
Written: January 26, 1970 Distributed: March 16, 1970 LA-4367 UC-4, CHEMISTRY TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY of the University of California LOS ALAMOS • NEW MEXICO

Unit Cell of the Zeta Phase of the Plutonium-Zirconium and the Plutonium-Hafnium Systems

bγ

W. H. Zachariasen F. H. Ellinger

TANKIN CARACTER AND AND AND AND AND A

ĮЙ

UNIT CEI L OF THE ZETA PHASE OF THE

PLUTONIUM-ZIRCONIUM AND THE PLUTONIUM-HAFNIUM SYSTEMS

by

W. H. Zachariasen and F. H. Ellinger

ABSTRACT

The unit cell of the isostructural Pu-Zr and Pu-IIf zeta phases (~ 3 at. % Zr or Hf) was found to be body-centered tetragonal with a = 18.19 ± 0.01 Å and c = 7.851 ± 0.003 Å.

INTRODUCTION

The existence of the Pu-Zr zeta phase has been reported by Ellinger¹ and confirmed by Kutaitsev et al.² and Taylor.³ The isostructural Pu-Hf zeta phase has been observed by Kutaitsev et al.² and by Ellinger et al.⁴ These zeta phases are stable below about 270°C at atmospheric pressure. Their equilibrium concentration of zirconium or hafnium is about 3 at. %, however, the metastable zeta phase containing as little as 2 at. % Zr or Hf is readily prepared. Since attempts to isolate single crystals from polycrystalline alloys were unsuccessful, the unit cell of the zeta phase was determined from x-ray diffraction powder data. ENPERIMENTAL

Powder data were obtained both with a Norelco diffractometer and with 114. 59-mm-diam powder cameras. The diffractometer traces were all make with CuKa radiation, but the most satisfactory photographic patterns were taken with CrKa radiation. Alloy buttons about 1 cm in diameter that had been mounted in epoxy resin and polished for micrographic examination served as diffractometer samples. Alloy filings sealed in evacuated, clear silica capillary tubes were used in the powder cameras. RESULTS

By the method of searching out relationships in $\sin^2 \theta$ values, the x-ray powder data of the zeta phase have been indexed on the basis of a body-centered tetragonal unit cell. Table I lists the low-angle reflections taken from the diffractometer trace of a Pu-2 at. % Hf alloy. The calculated $\sin^2 \theta$ values are based on the lattice parameters

$$a = 18.167 \pm 0.003 A$$

 $c = 7.856 \pm 0.001 Å$.

The good agreement between the calculated and observed values, and the small number of missing reflections, support the correctness of the indexing.

Precision unit-cell dimensions were determined by least-squares extrapolation of the measurable high-angle lines on powder patterns taken with CrKa radiation. The computer program of Vogel and Kempter⁵ as modified by Roof⁶ was used. A typical set of data of a Pu-3 at. % Zr alloy is shown in Table II, which yielded the following lattice parameters

1

TABLE I

Pu-2 at. % Hf ZETA PHASE DIFFRACTOMETER DATA (CuKa) BODY-CENTERED TETRAGONAL, a = 13.167 ± 0.003 Å $c = 7.856 \pm 0.001 \text{ Å}$

<u> </u>	$10^5 \sin^2 \theta$ (calc.)	Peak Intensity	10 ⁵ sin ² 0(obs.)	d,Å(obs.)
600	6471	4	6478	3.029
402	6731			
332	7091			
620	7190	5	7205	2.872
422	7441	15	7450	2.824
611	7612			
541	8331	5	8335	2.670
512	8519	83	852 9	2 .640
103	8833	10	8863	2.589
710,550	8998			
631	9050	90	9058	2.561
640	9347	37	9350	2.521
213	9552	76	9585	2.490
442	9498 🖡	10	5000	2.490
701	9768	59	9776	2.466
53 2	995 8	3	9963	2.442
303	10270	7	10290	2.403
60 2	10317 🖌	1	202,0	20100
730	10426			
721	10488	45	10498	2 .379
323	10990	16	11016	2.323
622	11036)			
800	11504	12	11503	2.273
413	11709			
651	11926	10	11940	2.231
820	12223	7	12225	2.205
811,741	12645	3	12639	2.168
712,552	12835			
660	12942			
503,433	13147	19	13183	2.123
642	13193 🖇	-/		C.1C)

2

.

TABLE II

Pu-3 at. % Zr ZETA PHASE, HIGH-ANGLE DIFFRACTION DATA (CrKe)

BCT **a** = 13.1959 ± 0.0016, c = 7.3511 ± 0.0003 Å

HKL.	10 ⁴ sin ² 0(calc.)	10 ⁴ sin ² 0(obs.)	Intensity
10•9•3 a ₁	9078		
606 a_	9079	9084	S
12•8•2 a	9064		
10•9•3 α ₂	9109		
606 α ₂	9110	9124	S
12•8•2 α ₂	9115		
15.0.1 a, 12.9.1 a	9119		
15·0·1 a, 12·9·1 a	9150	915 6	' MI
945 ଜୁଁ	9155 🗯	9190	1.74
13.4.3 a, 11.8.3 a	9237		
626 a	9238	9244	S-
14•4•2 a	9242 İ		
13·8·1 a	9436	9442	W
12·7·3 a	9553	9556	W
10-3-5 a	9630	9634	M
716 a, 556 a	9634	<i>JUJ</i> +	
12.10.0 a	9658		
10•3•5 α ₂	9663	9667	W
716 az, 556 az	9667		
14·1·3 a	9712	9714	S
646 a	9713	21-1	_
12.4.4 a	9735		
14.1.3 a2	9745	9741	S-
646 a2	9746		
875 az	9788	9790	м
15•1•2 aj	9796)	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
875 a ₂	9821 J	9826	W
15·1·2 α ₂	9829	20	

$$a = 18.1959 \pm 0.0016$$
 Å
 $c = 7.8511 \pm 0.0008$ Å.

We found that the lattice parameters varied in a random manner from film to film evidently owing to the overlapping reflections and the consequent difficulty in accurately measuring their positions. The mean values as determined from eight separate samples of both Pu-Zr and Pu-Hf alloys are

$$a = 18.19 \pm 0.01 \text{ Å}$$

 $c = 7.851 \pm 0.003 \text{ Å}.$

On the basis of these lattice parameters and a measured density of 17.5 g/cm³ for the 3 at. % Hf zeta phase, the number of atoms in the unit cell is calculated to be 115.4, hence 116 so as to conform to the equivalent positions of a tetragonal space group. Thus, the ideal composition of zeta is probably $Pu_{28}M$ (3.4 at. % Zr or Hf). With four formula weights per unit cell, the calculated density for $Pu_{28}Tr$ is 17.44 ± 0.04 g/cm³ and for $Pu_{28}Hf$ 17.57 ± 0.04 g/cm³. ACKNOWL EDGMENTS

We wish to thank M. Gibbs, C. C. Land, V. G. Shadden, V. O. Struebing, and P. Vigil for their assistance.

REFERENCES

- F. H. Ellinger, "Discussion of Plutonium-Zirconium Alloys," in <u>Plutonium 1960</u>, E. Grison,
 W. B. H. Lord, and R. D. Fowler (Eds.),
 (Cleaver-Hume Press, Ltd., London, 1961),
 pp. 318-319.
- V. I. Kutaitsev, N. T. Chebotarev, I. G. Lebedev, M. A. Andrianov, V. N. Konev, and T. S. Menshikova, "Phase Diagrams of Plutonium with the Metals of Groups IIA, IVA, VIIIA and IB," in <u>Plutonium 1965</u>, A. E. Kay and M. B. Waldron (Eds.), (Chap:man and Kall, London, 1967), pp. 420-449.
- J. M. Taylor, "The Plutonium-Zirconium Equilibrium Diagram from 0 to 10 at. % Zr.," J. Nucl. Mater. <u>30</u>, 346-350 (1969).
- F. H. Ellinger and C. C. Land, "The Constitution of Plutonium-Rich Plutonium-Hafnium Alloys," J. Nucl. Mater. <u>28</u>, 291-296 (1968).
- R. E. Vogel and C. P. Kempter, "A Mathematical Technique for the Precision Determination of Lattice Constants," Acta Cryst. <u>14</u>, 1130-1134 (1961).
- 6. R. B. Roof, Jr., unpublished work (1968).