity-check matrix. Hence, S has to be kept secret. We generate S
over Fy and afterwards represent it over Foi6. Thus, the multiplication of a binary
vector s’ by S results in a polynomial S.(x) € Fais[x] which is a valid syndrome.
The matrix S is 128 Kbytes in size and can be stored in the Flash memory of the
microcontroller (see Section 7.1 for more information).

Syndrome inversion

The next step of the decoding algorithm is syndrome inversion
T(z) = Se(x)™" mod G(x). The syndrome inversion is done using the bi-
nary Extended Euclidean Algorithm 6.2.3.

Algorithm 6.2.3 Binary Extended Euclidean Algorithm over GF(2'9)
INPUT: G(z) € Fas[z], Sc(z) € Fois[x] with degree S, < G
OUTPUT: S.(z)~' mod G(z)
Lu—S,v—G, f—1,9g<0
2. while u # const AND v # const do > degree(u) > 0 and degree(v) > 0
3. while up =0 do

4. u— =

. fh%bt:é%,tEFQm
6. while vy =0 do

7. Ve 2

8. g%%bt:g—%,teﬂ?gw
9. if degree(u) > degree(v) then
10. u<—u—t~v>t:Z—g,t€]F2m
11. f—f—-t-g

12. else

13. v%v—t-ubt:%,teﬁgm
14. g—g—t-f

15. return i
uo

We are thankful to Stefan Heyse for providing an efficient implementation of
the Extended Euclidean Algorithm over Fqio, also presented in [EGHP09|. We
modified the implementation to work over the tower field Fais = [F(9sy2 where any
field element is represented by two elements of Fos. In addition, using the fact

60 Implementation aspects

that the Goppa polynomial G(z) is sparse, we optimized the implementation for
a more efficient multiplication by the Goppa polynomial.

Computation of the error locator polynomial

In the next step of the decoding algorithm the error locator polynomial o(z) is
obtained.

To do so, we first check if the inverse syndrome polynomial 7'(x) equals z. In
this case it holds for the error locator polynomial o(x) = x.

Otherwise, we compute the square root R(x) of T(x) + x = R(x)? satisfying

R(x) =4/T(z) +x mod G(x) = Ro(x) + W(z)Ri(z) mod G(x)

where W (z) = Wy + >.2_, Wiz has been precomputed (see introduction to the
current Chapter).

Therefore, we split the polynomial T'(z) + x = R(z)* = Ro(z)*> + = - Ri(z)? in
squares and non-squares and obtain the polynomials Ry(z) and R;(x) through
square root extraction of the corresponding coefficients.

for (i=(POLYSIZE>>1);0<i ——;)

{
sqrt _ gf16 (&Rq[i<<1],&R0[i]);
sqrt_ gf16 (&Rq[(i<<1)+1],&R1[i]);

The function sqrt_gf16(gf16_t *A, gfl16_t *B) computes a square root of an
element A over the tower field F(os)2, as explained in Section 6.1, and stores the
result in B. The above listing presents a procedure computing square roots of the
coefficients of the polynomial Rq=T(x) + x. The value POLYSIZE is equal to the
number of errors t. As the polynomial T'(z) + z is of degree at most t — 1 = 63,
both polynomials Ro(z) and R;(x) are of degree at most ¢/2 — 1 = 31.

The multiplication of Ry(z) by W(x) can be performed very efficient because
W (x) is of degree t/2 = 32 such that no reduction modulo Goppa polynomial
is necessary. In addition W (z) is sparse and has only 7 non-zero coefficients.
Equation 6.3 summarizes the simplified multiplication procedure where W, and

6.2 Implementation of the QQD-McEliece variant 61

R, ; denote the coeflicients of W (x) and R;(z), respectively.

Ri(z) -W(x) = Wsy- (R1731x31 + R1730$30 +- -+ Riiz+ Ryp) - 32
+ Wie- (Riz12°" + Ry307™ + -+ Ryqx + Ryp) - 2'°
+ Ws- (Rl,zﬂ31 + Rl,30$30 +--+ R+ Rip) - z®
+ Wy (31,31$31 + Rl,30$30 ++ R+ Ryp) - !
+ Wy (31,31$31 + R1,30I30 +- 4+ Rz + Rip) - z?
+ Wi (Rl,Bl-Tgl + 31,30$30 +---+ Rz + Ry - x
+ Wy (Risa™ + Riz02™ + -+ + Rijz + Rip)

By adding the polynomial Ry(x) to Ry(x) - W(x) we finally obtain the square
root R(z) of T'(z) + .

Using a slightly modified version of the Extended Euclidean Algorithm 6.2.4
we can compute the polynomials a(x) and b(x) with deg(a(z)) < |t/2] and
deg(b(z)) < [(t —1)/2] satisfying the equation a(z) = R(x)b(x) mod G(x).
The algorithm takes as input both polynomials R(z) and G(x) and terminates
the computation when the degree of a(x) drops below the bound | (¢ + 1)/2] for
the first time. In our case that is when deg(a(x)) = 32 and deg(b(x)) = 31.

Algorithm 6.2.4 Binary EEA over GF(2'%) with stop value
INPUT: G(x) € Fois[z], R(z) € Faws[z] with degree R < G,
stop value stop = [(t +1)/2]
OUTPUT: a(x), b(z) with a(x) = R(x)b(x) mod G(x)
. A— G, B—Ruv—1,u<0
2. while dfg(A) > stop do
k

. q— 3> Ay, By are leading coefficients of A and B, respectively, in the

iteration step k

4. A— A—q- B - gleslA)—deg(B)
5. u—u—q-uv-glaA-deag(B)
6. if deg(A) < deg(B) then

7. Swap(A, B)

8 Swap(u,v)

9. return (B,v)

The start values for Algorithm 6.2.4 are A = ag(z), B = b_1(x), v = by(x), and
u = a_1(x) where a;(x), b;(x) denote the polynomials a(x) and b(z), respectively,
after iteration i of the algorithm. As before, the implementation of the Extended
Euclidean Algorithm over Fy10 with stop value has been provided by Stefan Heyse.
We modified and optimized the implementation so that it works over the tower
field [F(3s)2 with a sparse Goppa polynomial.

62 Implementation aspects

Now, as the polynomials a(x) and b(x) are known, we can compute the error
locator polynomial o(z). The function square_gf16(gf16_t *A, gf16_t *B)
in the listing denotes the squaring of an element A over the tower field I (osy2. The
result is stored in the value B.

for (i=0;i <(POLYSIZE> >1);i++)
{
square_gfl6(&a[i],&sigmali<<1]);
square_ gf16(&b|i],&sigma|(i<<1)+1]);
}
square gf16(&a[i],&sigma[POLYSIZE]);

Searching for roots of o(x)

The last and the most computationally expensive step of the decoding algorithm
is the search for roots of the error locator polynomial o(x). For this purpose, we
first planed to implement the Berlekamp trace algorithm which is known to be
the best algorithm for finding roots of polynomials over finite fields with small
characteristic. Considering the complexity of this algorithm we found out that it
is absolutely unsuitable for punctured codes over a large field. The first step of
the Berlekamp trace algorithm is the computation of the trace Tr(f; -) defined
by
Tr(B; -) = Bix + Bir® + Biz® + - + Ba®”

where f3; is an element of the Fy basis of Fais. Hence, T'r(f; - x) is a polynomial of
degree 32768, occupying about 64 Kbytes storage space. We cannot precompute
the trace functions for all basis elements (3;, as proposed in [BH09|. Furthermore,
we cannot work with polynomials of such high degree on the microcontroller
due to the size of the SRAM restricted to 16 Kbytes. Therefore, the reduction
modulo polynomial o(x) of degree at most 64 is necessary after each step of
the trace computation performed on-the-fly. Another computationally expensive
operation is the computation of GCDs. The complexity of the Berlekamp trace
algorithm exceeds that of the simple polynomial evaluation method on the fixed
support L*. The reason is that only n/(2™) = 2304/2'% ~ 0.035 field elements are
in the shortened support sequence, and thus, possible roots of the error locator
polynomial. Hence, it would be pointless to factorize the polynomial o(x) using
trace functions over the large field Faus.

The next root finding method we analyzed is the Chien search which has theo-
retical complexity O(n - t) if n = 2™. The Chien search scans automatically all
2™ —1 field elements, in a more sophisticated manner than the simple polynomial
evaluation method. Unfortunately, in our case n << 2™ such that the complex-
ity of the Chien search becomes O(2'® - t) which is enormous compared to the
complexity of the simple polynomial evaluation method.

6.2 Implementation of the QQD-McEliece variant 63

Another disadvantage of both the Berlekamp trace algorithm and the Chien
search is that after root extraction the found roots have to be located within
the support sequence to identify error positions. That is not the case when eval-
uating the error locator polynomial on the support set directly. In this case we
know the positions of the elements L and can correct errors directly by flipping
the corresponding bits in the ciphertext.

The only algorithm which actually decreases the computation costs of the simple
evaluation method in the case of punctured codes is the Horner scheme. The
complexity of the Horner scheme does not depend on the extension degree of the
field but on the number of possible root candidates, which is n. In addition, as
the Horner scheme evaluates the error locator polynomial on the support set L*,
the root positions within L* are known such that errors can be corrected more
efficiently. Hence, we have implemented this root finding algorithm in this thesis.

To speed-up the evaluation of the polynomial o(x) on all support elements using
the Horner scheme we provide the following algorithm.

Algorithm 6.2.5 Error correction: Horner scheme with polynomial division

t

Input: Ciphertext ct, error locator polynomial o(z) = Z o;x", support set L*
i=0

Output: Codeword cw

1. o(z) « o(x)/os > oy is the leading coefficient of o(x)
2. cw «ct
3.1+ 0
4. while deg(o(x)) > 1 do
Evaluate o(L}) using Horner scheme
if o(L) =0 then
;_(% > Decrease deg(o(z))
cw; +— cw; Sl Toggle bit ¢
t—1+1
> Now o(z) = x + 09 = 0y is the last root
10. Find o¢ in L* scanning the remaining n — ¢ elements
11. Correct the last error bit cw; at the position j = L*[oy]
12. return cw

o(x) «—

© »® N o

After a root L} of o(x) has been found we perform the polynomial division of
o(x) by (z — Lf). To simplify the polynomial division we first divide o(x) by
its leading coefficient o, so that o(x) becomes monic. We can do so, because
searching for roots is solving the equation o(x) = 0. As both, o(z) and (z — L)),
are monic, the polynomial division can be performed very efficiently.

64 Implementation aspects

o(x) 2t ot 4o+ o
y(x) = . = ,
= 2" 4 (oo + L) 24 [(opa + L) L + oy s) a3 4o
—_—— —_———
Yt—2 Yt—2

Yt—3
= 2"y 4 (poLf +oyg) 2"+ 4 (L] + 00)
—_—

Yt—3 Yo

We observed that the polynomial division by (x — L}) can be performed sequen-
tially reusing values computed in previous iteration steps. In the first step we
compute the coefficient y;_» of the polynomial y(x) searched for. In every iteration
step 7 we use the previous coefficient v;_,41 to compute y;—; = y—j 1 L + o5
The whole procedure requires t — 3 multiplications and ¢ — 2 additions to divide
a degree-t polynomial by x — L.

The main advantage of performing polynomial division each time a root has been
found is that the degree of the error locator polynomial decreases. Hence, the
next evaluation steps require less operations. For instance, after t/2 roots of o(x)
have been found only a polynomial of degree ¢/2 must be evaluated to find the
remaining ¢/2 roots.

6.3 Implementation of the KIC-~

For the implementation of the Kobara-Imai’s specific conversion v |KIO1] intro-
duced in Section 5.1 two parameters have to be chosen: the length of the random
value r and the length of the public constant Const. The authors propose that
the length of » and C'onst are both 160 bits. We disagree to this proposal. The
length of r should be equal to the output length of the used hash function. Nowa-
days, there is no secure hash function producing an output of 160 bits. Hence, we
prefer to use a hash function with 256 bits output length, e.g. SHA-256 or one of
the SHA-3 candidates. For the implementation of the KIC-v on ATxmega256A1
we used an efficient assembler implementation of the Blue Midnight Wish (BMW)
hash function which has been provided by the Chair for embedded security at
the Ruhr-University Bochum.

As we have |r| = 256 and |C'onst| = 160, the message to be encrypted should be
of the length |m| > {logg (?)J + k+ |r| — |Const| = 1281 bits. Hence, we encrypt
messages of length 1288 bits = 161 bytes. In this case the data redundancy is
even below of that of the McEliece scheme without conversion: 1288/2304 <
1280/2304.

6.3 Implementation of the KIC-+y 65

6.3.1 Encryption

The first steps of the KIC-y encryption function are the generation of a random
seed r for the function Gen(r), as well as the one-time-pad encryption of the
message m padded with the public constant C'onst and the output of Gen(r). The
result is a 1288 bits+160 bits=1448 bits = 181 bytes big value y;. The generation
of random values can be implemented using the C-rand function. In the next
step the hash value of y; is added to the random seed r by the xor operation to
obtain the value 5.

The most important step of the KIC-v is the constant weight encoding function
Conv explained in Section 5.2. To optimize the computation we restrict the
values for d to powers of two. Then the function decodefd can be simplified.
Algorithm 6.3.1 presents the modified constant weight encoding function imple-
mented in this thesis. The function best u(n,t) computes the optimal exponent
u for d = 2%

Algorithm 6.3.1 Constant weight coding: function BtoCW
Input: three integers n, t, and ¢, a binary stream B
Output: a t-tuple of integers (d1,...,0;)

1. if t = 0 then
return
else if n <t then
return ¢, BtoCW(n —1,t —1,0,B)
else
u «— best_u(n,t)
d«— 2%
if read(B,1)=1 then
return BtoCW(n —d,t,d +d, B)
else
i« read(B,u)
return § +i,BtoCW(n —i— 1,1 — 1,0, B)

© ® N ok W N

—
N o= o

While the k£ = 1280 least significant bits of (y2||y1) are used as input for the
McEliece encryption function, the remaining 424 bits can be used as input for
the C'onv function. The input for the constant weight encoding function is not
fixed. We determined that our implementation takes at least 408 bits=>51 bytes
as input. Hence, we have to store the remaining 2 bytes in ys.

As mentioned above, the McEliece encryption function takes as input a k-bits long
part of (y2||y1) as well as the delta-array produced by the constant weight encod-
ing function. To add an error vector denoted by the delta-array to a codeword
the modified McEliece encryption function proceeds as follows: it first computes
the error positions and then flips the corresponding bits of the codeword.

66 Implementation aspects

intl6_t pos = —1;
for (i=0;i<errors;i++){
pos += delta array[i] + 1;
ct [pos>>3] "= (0x80>>(pos&0x07));

}

6.3.2 Decryption

To decrypt a ciphertext the KIC-v first stores the first two bytes of the ciphertext
in y5. Then it calls the McEliece decryption function which returns the encrypted
plaintext y3 and the error vector in form of the delta-array. For this purpose
we modified the error correction function within the McEliece decoding in the
following manner. The McEliece decryption function first corrects errors and
then returns the delta-array with components computed by d; = i; —i;_; — 1
where 7, denote the error positions.

To obtain part y, from the delta-array constant weight decoding function is used.
As the values for d are restricted to the powers of two this function can also be
simplified.

Algorithm 6.3.2 Constant weight coding: function CWtoB
Input: two integers n and ¢, and a t-tuple (01,...,d;)
Output: a binary string B

1. if t=0o0r n <t then
2. return
3. u < best_u(n,t)
4. d «—2*
5. if 0; > d then
6. return 1||CWtoB(n —d,t, (61 —d,da,...,0))
7. else
8. s« 0||LSB,(d1|r,)
9. return s||CWtoB(n—4d; —1,t —1,(da,...,0:))
Now (yo|ly1) = (ys||vallys) is known and the message m can be obtained as

introduced in Section 5.1.2.

7 Implementation on an 8-bits
AV R microcontroller

This chapter discusses our implementation of the quasi-dyadic McEliece vari-
ant including the Kobara-Imai’s specific conversion 7 on an 8-bits AVR mi-
crocontroller. For porting our implementation described in Section 6 to the
AVR micro architecture from Atmel we used the AVR Studio version 4.18 and
the WinAVR-20090313 IDE as plugin for C development. The target device is
the ATXmega256A1 microcontroller with 256 Kbytes Flash memory (access time
3 cycles/operation) and 16 Kbytes SRAM (access time 2 cycles/operation). This
RISC microcontroller operates at a clock frequency up to 32 MHz.

In Section 7.1 we discuss all problems occurring while porting our implementation
to the AVR micro architecture. In the last Section 7.2 we give an analysis of the
side channel security of our implementation.

7.1 Porting to AVR

Most of the implemented functions could be ported to the AVR micro architecture
without any problem. Unfortunately, the AVR micro architecture does not have a
pseudo random number generator (PRNG). Hence, we used fixed random values
for the implementation of the KIC-v. Later, the hardware based DES or AES
acceleration of the target device can be used to implement a PRNG.

Another problem occurs when implementing the syndrome computation method
using the matrix S (see Section 6.2.3). The matrix S is 128 Kbytes in size and
cannot be stored in the SRAM of the microcontroller. Hence, we have to use the
Flash ROM for this purpose. To forbid the copying of this matrix to the SRAM
when starting up the code the PROGMEM directive is used. Note that without this
directive the C-compiler tries to copy all data to the SRAM at startup time. As
the matrix S does not fit into the SRAM the copying process would result in an
error message.

const gfl6_t Smat[] PROGMEM = {...};

By doing so, the matrix S is loaded to the Flash ROM together with the pro-
gram data. Our first naive approach was to store the matrix S as array of size

68 Implementation on an 8-bits AVR microcontroller

64 - 2-1024 = 131072 bytes. Unfortunately, the AVR uses 16 bit pointers to ac-
cess its Flash ROM where a pointer is a signed integer. Hence, a pointer can
address an array of size (32 Kbytes-1byte) at most. Therefore, the matrix S need
to be split into multiple parts at the expense of additional overhead in the pro-
gram code. We took the decision to split .S into 8 arrays of size 128 - 64 - 2 bytes
each. Then the multiplication of a binary vector s’ by S is performed as presented
in Algorithm 7.1.1.

Algorithm 7.1.1 Multiplication of s’ by S with 8 tables
Input: binary vector s’ of length 64, tables Siup., where 0 <7 <7
Output: a syndrome polynomial S.(z)

1. Se(x) <0
2. for i =0 to 15 do
3. forj=0to7do

5. Sc(x) — Sc(l‘) + Stableo [Z -8+]]
6. if 3’(i+16),8+j =1 then
7. Se(x) «— Se(x) + Stapie, 1 - 8 + J]
8. if s’(i+32)_8+j =1 then
9. SL($) — SC(.I) + Stable2 [Z -8 —|—j]
10. if S(; 14884+, = 1 then
11. Se(x) « Se(x) + Stavies |t - 8 + J]
12. if s’(i+64)_8+j =1 then
13. Se(x) «— Se(x) + Stapies |t - 8 + J]
14. if s{;50)51; = 1 then
15. SC(ZL‘) — SC(ZE) + Stables [Z -8 —f—j]
16. if 3’(i+96),8+j =1 then
17. Se(x) < Se(x) + Stavieg|t - 8 + J]
18. if 8,(i+112)-8+j =1 then . .
19. Se(x) «— Se(x) + Stapte- 1 - 8 + J]

Another problem is that when storing the S-tables in the Flash ROM the rows
Stabie, [- 8 4+ j] cannot be accessed directly. The cause is that AVR is a Harvard
architecture with separated buses for program data stored in the Flash ROM and
other data stored in the SRAM. To access data stored in the program space we
include the header file pgmspace.h [pgm| and use the macro pgm_read_byte_far
defined there. We can use this macro because the target platform supports the
ELPM instructions. This macro takes as input a signed int32 pointer to the
requested array. To obtain this pointer another macro FAR provided by [Sag]| is
used.

The components of the S-tables are of type gf16_t which is a structure consisting
of two uint8_t elements. However, the macro pgm_read_byte_far is able to read

7.2 Side channel security 69

a byte only. The following listing makes clear how to read the (i - 8 + j)-th row
of a S-table of type gf16_t.

uint8_t len = n/8—k/8;
for (y=126;y>=0;y—=2)
{

SynPoly [(y/2)].highByte"=pgm _read byte far (FAR(Smat0)+(i*8+j)*len+y|);

SynPoly [(y/2)].lowByte*=pgm _read byte far (FAR(Smat0)+(i%8+j)*len+yH

}

7.2 Side channel security

Embedded devices can always be subject of passive attacks, e.g. timing attacks
and power analysis attacks. The goal is either to recover the secret information
L* and G(z) or to recover the error vector without the knowledge of the secret
information. Within our implementation there are two critical functions where
side channel attacks seem conceivable: syndrome computation and the extraction
of roots of the error locator polynomial.

Neither the implementation of the Horner scheme without nor with polynomial
division is resistant against side channel attacks.

We first consider the implementation without polynomial division. This method
has a constant running time for all degree-t polynomials. An attacker may try to
toggle an arbitrary bit in the received ciphertext in the hope that the flipped bit
was an error bit. That can be verified by running the decoding algorithm and
measuring the running time. If the flipped bit was an error bit then the degree
of the error locator polynomial o(x) is at most ¢ — 1. In this case the evaluation
of o(x) takes less time compared to the evaluation of an degree-t polynomial.
Scanning through all bits of the ciphertext the attacker can efficiently find all
errors.

In our implementation we use error vectors of Hamming weight ¢ only, constructed
by the constant weight encoding function within the KIC-v. Hence, to protect
the implementation against the timing attack explained above we first check
whether the degree of the error locator polynomial is exactly ¢. If the degree of
o(x) =t < t, we evaluate the error locator polynomial on an arbitrary element
of the support sequence (equivalently an arbitrary element of Fois) ¢ — ¢’ times
without error correction. The time taken for the error correction is negligible.
Hence, the running time of the Horner scheme is constant, as it is independent
of the degree of o(z).

The implementation of the Horner scheme with polynomial division is not resis-
tant against timing attacks, as it does not have a constant running time. Let
us assume that the first ¢ bits of the ciphertext contain errors. As we perform

—

70 Implementation on an 8-bits AVR microcontroller

polynomial division after a root has been found, the degree of o(z) decreases
fast. After ¢ evaluation steps all roots are known and the algorithm terminates.
In contrast, if all ¢ errors are in the last ¢ bits of the ciphertext, n — t evaluation
steps of a degree-t polynomial must be performed before the degree of the error
locator polynomial decreases. In this case the running time of the algorithm is a
lot longer. Hence, the attacker is able to find the error vector by measuring the
running time of the algorithm.

Another problem is that the power consumption is not constant. The evaluation
of a degree-t polynomial involves more operations compared to the evaluation of a
polynomial of less degree. As the degree of the error locator polynomial decreases
after every root found, the attacker is able to identify the error positions by means
of the power trace.

To protect the implementation against both the timing attack and the simple
power analysis the implementation can be modified in the following manner.
Instead of incrementing the index 7 in each iteration step of Algorithm 6.2.5 a
random index must be chosen. A pseudo random number generator implemented
on the microcontroller can be used to generate a random sequence Ind of distinct
elements j with 0 < 7 < n — 1. Taking the index 7 of Algorithm 6.2.5 from the
random index set Ind the root evaluation is carried out in a random order. By
this means the correlation between the power consumption / running time and
the error positions is destroyed.

The next critical point within our implementation is syndrome computation. As
explained in Section 6.2.3, we have implemented two different methods for this
purpose: on-the-fly syndrome computation and syndrome computation using a
precomputed matrix S. It seems not possible to perform a timing attack on both
syndrome computation methods, as the degree of the syndrome polynomial is
always t — 1 and independent from the number of induced errors. Hence, the
running time is constant. The question is whether it is possible to recover the
support L* and the Goppa polynomial G(x) used in the syndrome computation
methods by means of the power analysis. The security against power analysis
has not been explicitly studied within the scope of this thesis. Nevertheless, we
provide some ideas for further investigation.

The first method uses elements of the prepermuted support directly to compute
the rows of the private (transpose) parity-check matrix on-the-fly. Hence, an idea
is to try to determine the Hamming weights of the elements L}, (L})?,--- , (L})3
and to use the correlation between these elements to reduce the number of possible
candidates. We recall that an element A € Fji6 is represented by two elements A,
and Ay, in Fys. Hence, C' = A? satisfies the equation C? = A7 and C? = A?p,+ A?
where the defining polynomial of Fyis is p(x) = 22 +z+po. We may try to recover
the elements Ay, first. Once these elements are known, they can be used to recover
the elements A;.

7.2 Side channel security 71

An element A;, has a polynomial representation A, = Ap, + Ap,x + -+ + Ap, 2.
We used the polynomial 2842 +23+22+1 for the construction of the subfield Fys.
Hence, if « is root of this polynomial, a® = a*+a?+a?+1 holds. The polynomial
representation of A7 can be denoted by A2 = (ag+ay+ag) +a’x+ (ay +aq +as+
ag+ar7)x® + (ay+ag)x® + (ag +ag +as + ag +ar)x* +asz® + (a3 +as +ag) 2’ + agx”.
Using this fact we can see that, for instance, if A; has Hamming weight 1 then
A? has Hamming weight 1 (3 candidates), 2 (1 candidate), 3 (1 candidate), 4
(2 candidates), or 5 (1 candidate). With knowledge of the Hamming weights
for A? the number of candidates is reduced significantly. We believe that when
considering further powers of A, an efficient attack can be performed on the on-
the-fly syndrome computation method. By doing so, all elements of the support
sequence might be found. We leave the realization of the attack as a subject for
further investigation.

Furthermore, it should be investigated whether the attacks presented in the re-
cent work [HMP10] are applicable to our syndrome computation methods. This
work discusses possible power analysis attacks on the original McEliece scheme
implemented on an 8-bits AVR microcontroller. As we use a prepermuted sup-
port sequence, only the Attack II of this work is interesting. This attack recovers
the permuted support sequence and the permuted parity-check matrix, respec-
tively, for a private Goppa code. We do not store the whole parity-check matrix.
However, the matrix S used for the syndrome computation with precomputation
has a similar structure as the parity-check matrix. Hence, it should be investi-
gated whether the precomputed matrix S can be recovered by means of Attack
IT or similar. In addition, the fact that the Goppa polynomial is sparse might be
useful. We recall that the evaluation of the Goppa polynomial on any element of
the support block (L3, ..., L%, ;) where j € {0,...,1 -1}, 7€ {0,...,t — 1}
leads to the same result.

8 Results

This chapter presents the results of our implementation of the McEliece variant
based on [2304,1280,129| quasi-dyadic Goppa codes providing an 80-bit security
level for the 8-bits AVR microcontroller. As we use a systematic generator matrix
for the Goppa code, we also implemented the Kobara-Imai’s specific conversion
v developed for CCA2-secure McEliece variants (see Chapter 5). Note that the
KIC-v first randomizes and transforms a message to be encrypted into a fixed
length and Hamming weight vector which is used as error vector for the quasi-
dyadic encryption function. Due to the parameters chosen for the KIC-v the
actual length of the message to be encrypted increases to 1288 bytes while the
ciphertext length increases to 2312 bytes (2 bytes overhead for the conversion).

Table 8.1 summarizes the sizes of all parameters being precomputed and used for
the encryption and decryption algorithms. As we work with field elements over
Fyi6 the real size of all parameters equals the actual storage space occupied by
the parameters.

Parameter Size

QD-McEliece Kpup 2560 byte
encryption

log table for Fys 256 byte

antilog table for Fas 256 byte

QD-McEliece Goppa pf)lynomlal G(z) 16 byte

decrvption Polynomial W (z) 14 byte

yp Support sequence L* 4608 byte

Array with elements 1/G(LY) 72 byte

Matrix S 131072 byte

KIC-~ Public constant Const 20 byte

Table 8.1: Sizes of tables and values in memory

Except the matrix S used only within the syndrome computation method with
precomputation, all precomputed values can be copied into the faster SRAM of
the microcontroller at startup time resulting in faster encryption and decryption.

The performance results of our implementation were obtained from the AVR
Studio in version 4.18. Table 8.2 summarizes the clock cycles needed for specific

74 Results

operations and sub-operations for the conversion and encryption of a message.
Note that we used fixed random values for the implementation of the KIC-v. The
encryption of a 1288 bits message requires 6,358,952 cycles. Hence, when running
at 32 MHz, the encryption takes about 0.1987seconds while the throughput is
6482 bits/second.

Operation Sub-operation Clock cycles
BMW Hash 15,083
BtoCW 50,667
Other 8,927
QD-McEliece Vector-matrix multiplication 6,279,662
encryption Add error vector (delta-array) 4,613

Table 8.2: Performance of the QD-McEliece encryption including KIC-vy
on the AVR pC' ATxmega256@32 MHz

Table 8.3 presents the simulation results of the operations and sub-operations of
the QD-McEliece decryption function including KIC-~.

Operation Sub-operation Clock cycles
Syndrome computation on-the-fly 25,745,284

. Syndrome computation with § 9,118,828
?e]éMiilfce Syndrome inversion 3,460,823
P Computing o(z) 1,625,090
Error correction (HS) 31,943,688

Error correction (HS with PD) 19,234,171

CWtoB 61,479
BMW Hash 15,111
Other 19,785

Table 8.3: Performance of the QD-McEliece decryption including KIC-vy
on the AVR pC' ATxmega256@32 MHz

The above table shows clearly that the error correction using the Horner scheme
with polynomial division is about 40% faster then the Horner scheme without
polynomial division. Considering the fact that the error correction is one of
the most compuationally expensive functions within the decryption algorithm
the polynomial division provides a significant speed gain for this operation. In
the case that the syndrome is computed using the precomputed matrix S and
the error correction is performed using the Horner scheme with polynomial di-
vision decoding of a 2312 bits ciphertext requires 33,535,287 cycles. Running

Results 75

at 32 MHz the decryption takes 1.0480 seconds while the ciphertext rate is
2206 bits/second!. Decryption with the on-the-fly syndrome computation method
takes 50,161,743 cycles. Hence, running at 32 MHz the decryption of a ciphertext
takes 1.5676 seconds in this case while the cophertext rate is 1475 bits/second.
Although the on-the-fly decryption is about 1.5 times slower, no additional Flash
memory is required so that a migration to cheaper devices is possible.

Table 8.4 summarizes the resource requirements for our implementation. The
third column of the table refer to the decryption method with precomputed ma-
trix S, the fourth to the on-the-fly syndrome decoding method. For a comparison
we also provide the resource requirements for the original McEliece version based
on [2048,1751,55]-Goppa codes [EGHP09].

Operation SRAM Flash External

memory memory
. Encryption 3.5 Kbyte 11 Kbyte -
v%?ﬁf%fece Decryption (with S) 8.6Kbyte 156 Kbyte -
7 Decryption (on-the-fly) 6 Kbyte 21 Kbyte -

Original Encryption 512 byte 684 byte 438 Kbyte
McEliece Decryption 12 Kbyte 130.4 Kbyte —

Table 8.4: Resource requirements of QD-McEliece including KIC-vy
on the AVR pC' ATxmega256@32 MHz

As we can see, the memory requirements of the quasi-dyadic encryption rou-
tine including KIC-vy are minimal because of the compact representation of the
public key. Hence, much cheaper microcontrollers such as ATxmega32 with only
4 Kbytes SRAM and 32 Kbytes Flash ROM could be used for encryption. In con-
trast, the implementation of the original McEliece version even requires 438 Kbyte
external memory. The implementation of the decryption method with on-the-fly
syndrome computation could also be migrated to a slightly cheaper microcon-
troller such as ATxmegal28 with 8 Kbyte SRAM and 128 Kbyte Flash memory.

Table 8.5 gives a comparison of our implementation of the quasi-dyadic McEliece
variant including KIC-v with the implementation of the original McEliece PKC
and the implementations of other public-key cryptosystems providing an 80-bit
security level. RSA-1024 and ECC-160 [GPWT04] were implemented on a At-
mel ATmegal28 microcontroller at 8 MHz while the original McEliece version
was implemented on a Atmel ATxmegal92 microcontroller at 32 MHz. For a fair
comparison with our implementation running at 32 MHz, we scale the timings at
lower frequencies accordingly. To be fair we also take into account that the mes-
sage length is 1288 bits in our case where the RSA encrypts messages of length

IChiphertext rate denotes number of ciphertext bits processed per second

76 Results

1024 bits, ECC of length 160 bits and the original McEliece version of length
1751 bits. Hence, we also provide the throughput of the implementations. In
contrast to RSA and ECC, the plaintext and ciphertext lengths in both, the orig-
inal McEliece PKC and the quasi-dyadic variant, are not equal. In the throughput
figures we do not take into account any message expansion in the ciphertext, but
only consider the number of plaintext bits processed by each cryptosystem.

Method Time Throughput

ops/sec bits/sec
QD-McEliece encryption 0.1987 6482
QD-McEliece decryption (with S) 1.0480 1229
QD-McEliece decryption (on-the-fly) 1.5676 822
Original McEliece encryption [EGHP09] 0.4501 3889
Original McEliece decryption [EGHP09] 0.6172 2835
ECC-160 [GPWT04] 0.2025 790
RSA-1024 216 + 1 [GPWT04] 0.1075 9525
RSA-1024 w. CRT [GPWT04] 2.7475 373

Table 8.5: Comparison of the quasi-dyadic McEliece variant including KIC-vy
(n’=2312, k'=1288, t=64) with original McEliece PKC (n=2048,
k=1751, t=27), ECC-P160, and RSA-1024

Although we additionally include KIC-v in the quasi-dyadic McEliece encryption,
we were able to overperform both, the original McEliece version and ECC-160,
in terms of number of operations per second. In particular, the throughput of
our implementation significantly exceeds that of ECC-160.

Unfortunately, we could not overperform the original McEliece scheme neither
in throughput nor in number of operations per second for the decryption. The
reason is that the original McEliece version is based on Goppa codes with much
smaller number of errors t = 27. Due to this fact, this McEliece version works
with polynomials of smaller degree such that most operations within the decoding
algorithm can be performed more efficiently. Another disadvantage of our imple-
mentation is that all parameters are defined over the large field Fyis. As we could
not store the log- and antilog tables for this field in the Flash memory, we had
to implement the tower field arithmetic which significantly reduces performance.
For instance, one multiplication over a tower [F(3s)2 involves 5 multiplications over
the subfield Fos. Hence, much more arithmetic operations have to be performed
to decrypt a ciphertext.

Nevertheless, the decryption function is still faster than the RSA-1024 private
key operation and exceeds the throughput of ECC-160. Furthermore, although
slower, the on-the-fly decoding algorithm requires 81% less memory compared to
the original McEliece version such that migration to cheaper devices is possible.

O Conclusion and further
research

In this thesis we have implemented a McEliece variant based on quasi-dyadic
Goppa codes on a 8-bits AVR microcontroller. The family of quasi-dyadic Goppa
codes offers the advantage of having a compact and simple description. Using
quasi-dyadic Goppa codes the public key for the McEliece encryption is signifi-
cantly reduced. Furthermore, we used a generator matrix for the public code in
systematic form resulting in an additional key reduction. As a result, the public
key size is a factor ¢ less compared to generic Goppa codes used in the original
McEliece PKC. Moreover, the public key can be kept in this compact size not
only for storing but for processing as well. However, the systematic coding neces-
sitates further conversion to protect the message. Without any conversions the
encrypted message would be revealed immediately from the ciphertext. Hence, we
have implemented the Kobara-Imai’s specific conversion ~: a conversion scheme
developed specially for CCA2 secure McEliece variants. We also provided the
side-channel analysis of our implementation in Section 7.2.

For public-key cryptosystems implemented on embedded systems parameters pro-
viding a mid-term security level are often regarded sufficient. The reason is that
many embedded systems have short life cycles. Hence, we chose [2304,1280,129]
quasi-dyadic Goppa codes for our implementation providing an 80-bit security
level. We generate the public Goppa codes as punctured permuted subfield sub-
codes over Fy of large private Goppa codes over Fai6. As we could not perform
the field arithmetic over Fyis directly due to memory size limitations, we have
implemented the tower field arithmetic. All operations over Fyis are then per-
formed in terms of operations in the subfield Fos which are realized through table
lookups. For the implementation of the Patterson’s decoding algorithm square
root extraction of polynomials over the tower field Faie is necessary. As we did
not find any formula for square root extraction in the literature we developed
and implemented a new one for this purpose. We provide the formal correctness
proof of this formula in Section 6.1.

Although our implementation leaves room for further optimizations, we overper-
form the implementations of the original McEliece PKC and ECC-160 in en-
cryption. In particular, the quasi-dyadic McEliece encryption is 2.3 times faster
than the original McEliece PKC and exceeds the throughput of both, the origi-

78 Conclusion and further research

nal McEliece PKC and ECC-160, by 1.7 and 8.2 times, respectively. In addition,
our encryption algorithm requires 96,7% less memory compared to the original
McEliece version and can be migrated to much cheaper devices.

The performance of the McEliece decryption algorithm is closely related to the
number of errors added within the encryption. In our case the number of er-
rors is 64 which is 2.4 times greater compared to the original McEliece PKC.
Hence, the polynomials used are huge and the parity-check matrix is too large
to be completely precomputed and stored in the Flash memory. In addition,
the error correction requires more time because a polynomial of degree 64 has
to be evaluated. We showed in Section 6.2.3 that non of the frequently used er-
ror correction algorithms, such as the Berlekamp trace algorithm and the Chien
search, is suitable for punctured and shortened codes obtained from codes over
very large fields. Furthermore, the tower field arithmetic significantly reduces the
performance of the decoding algorithm. All facts considered, it is clear that our
implementation cannot overperform the original McEliece variant in decoding.
Nevertheless, the decryption algorithms with precomputation and on-the-fly are
2.6 and 1.8 times, respectively, faster than the RSA-1024 private key operation
and exceed the throughput of ECC-160. Furthermore, although slower, the on-
the-fly decoding algorithm requires 81% less memory compared to the original
McEliece version such that migration to cheaper devices is possible.

For future work, we propose the investigation whether the decoding algorithm
for the quasi-dyadic McEliece variant can be optimized to achieve better per-
formance. For instance, the tower field arithmetic could be implemented in
the assembly language. Alternatively, we believe that when implementing the
quasi-dyadic McEliece variant on a 16-bits microcontroller with more memory
the performance increases significantly.

Furthermore, nowadays it is not clear whether the quasi-dyadic McEliece variant
is actually secure. The best known attack is able to break some instances of
this McEliece variant. This does not hold if the quasi-dyadic Goppa codes are
defined over the base field as subfield subcodes of codes over very large extension
fields with extension degree > 16. Further research on this topic should answer
this question. In the positive case that the implemented quasi-dyadic variant is
secure against structural attacks, the quasi-dyadic McEliece variant should be
implemented on an FPGA which should result in a major speed enhancement.

A Bibliography

[Afa9l]

|ALO4]

[BBDOS]

[BCO7]

[Ber70]

[Ber08]
[BHO09]

[BLPOS]

[BMvT78|

[CCo5]

[CCos]

V.B. Afanasyev. On the complexity of finite field arithmetic. Fifth
Joint Soviet-Swedish Intern. Workshop Information Theory, pages 9—
12, January 1991.

W. Adams and P. Loustaunau. An introduction to Grébner Bases,
volume 3. 1994.

Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post
Quantum Cryptography. Springer Publishing Company, Incorporated,
2008.

M. Baldi and G. F. Chiaraluce. Cryptanalysis of a new instance of
mceliece cryptosystem based on qc-ldpc codes. In IEEFE International
Symposium on Information Theory, pages 2591-2595, March 2007.

E. R. Berlekamp. Factoring polynomials over large finite fields. Math-
ematics of Computation, 24(111):713-715, 1970.

Daniel J. Bernstein. List decoding for binary goppa codes, 2008.

Bhaskar Biswas and Vincent Herbert. Efficient root finding of poly-
nomials over fields of characteristic 2. In WEWoRC 2009, July 7-9
2009.

Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking
and defending the mceliece cryptosystem. In PQCrypto 08: Proceed-
ings of the 2nd International Workshop on Post-Quantum Cryptog-
raphy, pages 31-46, Berlin, Heidelberg, 2008. Springer-Verlag.

E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. On the
inherent intractability of certain coding problems. IEEE Trans. Inf.
Theory, 24(3):384-386, May 1978.

Anne Canteaut and Florent Chabaud. Improvements of the attacks
on cryptosystems based on error-correcting codes, 1995.

Florent Chabaud and Anne Canteaut. A new algorithm for find-
ing minimum-weight words in a linear code: application to primitive
narrow-sense bch codes of length 511. IEEE Transactions on Infor-
mation Theory, 44:367-378, 1998.

80

A Bibliography

[Chi64]

[Cov73]

[EGHP09)

[EOS07]

[FO99)]

[FOPT09)

[Gab05]

| Gol66|

[GopT70]

[GPW+04]

[Hey09]

[HMP10]

R. Chien. Cyclic decoding procedure for the bose-chaudhuri-
hocquenghem codes. IEEFE Transactions on Information Theory, IT-
10(10):357-363, 1964.

T. Cover. Enumerative source encoding. IEEE Transactions on In-
formation Theory, 19(1):73-77, January 1973.

Thomas Eisenbarth, Tim Giineysu, Stefan Heyse, and Christof Paar.
Microeliece: Mceliece for embedded devices. In CHES ’09: Pro-
ceedings of the 11th International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 49-64, Berlin, Heidelberg, 2009.
Springer-Verlag.

D. Engelbert, R. Overbeck, and A. Schmidt. A summary of mceliece-
type cryptosystems and their security. Journal of Mathematical Cryp-
tology, 1(2):151-199, 2007.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In CRYPTO ’99: Pro-
ceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, pages 537-554, London, UK, 1999. Springer-
Verlag.

Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-
Pierre Tillich. Algebraic cryptanalysis of mceliece variants with com-
pact keys. 2009.

P. Gaborit. Shorter keys for code based cryptography. In The 2005
International Workshop on Coding and Cryptography (WCC 2005),
pages 81-91, March 2005.

S. Golomb. Run-length encoding. IEEE Transactions on Information
Theory, 12(3):399-401, July 1966.

V.D. Goppa. A new class of linear correcting codes. Probl. Pered.
Info., 6(3):24-30, 1970.

N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Compar-
ing elliptic curve cryptography and rsa on 8-bit cpus. In Cryptographic
hardware and embedded systems. CHES 2004: 6th international work-
shop, pages 119-132, 2004.

Stefan Heyse. Code-based cryptography: Implementing the mceliece
scheme on reconfigurable hardware. Diploma thesis, Ruhr-University
Bochum, 2009.

S. Heyse, A. Moradi, and C. Paar. Practical power analysis attacks
on software implementations of mceliece. 2010.

A Bibliography 81

[HPO3]

[HPS98]

[Hub96]

[KI01]

[Leo88|

[MB09)

[McETS)

[Mer79)]

[MKS9]

[MS97]

[MVO96]

[Nie86|

W. C. Huffman and V. Pless. Fundamentals of Error-Correcting
Codes. Cambridge University Press, 2003.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A
ring-based public key cryptosystem. In Lecture Notes in Computer
Science, pages 267-288. Springer-Verlag, 1998.

K. Huber. Note on decoding binary goppa codes. Electronics Letters,
pages 102-103, 1996.

Kazukuni Kobara and Hideki Imai. Semantically secure mceliece
public-key cryptosystems-conversions for mceliece pkc. In PKC "01:
Proceedings of the 4th International Workshop on Practice and The-
ory in Public Key Cryptography, pages 19-35, London, UK, 2001.
Springer-Verlag.

Jeffrey S. Leon. A probabilistic algorithm for computing minimum
weights of large error-correcting codes. IEEE Transactions on Infor-
mation Theory, 34(5):1354-1359, 1988.

Rafael Misoczki and Paulo S. Barreto. Compact mceliece keys from
goppa codes. In Selected Areas in Cryptography: 16th Annual Inter-
national Workshop (SAC 2009), pages 376-392, Berlin, Heidelberg,
August 13-14 2009. Springer-Verlag.

Robert J. McEliece. A public-key cryptosystem based on algebraic
coding theory. DSN Progress Report 42-44, Jet Propulsion Labora-
tory, January-February 1978.

Ralph Merkle. Secrecy, authentication and public key systems / A
certified digital signature. Dissertation, Dept. of Electrical Engineer-
ing, Stanford University, 1979.

M Morii and M. Kasahara. Efficient construction of gate circuit for
computing multiplicative inverses over gf(2™). Transactions of the
IEICE, E 72:37-42, January 1989.

F. J. MacWilliams and N.J.A. Sloane. The theory of error-correcting
codes, volume 16 of North-Holland Mathematical Library. 1997.

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot.
Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton,
FL, USA, 1996. Chapter 2, page 67.

H. Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Problems of Control and Information Theory, 15:159-166,
1986.

82

A Bibliography

[NIKMOS)|

[0S08]

[OTDOS]

[Paa94|

|Pat75]

[Pat96]

[PBGV92]

[pgm]

[Poi00]

[PRY7|

[Pro09]

Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov.
Semantic security for the mceliece cryptosystem without random or-
acles. Des. Codes Cryptography, 49(1-3):289-305, 2008.

R. Overbeck and N. Sendrier. Code-based cryptography. In D. Bern-
stein, J. Buchmann, and J. Ding, editors, Post-Quantum Cryptogra-
phy, pages 95-145. Springer, 2008.

Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. Cryptanaly-
sis of two mceliece cryptosystems based on quasi-cyclic codes. CoRR,
abs/0804.0409, 2008.

Christof Paar. Efficient VLSI Architectures for Bit-Parallel Com-
putation in Galois Fields. Dissertation, Institute for Experimental
Mathematics, Universitit Essen, 1994.

N.J. Patterson. The algebraic decoding of goppa codes. IEEE Trans-
actions on Information Theory, 1T-21(2):203-207, March 1975.

Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of
polynomials (ip): Two new families of asymmetric algorithms. In
EUROCRYPT’96: Proceedings of the 15th annual international con-
ference on Theory and application of cryptographic techniques, pages
33-48, Berlin, Heidelberg, 1996. Springer-Verlag.

B. Preneel, A. Bosselaers, R. Govaerts, and J. Vandewalle. A soft-
ware implementation of the meceliece public-key cryptosystem. In
Proceedings of the 15th Symposium on Information Theory in the
Benelux, Werkgemeenschap voor Informatieen Communicatietheorie,
pages 119-126. Springer-Verlag, 1992.

http://www.cs.mun.ca/~paul/csd723 /material /atmel /avr-
libc-user-manual-1.6.5/group _avr__ pgmspace.html#
gd7082¢45c¢2¢961015¢76eff1ad00a99a.

David Pointcheval. Chosen-ciphertext security for any one-way cryp-
tosystem. In PKC ’00: Proceedings of the Third International Work-
shop on Practice and Theory in Public Key Cryptography, pages 129—
146, London, UK, 2000. Springer-Verlag.

E. Petrank and R.M. Roth. Is code equivalence easy to decide? IEEE
Transactions on Information Theory, 43(5):1602-1604, September
1997.

Prometheus. Implementation of mceliece cryptosystem for 32-bit
microprocessors (c-source). http://www.eccpage.com/goppacode.c,
2009.

A Bibliography 83

[Sag]
[Sen00]

[Sen05]

[Sho97]

[SMRO0|

[Sted9]

[Sti0s]

[Wie06]

Peter Sager. http://www.mikrocontroller.net/topic/30859.

Nicolas Sendrier. Finding the permutation between equivalent lin-
ear codes: The support splitting algorithm. IEEE Transactions on
Information Theory, 46(4):1193-1203, 2000.

N. Sendrier. Encoding information into constant weight words. In
IEEE Conference, ISIT’2005, pages 435-438, September 2005.

Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484-1509, 1997.

A. Shokrollahi, C. Monico, and J. Rosenthal. Using low density parity
check codes in the mceliece cryptosystem. In IEEFE International
Symposium on Information Theory (ISIT 2000), page 215, 2000.

J. Stern. A method for finding codewords of small weight. In Pro-
ceedings of the third international colloquium on Coding theory and
applications, pages 106-113, New York, NY, USA | 1989. Springer-
Verlag New York, Inc.

Henning Stichtenoth. Algebraic Function Fields and Codes. Graduate
Texts in Mathematics. Springer Publishing Company, Incorporated,
2 edition, 2008.

Christian Wieschebrink. Two np-complete problems in coding theory
with an application in code based cryptography. In 2006 IEEE Inter-
national Symposium on Information Theory, pages 1733-1737, July
2006.

B List of Tables

2.1

4.1

5.1

8.1
8.2

8.3

8.4

8.5

Recommended parameters and key sizes for the original McEliece
PKC . . . e

Suggested parameters for McEliece variants based on quasi-dyadic
Goppacodesover Fo

Comparison between conversions and their data redundancy

Sizes of tables and values in memory
Performance of the QD-McEliece encryption including KIC-v
on the AVR uC' ATxmega256@32MHz
Performance of the QD-McEliece decryption including KIC-v
on the AVR pC' ATxmega2b6@32MHz
Resource requirements of QD-McEliece including KIC-y
on the AVR puC' ATxmega256@32MHz
Comparison of the quasi-dyadic McEliece variant including KIC-vy
(n’=2312, k’=1288, t=64) with original McEliece PKC (n=2048,
k=1751, t=27), ECC-P160, and RSA-1024

C Listings

6.1 Tower field arithmetic: Field setup
6.2 Printing the log- and antilog tables for Fos
6.3 QD-McEliece: Key generation algorithm (Magma)

D List of Algorithms

2.1.1 Original McEliece PKC: Key generation algorithm 7
2.1.2 Original McEliece PKC: Encryption algorithm 7
2.1.3 Original McEliece PKC: Decryption algorithm 8
3.5.1 Construction of binary dyadic Goppa codes 21
3.7.1 Decoding Algorithm for binary Goppa codes 24
3.7.2 Berlekamp Trace Algorithm 27
4.2.1 QD-McEliece: Key generation algorithm 32
51.1 KIC-y Encryption 39
5.1.2KIC-y Decryption 40
5.2.1 Run-length coding: function encodefd 41
5.2.2 Run-length coding: function decodefd 42
5.2.3 Constant weight coding: function CWtoB 42
5.2.4 Constant weight coding: function BtoCW 43
6.2.1 QD-McEliece encryption: Codeword computation 55
6.2.2 On-the-fly computation of the syndrome polynomial 58
6.2.3 Binary Extended Euclidean Algorithm over GF(2'%) 59
6.2.4 Binary EEA over GF(2'%) with stop value 61
6.2.5 Error correction: Horner scheme with polynomial division 63
6.3.1 Constant weight coding: function BtoCW 65
6.3.2 Constant weight coding: function CWtoB 66

7.1.1 Multiplication of s’ by S with 8 tables 68

