

Advanced Safeguards Measurement, Monitoring and Modelling Laboratory (AS3ML) at JRC-ITU-Ispra

IAEA Safeguards Symposium Vienna, October 21°, 2014

Willem JANSSENS, Paolo PEERANI, Claudio BERGONZI, Erik
WOLFART, Francois LITTMANN, Giovanni MERCURIO, Luc DECHAMP,
Patrice RICHIR

European Commission, Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra, Italy

CONTENT

Rationale

AS3ML Layout

Spent Fuel Pond Area

GCEP Area

Mini-process Area

Interim/Final Storage Area

Local and Remote (HQ) Inspector Offices

Conclusions

AS3ML: Rationale

- ► <u>Integrated modeling of plant behaviour</u>: to have a comprehensive plant view and allow "inter-connection" of safeguards measurements & operator data
- ► Combine proven safeguards techniques (NDA, DA, C&S) with <u>innovative</u> tools: ambient intelligence, location/tracking techniques etc...
- Validation/test bed for integrated models (both of equipment and entire plants set-up) both in terms of processes and data treatment
- ► Enhanced <u>data analysis/statistics</u>: incl. correlation / consistency analysis
- ► Innovative concepts to be validated, <u>vulnerability assessments</u> needed
- Act as an advanced integrated safeguards laboratory, with capabilities for R&D and testing, benchmarking and interaction with operators
- Serve as a comprehensive <u>demo and training facility</u> for students, inspectors, operators etc...
- ► AS3ML will develop also simulators both for an <u>on-site safeguards office</u> and for the safeguards headquarters

RATIONALE 2

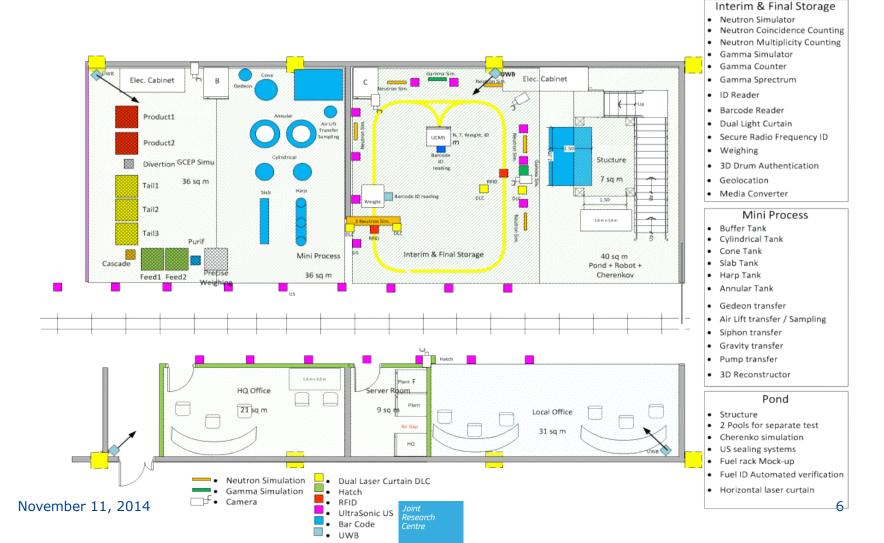
- Increasing efficiency and effectiveness without compromising the safeguards objectives
- Providing a validated basis for revising safeguards practices
 Use much more operator & plant process control data
 Have an integrated/intelligent/interactive model of the plant
- Evaluating competing technologies and practices
 Multiple solutions exist to address the same challenge
 All to be installed / tested to seek for optimal combination
- Maintaining the Inspectorates' ability to independently draw safeguards conclusions while ensuring the effective protection against disclosure of commercial, technological and industrial secrets
- Demonstrate capabilities to foster modernisation/acceptance
- Come to a WIN-WIN situation between inspectorate & operator

AS3ML: Layout

(Innovative) Safeguards Techniques

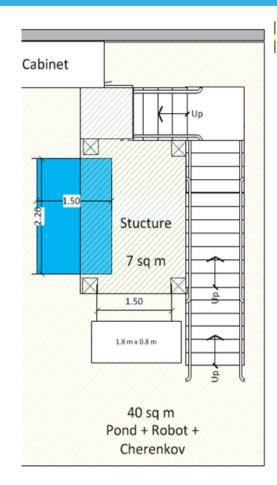
	Gas	Fuel	Reactor	Temp Storage Spent Fuel	Spent Fuel	Final Storage / PuO2	Models for techniques /
Technology	centrifuge	Fabrication	(operation)	Pond	Reprocessing	Store	sensors
T1 Electronic seals			X	Х	Χ		
T2 US Seals				Χ		Χ	
T3 RFID	Χ				Χ	Χ	X
T3' Geo-location	Χ	Χ	X	Χ	Χ	Χ	
T4 Camera (2D/3D)	Χ	Χ	Χ	Χ	Χ	Χ	
T5 ID (OCR) of cans		(X)			Χ	Χ	Χ
T6 3DLVS	(X)		Χ		Χ	Χ	Χ
T7 Laser Contnm & ID	Χ	Χ			Χ	Χ	Χ
T8 Investigative Inspector	(X)		Χ		(X)	Χ	
T9 2D Laser Curtains/DLC			X	Χ	X		
T10 Balance (mass)	Χ	Χ			Χ		Χ
T11 Pressure (level, density)	(X)				Χ		Χ
T12 Temperature	(X)				Χ		Χ
T13 Neutron	Χ	Χ		Χ	Χ	Χ	Χ
T14 Gamma counting	Χ	Χ		Χ	Χ	Χ	Χ
T15 Gamma spectrum		Χ		Χ	Χ	Χ	Χ
T16 On-site lab (*)					Χ		
T17 Cherenkov radiation				Χ			
T18 Micro gravimetry						Χ	
T19 DA-Analytics (*)	Χ	Χ			Χ		
T20 Satellite imagery	Χ		Χ			Χ	Χ
T21 Remote data transmiss.	(X)	Χ	(X)	(X)	Χ	(X)	
T22 Process/Data Analysis	X	X	X	X	Χ	X	Χ
T23 Integrated Plant Model	(X)		Χ		(X)		

November 11, 2014


Joint
Research

5

AS3ML: Layout



Innovative Safeguards Techniques

Spent fuel pond Linked to seals-lab

Demo & training on current & future underwater sealing implementation(such as in Cernavoda, Darlington, Karachi, La Hague, ...)

Dry storage test area (US seals, electronic,...)

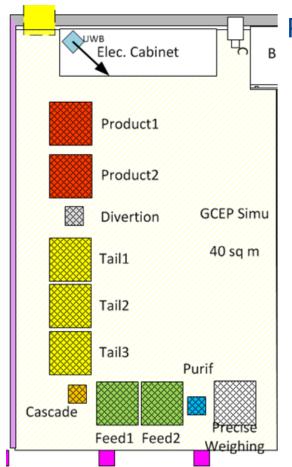
Mixed ultrasonic / fiber optic seal (Cat A)

R&D on new solutions

- unattended and/or remote verification
- laser curtain surface monitoring
- automation of the verification of US seals
- Cerenkov effect simulation
- Sonar 3D underwater monitoring

Mock-up of spent fuel racks are available for different reactors

**** European Commission

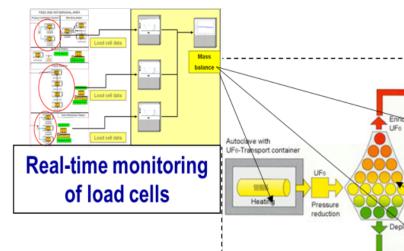

Elevated Platform

- Simulation of the bridge over the underwater storage pond
- Enable use of real handling sealing tools
- Stable and safe to be used for development and training purposes

GCEP area Linked to modelling

R&D on enhanced GCEP Safeguards including:

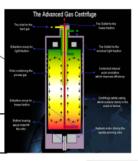
- -Monitoring of the (feed, product and tail) load cells; coupled with
- Verification of plant operation through cascade/centrifuge modelling
- Tracking/identification/authentication of cylinders entering/exiting the facility
- Monitoring of activity through tracking of movements of the loading machine


9

Testing & optimization of acquisition parameters
Testing & validation of theoretical centrifuge/cascade models
Testing & training on software to detect diversion scenarios

Centrifuge cascades

Compressor



Cooling box

Improved NDA for enrichment verification in product cylinders

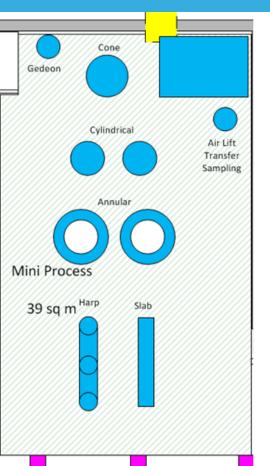
Mode

Modelling of cascade

RFID cylinder tagging

UF6 cylinders identification and authentication

Portable mass spectrometers



November 11, 2014

Joint Research

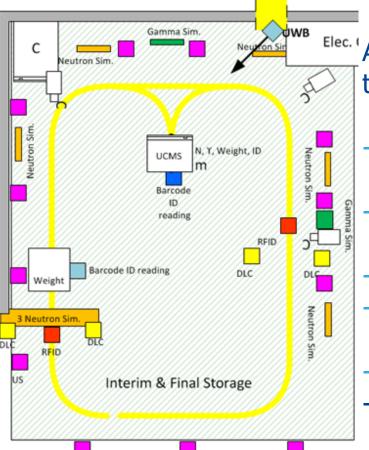
Mini Process area

The Mini-Process area is mainly intended to

- simulate the transfer of solutions containing nuclear material in reprocessing plants
- test the software used to monitor the process
- train the inspectors in the review of data.

This area complements the full-size equipment of PML providing a variety of smaller scale vessels of different shapes (cylindrical, conical, slab, annular, harp,...) connectable with a choice of transfer systems (pumps, gravity, syphon,...).

- development and validation of software for automated calibration of mass/volume measurement devices and
- for the tank calibration verification by continuous flow mode



Use the monitoring software tool, called DAI (Data Analysis and Interpretation) specifically designed for process monitoring in RPs, nowadays allowing also monitoring most of the safeguards-relevant processes in other nuclear facilities.

This monitoring tool does more than just supervision: it interprets the signals and verifies the consistency and coherency with predefined criteria and without intervening in the process. These criteria are based on the design characteristics of the recipients and transfer mechanism.

Interim / Final store

All types of sensors that can be used to track and follow movements of items

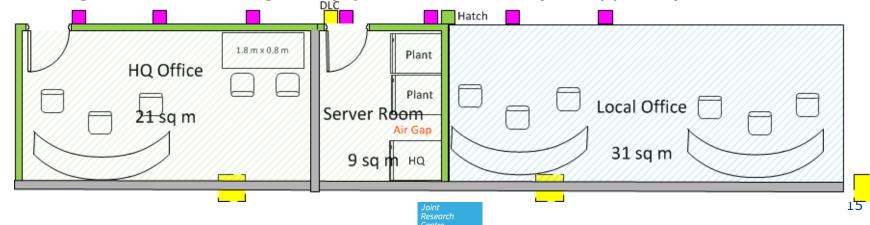
- Simulated Radiation detectors (gamma and neutron)
- Surveillance equipment (cameras and lasers)
- Weighing systems
- Identification devices (bar-code readers, RFID,...)
- Localisation devices (UWB, ultrasound...)
- Seals

The storage area will also integrate results of the innovative work on 2D and 3D cameras and advanced review software and the 3D Laser Verification System.

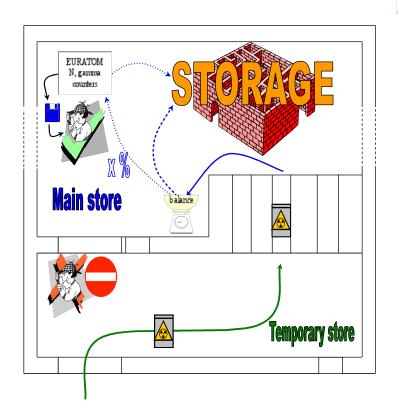
AS3ML Interim & Final Storage

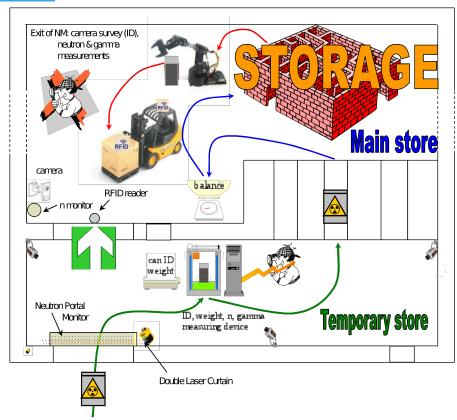
Interim & Final Storage Hardware			
Intelligent Industrial Sensor	-3D sensor	3D Can authentication	T6, T7
	SICK DLC	Dual Light Curtain	Т9
	COGNEX	2D 3D Bar code reader	T4
	BAUMER	OCR	T5
	QualiVision	2D Image Processing	T4
	EVT	2D Image analysis Software	T4
	AXIS	2D Camera	T4
	Mobotix M12	Dual 2D Camera (day nigth)	T4
	Mobotix Mx2Wire	Media converter	T4
	FLIR A615	Infrared Camera	T4
	GFM ShapeScan 3D	Phase Measurement Fringe Projection	Т6
Material Movement	t Robot	Simulation of nuclear material movements	T13, T15
	Mettler Toledo Weighing scale	Weighing scale Unattended Combined Measurement System	T10
	ds automation Sound & Vibration	GCEP Sound and Vibration Analysis	T22
Unified Architecture	OPC UA Data Authentication System	Data Authentication System	T21
Signal Simulator	Neutron Pulse	Neutron Source + Detector Simulator	T13
	Gamma signal	Gamma Source + Detector Simulator	T14, T15
Signal Acquisition	Neutron Pulse	Fast List Mode Acquisition + Analysis	T13
GeoLocation	Hexamite Ultrasonic/RFID positionning	Ultrasonic/RFID positionning receiver transmitter	T3'
Secure UHF RFID	Avonwood Receiver / Transmitter	Authenticated RFID	T3

Inspectorate Head Quarters



HQ Office		
	Server	Local Server with local Application
	PC	3 High end PC with Client Application
Server Room		
	Server	Local Server with local Application
	Data Historian	Data Historian for storage of acquired data
Local Office		
	PC	3 High end PC with Client Application
	3D Projector	Projector for 3D review
	Control Room equipment	Special equipment


 Simulation of the local inspector office and of the inspectorate headquarter to study and test remote data transmission issues


Communication between facility and local office and between local and HQ offices should include authentication features

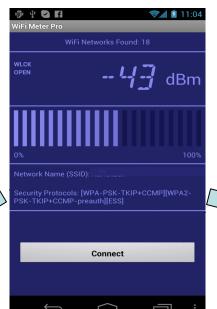
 Data communication between local and HQ offices shall have integrity strength to be managed by public internet (encryption)

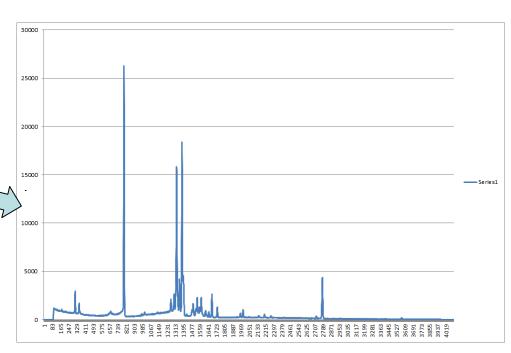
Example integration In PuO₂ Storage

Handling of PuO₂ canisters at the plutonium storage following the current procedure (left) and the proposed, new procedure (right), making integrated use of several surveillance and measurement devices and not requiring on-site presence of the inspector.

European Commission

REF: R. Richir et al, Design and Implementation of equipment for enhanced safeguards of a plutonium storage in a reprocessing plant (S03-05)


Nuclear materials simulation



Principle neutron and gamma simulator:

A Wi-Fi emitter sends its signal with ID

A Wi-Fi receiver measures the signal strength and based on the ID generate the appropriate Pulse for the Multi Channel Analyser or Neutron Counter

Retrieve information (IC, mass,...) according to ID from the database

The pulse rate will be proportional to the signal strength

November 11, 2014 Research Centre 17

Conclusion

Innovation

WIN-WIN Operator/ Inspector AS3ML Available FOR YOU!

Testing & Validation

Demo & Training

