
REACTOR SIMULATIONS FOR 
SAFEGUARDS WITH THE MCNP 
UTILITY FOR REACTOR EVOLUTION 
CODE�
October 22nd, 2014 
 
T. Shiba, M. Fallot, S. Cormon, L. Giot, A. Onillon, V. M. Bui,  
B. Leniau, V. Communeau, M. Lenoir, N. Pleurel 
 
SUBATECH Laboratory (Ecole des Mines, CNRS/IN2P3 and 
Université de Nantes)  
Nantes, France 


�



Outline�
1.  Introduction 
2.  MURE code 

•  MURE code 
•  MURE-CHARS extension 

3.  Examples of reactor simulation 
I.  Validation of the code and PWR simulation 
II.  On-load reactors 

•  CANDU simulation 
•  PBR simulation 

III.  FBR simulation 
IV.  Research reactor simulation 

4.  Conclusion and outlooks�

��



Need of reactor simulation�
• We promote practical and concrete measures in order to 

pursue nonproliferation. 
• Some useful information can be obtained by simulation: 

•  How many kilograms of plutonium are generated? 
•  How much time will it take to achieve it? 
•  What is the practical refueling plan?�

!  To seek them, a reactor simulation code could help 
testing proliferation scenarios. 

! Such code should be customized according to the needs 
of users. 

MURE could provide valuable information in order to 
help IAEA to meet its surveillance goal.�
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MURE code�
• MURE (MCNP Utility for Reactor Evolution)*: C++ 

interface for MCNP and subsequent burnup calculation. 
• High expandability: various types of reactors, fuels, 

refueling schedule. Suitable for scenario studies. 
• Providing useful outputs: criticality, neutron flux, inventory, 

reaction rates (fission, capture, …) 

Evolution process of MURE code�

* http://www.oecd-nea.org/tools/abstract/detail/nea-1845 Ex. Core inventory evolution�
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CHARS: CHaracterization of Radioactive Sources�
Coupled to the MURE code: 
•  produces spent fuel composition info. for any 

geometry  
•  generates α,β,γ,n spectra for any spent fuel 
�
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Schematic view of MURE usage�
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Validation of MURE code and PWR simulation�
•  Modelling a detailed PWR (N4, 4.25GWth) core with follow-up of 

operating parameters 
•  Agreements%with%EDF%:%design%data,%opera:ng%parameters,%%fuel%loading%maps…%
•  3%fuel%cycles%simulated%

•  Validation:  
•  Benchmark MURE vs DRAGON @ assembly level: C. Jones et al. PRD 86 (2012) 

012001 
•  Benchmark MURE, APOLLO (EDF results), DRAGON  
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PWR simulation 
•  Simulation of the 4 assembly types with MURE: to extract assembly fuel 

composition at their loading burnup => Input of core simulations. 

↗)CB):)↘)Pth)

Fuel))

burnup)

3 reactor cycles simulated with the full core model, following 
operating parameters:  

Performing a detailed simulation following operating 
parameters during the reactor cycles is possible 
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Onload refueling reactor - CANDU Reactor 
9)

Calandria%

control%rods%

force%tube%
bundle%

CANDU 6 reactor: Power = 700 Mwe 
Fuel = natural uranium 
Moderator = heavy water 
Coolant = heavy water 

Mirror 

Moderator 

Pressure tube 
Calandria tube 

Gas CO2 

37 fuel pins 
1 channel contains 12 bundles 

Channels are refueled by 1/3rd or 2/3rds 

Studied scenario preserving  
# refuelling per day 
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Ex. After 2nd refueling, we assume  
1 diversion of one-third of channels/

day: 
time to divert 1 SQ = 56 days 
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Examples of Calculations 

One can test a lot of scenarios (refuel even faster, transient 
scenarios, multi-reactor scenarios…): reactor physics brings the 
feasibility of such scenarios w.r.t. reactivity constraints. 

•  Diversion scenario: 100%channels%refueled%faster:%@%100%days%(1/4)%&%300%channels%
refueled%slower%@%300%days%(3/4)%%%%%%%%Kinf%@equilibrium%:%1.05%=%+)7.7$)=)feasible)

%

•  Reactor physics: V.M. Bui’s PhD & S. Cormon’s PhD 
–  Normal operation: Refuelling every 200 days. 
–  Required reactivity reserve : 6$. 

Super-bundles�



Onload refueling reactor - Pebble Bed Reactor�
• An on-load refueling mode. 
• Single pebble surrounded by a mirror, thus simulating an 

infinite reactor, with a packing fraction of 51%. 
• Benchmark was done for the validation, filled with UOx, 

PuOx and ThUOx pebbles. Comparison shows that our 
results are within the predictions of the participants to the 
benchmark.�

Results 
•  Inventories from benchmark: 

•  UOx fuel : 5% 235U, 7% 239Pu, 12% 
241Pu 

•  ThUOx fuel: < 1% in 233U 
•  PuOx fuel: <1% in 239Pu 
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Useful information from simulation results�
Ex.1  

First time when diverting 1 

SQ of Pu is easier than U 

corresponds to a quality of 

Pu: fuel-grade 

Number of pebbles for 1SQ�

Pu isotopic vector�

Such calculations could be used to determine with 
which accuracy margin the number of pebble 
movements should be controlled to prevent such 
diversion.�
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Ex.2 
Simplified K-inf calculation shows 
that the diversion for 1SQ would 
take ~450 days�



Protected Plutonium Production (P3)*�
• Proliferation resistance of Pu can be enhanced by: high 

decay heat, high spontaneous fission neutron rate and 
large mass. 

13 

Physical characteristics of Pu isotopes***�
*** Y. Kimura, “Study of Evaluation Methodology for 
Proliferation Resistance of Plutonium,” PhD Thesis, Tokyo 
Institute of Technology (2011)�

• P3 fuels have a high 
isotopic composition of 
238Pu. According to 
Kimura et al.**, if Pu has 
more than 15% of 238Pu 
in isotopic composition, 
the fuel can be regarded 
as proliferation resistant 
enough. 

** Y. Kimura, et al., J. Nucl. Sci Technol., 48, 5 (2011) 
* M. Saito, J. Nucl. Sci. Technol., 1(23), 127-138 (2005)�



Reactor configuration*�

�

Reactor configuration of the FBR core�

•  1250 MWth (steady state) 
•  3-D Full core analysis of 

prototype Fast Breeder Reactor 
•  Reloading is planned once 

every 180 EFPDs, when one 
third of the core and one eighth 
of the blanket are exchanged 

•  Pu content in inner core is 21 
wt.% and outer core 28 wt.% 

8� Isotopic composition of Pu in driver fuel [%] Isotopic composition in blanket 
fuel [%] 

8� Pu-238 Pu-239 Pu-240 Pu-241 Pu-242 U-238 Am-241 Np-237 
Case 1 1.9 56.8 22.9 12 6.4 100 0 0 
Case 2 21.42 53.3 12.54 9.24 3.49 95 5 0 
Case 3 95 0 5 

Isotopic composition of the analyzed cases�

  Case 1:  Reference case (Normal MOX** : the 
 spent fuel of 3.5% enrichment burned in 
 PWR until 40 GWd/t and 5 years’ cooling) 

  Case 2:  P3 case (P3 core fuel**, Am blanket) 
  Case 3:  P3 case (P3 core fuel**, Np blanket) 
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Results�

At all the time steps, isotopic composition of Pu-238 is over 
15%, which meets the criterion of Kimura et al. It is enough 
proliferation resistant. 

MURE is suitable for the analysis of innovative 
fuels with high proliferation resistance 
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Time evolution of K-eff: in red the FBR is loaded with 
the normal MOX fuel; in black with P3 fuel (case 3)� Pu isotopic vector in the core�
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Conclusions & Outlooks�
• MURE is a versatile tool, suitable for various 
reactor designs 

• MURE could be useful to study the feasibility of 
proliferation scenarios 

• Application of MURE calculation (such as 
gamma-ray emission from spent fuel using 
CHARS module) could help finding indicators of a 
misuse or a diversion 
⇒  Goal = help defining future safeguards 
approaches for new generation of reactors 
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Thank you! 
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