Ордена Ленина Институт

Институт атомной энергии им. И.В. Курчатова

А.А.Виноградов, В.В.Парамонов

Система обмена алфавитно – цифровой информацией между экспериментатором и удаленной ЭВМ

ОРДЕНА ЛЕНИНА институт атомной энергии им. и.в. курчатова

А.А.Виноградов, В.В.Парамонов

СИСТЕМА ОБМЕНА АЛФАВИТНО-ЦИФРОВОЙ ИНФОРМАЦИЕЙ МЕЖДУ ЭКСПЕРИМЕНТАТОРОМ И УДАЛЕННОЙ ЭВМ

Иосква 1970

RHUATOHHA

Списывается система обмена, позволяющая физику экспериментатору вводить в ЭВИ дополнительные данные и вызывать подпрограммы обработки через промежуточное запоминающее устройство и линию связи.

Результати обработки, принятие из ЭВМ, могут выводиться на перфоленту и отпечативаться на бланке в алфавитно-дифровом виде.

Система разработана на основе промыжленного вводно-выводного устройства (ВВУ). В работе [1] била описана система двухсторонней связи между измерительным [2] и вичислительным пентрами ИАЭ им.И.В.Курчатова. Данние, получаемие в ходе физического эксперимента, накапливаются в запоминающем устройстве измерительного комплекса АК-16000 [3] и по мере накопления передаются массивами на вичислительную машину М-220А. Передача
происходит параллельным дроичным кодом по специально проложенному телефонному кабелю типа ТПВ. Длина имиии связа разна
1100 м. Скорость передачи составляет >> 3.10 восемнадцатиразрядных слов в сек. Переданная информация записивается непосредственно в нагнитное оперативное запоминающее устройство
(мозу) м-220А.

Обработанние на вичислительной машине данние возвращаются в измерительный центр в одно из запоминающих устройств (ЗУ) АМ-16000. Из этого ЗУ информация может бить выведена на бистродействующий графикопостроитель, цифронечатающее устройство типа БЗ-15 или на экрани больших электроннолучевих трубох (ЭЛТ) [2]. Наглядное представление информации на экранах ЭЛТ и световой карандаю [4,5] позволяют детально рассмотреть информацию, выбрать для обработки на ЭВИ нужние участии спектров, отметить уровень фона, подлежающё вичитанию, задать требуемие подпрограмми обработки. Все это дает возможность экспериментатору более активно (и сперативно) участвоють в обработке информации.

Однако для обрасотки информации на ЭВМ обично требуртся дополнительные данные в виде констант (энергия первичных частии, тип реакции, номер детектора, угол, под которым находится детектор по этношению к направлению пучка первичных частии, и т.п.). Для ввода этих данных, так же как и для представления результатов обрасотки в удобной форме, требуется алфавитно-цифровое печатающее устройство. Комплекс АМ-16000 такого устройства не имеет.

В настоящей работе описывается система ввода-вывода информации для оперативной связи измерительного и вичислительного центров, разработанная на основе алфавитно-цифрового печатающего устройства типа ВВУ.

Пропускная способность линии связи и бистродействие вичислительной машини значительно выше скорости работи ВВУ, поэтому обмен информацией между ВВУ и ЭВИ осуществляется через промежуточное запоминающее устройство. Это позволяет существенно сократить машинное время при обмене информацией.

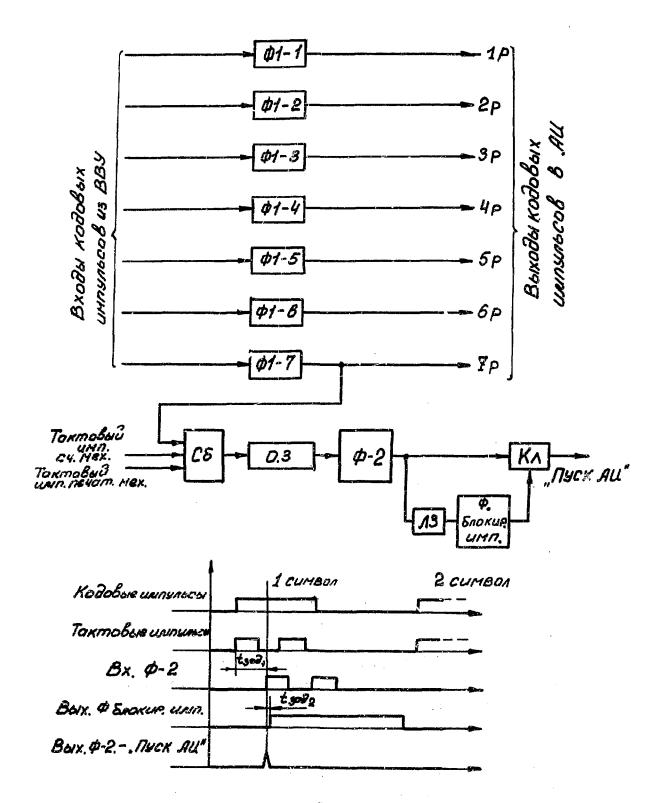
Использование в качестве такого буферного запоминающего устрожства одного из МОЗУ АН-16000 создает дополнительное удобство в работе, т.к. через это же МОЗУ осуществляется обмен с ЭВМ экспериментальными данными.

ВВУ представляет собой электрическую пишущую машинку, оснащенную вифратором и девифратором, перфорирующим и считывающим с перфоленты механизмами [6]. ВВУ работает в семираэрядном двоичном коде и позволяет:

- вводить в запоминающее устройство алфавитно-цифровую информацию с клавиатуры с одновременным печатанием данных на бланке и перфорацией бумажной ленти;
- 2) выводить из запоминающего устройства анфавитно-пифровую информацию для печатания на бланке и перфорации бумажной ленти;
- 3) печатать на бланке, перформровать бумажную ленту и одновременно вводить в запоминающее устройство алфавитно-циф-ровую информацию, поступающую от считывающего с перфоленти механизма;
- 4) подготавливать исходную выформацию с последующим ее размножением.

На выходе ВВУ информации представляется в виде паражлельной комбинации кодовых электрических сигаалов длительностью 20 мсек с амплитудой, равной 40 в (на нагрузке 150 ом - 1,5 ком).

Рассмотрение сигналов ВВУ показало, что из-за механического дребезга контактов реле кодовне сигнали имеют "гребенчатур" структуру. Кроме того, эти сигнали могут задерживаться относительно специального тактового импульса, вирабативаемого ВВУ для синхронизации его работи с другими устройствами. Величима этой задержим достигает нескольких миллисакунд.


Для согласования входних и выходных сигналов ВВУ и АМ-16000, а также для управления процессом обмена информацией разработаны специальные блоки.

На рис.1 представлена функциональная схема блока ввода информации в AW-16000 с ВВУ.

Формирователи ФІ-І — ФІ-7 выполняют роль согласующих элементов и обеспечивают формирование сигналов ВВУ по форме и
амплитуде. Тактовые импульсы задерживаются с помощью одновибратора задержки (ОЗ) на время (≈ 10 мсек), превышающее продолжительность переходных процессов, вызванных дребезгом контактов реле и временного разброса из-за различий в регулировке
контактов. После формирования тактовые импульсы проходят через
клапан (Кк) на запуск программы ввода информации в МОЗУ
АМ-16000. Линия задержки (ЛЗ-2 мксек), формирователь блокирующих импульсов и клапан отсекают ложные импульсы, вызванные
дребезгом контактов.

При исполнении служебных команд ВВУ тактовые импульом не вырабатываются. В этом случае устройство управления (УУ) АМ-16000 запускается кодовых импульсом 7-го разряда.

В одну яченку MOЗУ записывается по 2 символа в виде семиразрядного двоичного жода. Ввод информации происходит через арифиетический регистр (PI) по следурщей программа:

Puc. I

«="	
0000	Пуск уу первым тактовым импульсом с ВВУ
0001	YOPI; YOPII
0010	Прием PI; +"I" PIУ
0011	прірп н.ч.
0100	Сдвиг РП
OIOI	Сдвиг РП
OIIO	CABEL PII
OIII	Сдвиг РП
1000	Сдвиг РП; Считывание
1001	Сдвиг РИ; Пж РУ; УОРІ
1010	Сдвиг РП
· IOII	MPMPI H.4.
IIOO	Запись; Стоп УУ
	Пуск УУ очередным тактовым импульсом с ВВУ
IIOI	Ilpnem PI
IIIO	Запись; Пк РУ
IIII	УОРУ; Код РУ=0000; Стоп УУ

В программе:

РІУ - адресный регистр МОЗУ;

РП - вспомогательные регистр;

РУ - регистр команд.

РЗ МОЗУ АК-16000 с помощью ВВУ можно выводить информацию двух видов: в двоичном коде — для хранения ее на перфоленте и в коде ВВУ — для печати информации, принятой из вычислитель— ной машинь. Преобразование этой информации в код ВВУ производит ЭВИ. В таком случае программи вивода для АК-16000 эначительно упрощаются и легко реализуются.

Режим вивода в двоичном коде для ВВУ имеет свои особенности, т.к. некоторые числа в этом случае соответствуют служебным командам ВВУ, а код нуля ОСООООО для ВВУ означает отсутствие какой-либо информация. На рис.2 приведена функциональная схема блока вывода информации из АК-16000 на ВВУ. Клапани Клі — Кл7 коммутируют токи через обмотки кодових электромагнитов механического де-шифратора ВВУ. Клапан Кл8 коммутирует ток в обмотке электромагнита транспортировки перфоленти при виводе нуля в двоичном коде. Фазомнвертори ФКІ — ФИ4 и схема совпадений Сп9 преобразуют код команди "Стоп ВВУ" в импульс, устанавливающий триггер Тг в состояние "останов". Генератор тактових импульсов (ГТИ) синхронизует работу ВВУ и АК-16000. Частота генератора, соответствующая оптимальной схорости работы ВВУ в режиме "печать", — 7 гц.

С приходом запускающего импульса от кнопки "Пуск" или по специальной команде триггер Тг устанавливается в положение "работа" и его импульс через схему Сб1 откривает клапан Кл9 только в том случае, если на другом входе Сб1 имеется сигнал "Готовность ВВУ". Импульс ГТИ, пройдя через клапан Кл9, запускает программу вивода Ай-Л6000 и формирователь стробирующего импульса (Ф строб.) Стробкрующие импульси поступают на входи схем двойных совпадений Сп1 — Сп8. На другие входи этих схем приходят кодовые импульсы из Ай-16000. При совпадении кодовых и стробирующих импульсов открываются соответствующие клапаны. Через обмотки электромагнитов протекают токи, под воздействием которых электромагниты срабатывают. Механический дешифратор ВВУ преобразует кодовые комбинации в исполнительные команды.

Система останавливается либо специальным импульсом из AN-I6000, либо командой "Стоп", имеющей код 1111000.

При приеме на ВВУ информации, записанной в МОЗУ в двоичном коде, с помощью переключателя ПІ замыкаются контакти I и 2. Кодовие импульси ООООООО через схему Со2, фазоинвертор ФИБ и схему совпадения Сп8 откривают клапан Кл8, заставляя срабативать электромагнят транспортировки перфоленти. С приходом двоичного кода, соответствующего команде "Стоп" в коде ВВУ (1111000), прием информации продолжается, т.к. ФИ-1 заблокирован напряжением, поступающим через ПІ-2. В этом случае система останавлявается лишь по команде из АК-16000.

Вывод информации из АП-16000 на ВВУ происходит по следурщей программе:

Puc. 2

"Cmon BBY

УОРІ; Пуск УУ мыпульсом с ГТИ + *I* РІУ
CUNTERNIE
Запись; ПРІ РП н.ч.
Сдвиг РП
Сдвиг РП
Сдыг РП
Сдвиг РП
Сдвиг РП
Сдвиг РП; Пк РУ
Сдвиг РП; Стоп УУ
УОРІ; Пуск УУ импульсом с ГТИ
ПрП РІ н.ч.; Пк РУ
УОРУ; код РУ = 0000; Стоп УУ.

на рис. 3 показана система ввода-вивода, на рис. 4 бланк с информацией, принятой из ЭВМ в измерительном центре и отпечатанной на ВВУ.

Система обыена алфавитно-цифровой информацией является логическим дополнением к двухсторонней линии связи, существующей между измерительным центром и ЭВМ М-220 A.

В настоящее время линия связи, ВВУ и световой карандам дают возможность ремать на ЭВМ широкий круг задач по обработке экспериментальных данных непосредственно с рабочего места физика экспериментатора. При этом можно вводить дополнительные данные и вызывать подпрограммы обработки, либо выводить принятур из ЭВМ информацир в удобной алфавитно-цифровой форме.

Представляется также возможность обрабативать экспериментальные данные в ходе эксперимента, оперативно получать из ЭВМ результаты обработки и в соответствии с ними корректировать эксперимент. Все это позволяет повысить эффективность использования дорогостоящего физического оборудования.

Авторы выражают глубокую благодарность А.А.Курамову за оказанную поддержку и постоянный интерес к работе.

Puc. 3

слвиьн

***спек**тр** І

в спектре нет резонансов сумки 17648 0 17648 ***CHERTP 2 I 123 131 2619 10075 2 178 181 71 769 3 184 189 797 I439 4 214 219 512 809 суммы 168153 3999 164154 ***спектр

в спектре нет резонансов сумми 3720I 0 3720I

***cnextp

в спектре нет резонансов

сумми 12576 0 12576

HOHOU

ЛИТЕРАТУРА

- I. Беляев D.H. и др. Многоканальная система двухсторонней связи измерительного центра при циклотроне с ЦВМ M220A. имэ 1953. м., 1970.
- 2. Виноградов А.А. и др. Измерительный центр при циклотроне ИАЭ. ИАЭ 1876. И., 1969.
- 3. Курочкин С.С. и др. Измерительный комплекс типа АМ-16000. В сб. "Труды 6-й конф. по ядерной радиоэлектронике". Т.3, ч.П, стр. 137. Атомиздат, Москва.
- 4. Курашов А.А., Парамонов В.В. Световой карандаш. "Атомная энергия", № 19 (1965).
- Оглоблин А.А. и др. Система многомерного анализа, программируемая от светового карандаша. ПТЭ, № 1, 91 (1967).
- 6. Техническое описание и инструкция по эксплуатации ВВУ. Изд. Инистерства приборостроения, средств автоматизации и систем управления СССР. Завод математических машин. 1969г.

Т-08348.ИАЭ-1987.Зак.7059.Тир.180.

