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ABSTRACT

The project of nuclear reactors is still based on the solution of
multi-group diffusion equations, This report gives a numerical solution of
a two=dimensional system of time independent multigroup diffusion equations,
On principle it is very simple to expand this method for a three-dimensional
problem, but in such a case from the point of view of economical solution
it is more advantageous to use the synthesis technique,

The system of partial differential equations is being replaced by a
system of difference linear algebraical equations. Following this paper
the DIFFIT ~ code procedure in ELLIOT - AUTOCODE for NE 8CG3 B
and NE 503 ..as been worked out, This procedure serves mainly for
calculations of the reactor core. Further the REDIFFIT - code wvariant for
radiation shielding calculations by using the removal-diffusion method has
been worked out, '

The number of mesh-points for the computers named above is 1000,
the number of chosen groups is 30, The slowingsdown: of neutrons from
the given group into all lower groups has been taken into consideration,
By a suitable choice <. the boundary conditions it is possible to use these

procedures for one-dimensional problems (plane and cylinder),
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1. Formulation of the Problem

The following system of nmulti-group equations is being solved:

{-m [D; (®) grad ¢, (F)] + 5, (F) ¢ (F) =

+~1 (1)

<% B (F) (7 *)+-‘5 A(F)+ S, m}

where:

¢‘. (F) ... the integral of neutron flux in the ranges of the ith
group

D.(F) ... tne diffusion coefficient for the ith group
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Z (.) . s » the group removal cross-section

Z‘. (r . « o the radiation-absorption cross-section

Zf ( F) « « » the fission-absorption ~ross-section
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A (’?) ) z‘-..’- ('" ) . e o the elements of the scattering matrix
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B ( l"). . « the buckling (it is beeing found out during the process
of the separation of the variables)
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v,("). . « the average number of neutrons released by fission



1’2 (F) e« » « the integral of the fission spectrum in the ranges of the

i-th group
:"‘a
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Z ¥ (F) =1
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S,- (“’t e o « the external neutron-source in the i-th group
(Le. a source independent on ¢’ () for $=1 +6).
In the removal-diffusion method this source is given by the
uncollided flux of neutrons from the actual source into the
given point and by slowing=down cf neutrons in this point

A'k‘” ..o ‘..#' =4  for S,: (F)F 0) &4{' is the searched eigenvalue
of the problem, i.e., such a value, which the discussed

set is just critical for.,

& . « « the number of groups (groupsare numbered in the direction
of falling of energy).

Ef () ~
P} ... the energy released per fission

c
E (F) . « » the energy released per radiation absorption

2. Transfer of the Diffusion Equations into the Difference Equations for

Individual Geoinetries

devided into the individual regions 6f the

discucssed st is being
volunme V and the surface § and the equations {1) are being

integrated through the volume of each region,
By using the Gauss-furmula we get for each region

{-:g; [D:(7) graa ¢, (M)]-RdS + 555 £,() ¢:(F)av

t-1
- r -» 4 " -
é SIS 34d (A M ave 2 SESy(RIGMaY +

+ 5§ s,-<:>av}‘ R
4 1sq

-4-



where N is the unit vector of the cutward going normal to the boundary
of the discussad region.

To be able to realize the integration (2), the following assumptions
should be taken into consideration:

a) Inside each of the regions a mesh-point #® is to be chosen. The value
of the flux in the point P is the mean value of the flux in the discussed
region:

. Ar).
_ 555 9iP)-av

"

-
b) The scalar product (gra.d ¢.,(") -'.1) on the surface between two
regions is expressed using the fluxes in the mesh-poinis inside thece

regions.

¢c) The physical properties are constant inside an individual subregion of

the discussed region. ‘

-

So we get a " m -point" forinuia, where M is the number of the regions
surrounding the discussed region, enlarged by one.  In the three-dimensional
space using the rectangular and cylindrical coordinates we get m® ¥.
If some of the variables are separable, the fluxes in two-~dimensional (or
one-dimensional) space may be expressed, The corresponding buckling
is to be calculated using the following formulae: |

D) por (P = Gi(Fy) @ (%) ana  S;(F)=S; (F,) ¥
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whare J, (%e]=0 i.e. &, = 2,40482556

e
Remark: For the general two-~dimensional 1, z-geometry is B = 0

Further we shall ¢onfine ourselves tc the basic geometries in the
two-dimensional space. The relation between the fluxes in the neighbouring
regions is usually expressed by a "5-point" formula¥

: - ;8 i 4i BP.
’a';,e ¢r:¢1,e - b;,.e ¢s-¢,: - c&,e ¢s,m - d'&,c ¢a, 2.1 +

4 gt -1 (3)
- P;,e Mo = fﬁ,c .

The reactor is to be devided so that the mesh<points are "chosen
arbitraryly and the boundrizs of the individual regions pass through the
medium point between each of the two neighbouring mesh~points.

The physical properties of individual subregions may differ (In the ranges

of the individual subregions the physical properties are constant). For the
x, vy and r, z geometries the following picture is wvalid :



In the following expressions the group-index T is being omitted :
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/0 e + » fOr x, y geometry

where o=
\" e« + o fOr r, z geometry

For r, z geometry is

For the points (", ‘/) on the axis is wvalid :
9030 7; =0 }1,2'

. For r, (f7 geometry is valid :

0
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For the medium point (ﬁ,") is valid :
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Further for all geometries we get :
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3. Boundary Conditions

In general the boundary conditions may be chosen as follows :
- (F)_ ~ .
16 @+ EA2LE @ (iev2,.,6)

where ——g'n—-(p— is the derivative of the flux ¢'i (-l:) taken in the

direction of the outer normal to the surface of the set in the point I' ,

In the difference shape is this condition expressed by the following formuia

inner region outer region

P ¢

T ?
L Y (p, 7)%_‘2‘! + fi(Pf q,).in_‘éé:d;(n q,)

From here

. E (?v 9 _ i, (Pn 2)

v ﬁiAg,z) ; 4,?&1) .§__E&:) + _14_(21>
For Y (P,Q’)# 0 it is necessary to put 5'4,0 " , because

(follow.ng (4)) this case tums into a problem with a given external source
in the regions next to the outside of the discussed set., In the case of

a free surface of the set { i.e, any radiation on the surface of the sot
coming from the outside is omitted) is Op(F) = 0  and the boundary
condition tums into the form

1 el N AT

For the interface with vacuum is valid :
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In general for any poirt (S,‘e ) in the vicinity of tl;n’e boundary the boundary

a 2 e
conditions expressed Ly any constants 4§ ke ; x‘,e ; x"e ; 2% £, )
where a; b; ¢; d express the direction of the normal to the boundary (in
conformity with (3)), are valid,

4, Solution of the Matrix - Form Proble:a

Using the expressions (4) ( or (4a)) and (3) we get a system of
equations for ¢; 2" This system may be written for each group in a
Y

matrix form :

A (3

Ap=F (5)

where

A
A .« oo Iis a symmetrical square quazitridiagonal matrix of coefficients
which are eventually
modified by the boundary conditions

¢... is a column wvector

F... is a colum vector

The solution of the system may be found directly using a "direct method"

or by using an’ iteration method ( an "inner iteration"),

4.1 Direct Viethod

A
With regard to that fact the matrix A is a symmetrical zone matrix
it is advantageous to solve the syatem (5) by using the "Banachiewitcz's
root square-method" ( /3/) :
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A
The matrix A  is to be divided intc a product of two reciprocally

transposed matrices :

A Ay A

A=SS (6)
Then the matrix equation (5) desintegrates into a system of two matrix
equations As |

SZ-=F

é\ ¢ _Z (?)

where Z is an auxiliary vector,

Iet us maric :
A= {a.w-} 3={s} F={f]
Z .

Then

a
S4= YV St = —8;45_
Su = [a& -g S,:; (<> 1)
8= 2 S 840 S15) (574)
= "é:_:(a‘lj'; L1 1’) }
S.;,- =0 | (}'.41)
=1
1,'§£L 7 ...m_&. (1>1)
"
¢.. _ég, Eﬁ ga! ¢1 S (‘i‘-n)
" Spn - Sux |

Using this method it is necessary {o reserve the computer-store only
for one half of the zone of the matrix inclixling the diagonal.. The metrix S
is tc be calculated only once hecause MQ&nmruerauon(soe

P



further ) changes only the right side F of the matrix equation (5), If for
definite 1', we obtain s‘: < 0 , the calculation may be formally continued
by using the imaginary unit, In this case the resulting flux values are real,
but they have no physical meaning (Le. for such a case does not exisi-

any solution of the problem),

4.2 Inner Reration

. A
For the given type of the matrix A an iteration method in [1] is

described ( the Young-Frenkel's successive overrelaxation method]) :

i(m) i (m- 4) [ *1(m) i [m- 4)]

e - TRe ¢u
,-si_(m) t{m-d) A a(m) .
% [a'&e ket T '&’u R-1,2 T (8)

: 2(m-1) a(m) 4
¢ tde, g + f’ ¢
Re TEL+1 ke TR E-1 k,
4
W ... is an overrelaxation factor, the va.lue of which lies in the

ranges 1 + 2 and depends on the energy group,

(m.) . . is the index (i. e, the order) of the inner iteration.

After each of the inner iteration the following is to be calculated :

@‘,z _ ” ¢4‘(m) ¢4‘ m-'t)”
(m) | ¢ i(m-1) ¢4 m-i)" (9)

where “ ‘.F ” xs any canonic norm, for instance

gl ma g1 5 19l $ 191 Il - /<, 11°

oy s o o § { \ omis + veve .- = - S VYRS N
The sxpresasion | 2/ Wmllc to the maximum cigonvalue of the it € Hwalrix,
.

given by the equations ( 8) for the chosen factor w‘
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After ihe determination of the optimum value of the factor Is the following
procedure (according to (4)) advisabic :

L ¥°3 2 2
When I 1,,,_) 9(,‘_-4), L€, where €9 Is ihe demanded exactness
ot 0% (usucdiy g; < .004 is sufficient), then
| 12 1 < 1

42 F}

b) for (m) - a', ‘1 is
‘42
8 \+w,-4 . 3
(«,‘ = ‘ml, : wr= 2 -> (U: (10)
. a)0 6('") 4 + [4 - .

. A A AN
where (“f is the maximum ejgenvalue of the Jacobian matrix B=E- DJA >
ﬁ iz a iiagonal matrix defined by the diagonal elements of the matrix A\ )

, and E Is the unit mstrix.
From the upper follows for the optimuin valus of w"': 0‘.21- w"- 4
This is also the limit for m -» o»,
The factor w': - does not depend on the right side F of the equation
(5) and therefore its optimum value does not change during the outer
iteration process,

The inner iteration In the i-th group is considered to be finished if

<(m)

Crar v

a,e 4(m) ( €¢, (12)
k¢

where £¢ is the chosen exacthess of the flux values,

4,3 Orter Iteration

For a"¢=0 t}woweritorahmdoesnottakepm n the
cmuycau,uﬂnhmrmhmgmmism“ad’wmrﬁw



termination of the direct method) the obtained fux values may bo used for
a process of improvement of the previous sour-e-approximation :

(&) (& o fo<y i(t-9)
“&e*b IZ %k "ﬁe Zze }¢a,z (12)

49 g1

where ( t } is the index (i e, the order® of the outer iteration.

i S e = and (HQ’) 0 the new approximation of the eigen-
value A“) and its upper and lower limits A A and A( ) may be
expressed @ '

) [ Bac
t .
h( ) h(t -1 n axfft-.,)}
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[ 0“ (t- 4) (¢)

A(t) h(t-n

+ BQge

The outer lteration mav be considered to be flnished if

A(t) ‘t)
e <&

2
where Ea is the claimed relativg exactness of h= E"FF or for

292 1

@) (e i) a(t-1)
mar 138 " He ’<€ 3 max 18 ? <€
it 0 _ | £e ¢* ¢)

50
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(¢)
for G&,t +* 0

K an iteration of ‘eﬁf takes place the outer iteration may be accelerated
by using the Chebyshev polynomials as follows :

% (¢)

N 4 Zr Oce

3 ®)

n each point we use the following normalization

¥ % (*) N @ (®

Gee N B (15)
(o)
anere N’ )’%2)54 YO
QZ?’: G“(# -1) L %f a“ u(t-f)
| ﬁ(t)[ **‘*”)_ a:;(*‘z)] (16)
wrere o= Z%E ﬁ“’ -0
For t>1 /

ON y ok (£-1) @ 4 1 1+ Jpwn—
Geh t @ 5 2% 14 —L

oMt (17)
4
gw, ehlt-2)g 1 Atawew
u‘lf@ Y 1, =

o argeosh x x-%-.f

— A
&'-Xf X’-" 6-—/—’-4— ) 'h’\sA' h‘f’
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A

the discussed problem, The ratio 6 may be estimated putting d,(t) = 4)

ﬁ“’: 0 - Then:

2 < A is the nearest of the lower eigenvalues which accommodates to

(¢)
@“El _ G“(H)i
6 == A A ke —— (18)
Z xx (8-1)  ux (e-z)/
Re = e
v 3
(t)
14 A = 4 the normalization does not take place, i.e,
MU
%% (t) . _ !
Then the value a&,Z is being used for calculation of F u .

5, Determination of Reactor Power

The heat-output ‘P of the reactor in general is determined Ly
using the expression :

P- sss z { Ef@ sf(m) + E (»«)2 m}¢,m

- 434

In a difference form we get

P- wZ Re Vee

where ¢y is
a) for x, y and r, (f geometry :

9 Hetn . 4T H . 2'
th(L" H‘z’-‘.— -—g—— s‘zn(Tm): H-qr—-
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Hextr. « s o Is the extrapolated height of the reactor core,

H e« « « Is the actual height of the reactor core.

b) for r, z geometry :
w = 2("\

%
which follows from the definition of d'ﬁ,e .

6, Conclusion

Our experience tell us the described method of calculation is conve-
nient for diffusion and removal-diffusion approxiinations using sufficiently
short distances between the mesh-poinis. .

The optimun values of these distances depend on the physical properties
of the discussed regions, particularly on min. (—D-;) and on the gradient
of the flux and therefore it is difficult to ﬁJ: them ;n advance, One of the
possible methods of solution is to execute the calculation at least twice
with different choice of the mesh-points,

An important queston of this method is the sreed of convergence,
From the present resulis we can seay that for e large number of groups the
contributions of neutrons from the slowing-down process into the discussed
group are much higher in comparison with the fission neutrons ana
therefore the outer iteration converges fastly, For such a cas¢ the further
acceleration of convergence is not necessary because @  stabilizes on
a certain value (following (18)) and the iteration is brought to an end,
The using of the inner iteration is often problematic, In many cases is the
convergence also by using an optimal acceleration very poor.

Therefore we use exclusively the direct method which for the number
of mesh-points up to 1000 (L e, the maximum practicable number of
mesh-points uszd for computers mentioned above ) is with regard to tims

1-19-
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