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ABSTRACT 

The project of nuclear reactors is still based on the solution of 
multi-group diffusion equations. This report gives a numerical solution of 
a two-dimensional system of time independent multigroup diffusion equations. 
On principle it is very simple to expand this method for a threewiimensional 
problem, but in such a c a se from the point of view of economical solution 
it i s more advantageous to use the synthesis technique. 

The system of partial differential equations is being replaced by a 
system of difference linear algebraical equations. Following this paper 
the DIFFTT - code procedure in ELLIOT ~ AUTOCODE for NE 803 В 
and NE 503 »*as been worked out. This procedure se rves mainly for 
calculations of the reactor core. Further the REDIFFTT - code variant for 
radiation shielding calculations by using the removal-diffusion method has 
been worked out. 

The number of mesh-points for the computers named above i s lOOO, 
the number of chosen groups is 30„ The slowing^down of neutrons from 
the given group into all lower groups has been taken into consideration. 
By a suitable choice o; the boundary conditions it i s possible to u s e these 
procedures for one-dimensional problems ( plane and cylinder) . 
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1. Formulation of the Problem 

The following system of multi-group equations is being solved: 

f-div [Di W fnad <f>{(?)] + I ; &) ф. (7) * 

( i ) 

where: 

W- [t*/ . . . the integral of neutron flux in the ranges of the i-th 
group 

/ ) - ( r ) . . . the diffusion coefficient for the i-th group 

lira = r>) * i< w • Z z«w w 
the group removal cross-section 

the radiation-absorption cross-section 

2Í- (r). , . the fission-absorption cross-section 

e£. r» in. 

xL^v í1*/̂  ž - ^ • (fy . . . the elements of the scattering natrbc 

ВГЮ... 
the buckling (it i s beeing found out during the process 
of the separation of the variables) 

the average number of neutrons released by fission 
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the integral of the fission spectrum in the ranges of the 
i-th group 

a 

the external neutron-source in the i-th group 
(i.e. a source independent on A* (г/ for fж^"*"£/• 

fri the removal-diffusion method this source is given by the 

uncollided flux of neutrons from the actual source into the 

given point and by slowing-down cf neutrons in this point 

Лш*чСС ' • - &tff*^ f o r S^l^J^O) heff is the searched eigenvalue 
of the problem, Le. such a value, which the discussed 
set is just critical for. 

G . . . the number of groups (groups are numbered in the direction 
of falling of energy). 

ВЧ7) . . . the energy released per fission 

С (l1/ . , . the energy released per radiation absorption 

2. Transfer of the Diffusion Equations into the Difference Equations for 

Individual Geometries 

The discussed set is being devided into the individual regions of the 
volume у an^L the surface S and the equations ( l ) are being 
integrated through the volume of each region. 
By using the G-auss-furmula we get for each region 

f-ff DiW$rod. ф{m]nds+ssszt.(?)&(ruv 
i4 (2) 

§ sss z^i wfym<Lv+-±- sssy(r)Qmdv+ 
+ Ш SiWdvV 



where П is the unit vector of the outward going normal to the boundary 
of the d i scussed region. 

T o be able to realize the integration ( 2 ) , the following assumptions 
should be taken into consideration: 

a) Inside each of the regions a mesh-point p i s to be chosen . The value 
of the flux in the point p i s the mean value of the flux in the discussed 
region: 

i sss ьт-dv 
% 

b) The scalar product ( у о л <Pi\**)*n) on the surface between two 
regions i s expres sed using the fluxes in the mesh-points inside these 
regions. 

c) The physical properties are constant inside an individual subregion of 
the d i scussed region. 

S o we get a " Ш -point" formula, wnere řřl is' the number of the regions 
surrounding the d i scussed region, enlarged by one. In the three-dimensional 
space using the rectangular and cylindrical coordinates we get Ш* V / 
If some of the variables are separable, the fluxes in two-dimensional (or 
one-dimensional) s p a c e may be expressed. The corresponding buckling 
i s to be calculated using the following formulae: 

for x € • < - - « - , « - > 

IS 

/V-) 
•% 
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я* о* (JL-) 
Specially for <рЫ)*Ш-Щ^ *• te В - \^^J 

2) For £(?)«&(*) </>W ««I $£ (W» $ W ^ (»") tor£<0,R> 

Specify tor ^ W " ^ , f Ř Í P j i s ^ " ( i W 

Remark: Fbr the general two-dimensional r, z~geometry is O =š O • 

Further we shall confine ourselves to the basic geometries in the 
two-dimensional space. The relation between the fluxes in the neighbouring 
regions is usually expressed by a "EJ-point" formulál 

ě • • • » • 

« 

- ft,ť % - fk,t 

The reactor is to be devided so that the mesh-points are chosen 
arbitraryiy and the boundrtes of the individual regions pass through the 
medium point between each of the two neighbouring mesh-points. 

The physical properties of individual subregions may differ (in the ranges 
of the individual subregions the physical properties are constant). Fbr the 
x, у and rf z geometries the following picture i s valid : 
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fri the following express ions the group-index 1 is being omitted : 

^r-tln+T] Ч« 5 in-nrl 
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where o s / 
. . for x, у geometry 

for r, z geometry 

Fbr r, z geometry is 
k-1 

ft-Z fm 

For the points ( ^ 7/ on the axis is valid : 

For r, €p geometry is valid : 

ус'УГ >л^0^'f / 
V 

A»/«-V fPi •* * 4*-+ rf « * Лн-) 

i&u %+ů-ь* Ч*-) - *ы,* ь - * 
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ч, •£-ft** 4 * «ť* 4Í)MPJ * , « - * 

cL 
'M 

2 << Z£ 

K*t-J 

« Í . - J V M H <г*Ч*^Ь- 7 
Л-1 

* . . o r,*0 

For the medium point (M) i s valid : 

•м в ьм ам" ° 
4 i rf <h л n4 <Д-1) _*t «*•£<<,* 
n 2, 

V & • * * • < * ' * ' 

«Л#Л* \ 
•&>$* 

- * « * 

Further fór all geometries we get : 

fut' \t*h,€* 4,t * ái,t * Ы 
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С* -*A'/J>U**Vi4«) 

Further we shall suppose that 

Then 
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3. Boundary Conditions 

In gene ra l the boundary conditions may b e c h o s e n a s follows : 

д ф< (?) 
dn where "" Г х i s the derivative of the flux ф^к*4/ taken in the 

direction of the outer normal to the surface of the s e t in the point P , 

In the difference s h a p e is this condition e x p r e s s e d b y the following formula 

inner region outer reoion 

» o 7 

A 

9 

From here 

ní- — -^— Ф> 
p W + у (fit) p 

<Q (p,<r) 
it JP.f) , fo ÍP,f) 
1 й Í 

( 4 ) 

For (Q(p,f)ý 0 it i s n e c e s s a r y to put &ф» = 1 , b e c a u s e 
(following (4)) this c a s e tu rns into a problem with a given external s o u r c e 
in the reg ions next to the outs ide of the d i s c u s s e d se t . In the c a s e of 
a free surface of the s e t ( i . e . a n y radiation on the surface of th© s e t 
coming from the outside i s omitted) i s Of (&) * 0 a n d the boundary 
condition turns into the form 

Ф< 
t 

ty * * *Р'У Yp 
For the interface with vacuum i s val id : 

Л 
.tea 

Э ft 

* 
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к Í6 

4 26 D\1 

fri general for any point in the vicinity of the bo^mdary the boundary 

conditions expressed by any constants # £ £ 'y 9£% £ J # д £ '} 9Z £ £ ) 

where a; b; c; d expres s the direction of the normal to the boundary (in 

conformity with (З)), are valid. 

4* Solution of the Matrix - Porm Problem 

Using the express ions ( 4 ) ( or ( 4 a ) ) and ( з ) we get a system of 
equations for <BL f • This system may be written for each group in a 

matrix form : 

/\<j)= F (5) 

where 

A 
A . # . i s a symmetrical square quazitridiagonal matrix of coefficients 

which are eventually 
modified by the boundary conditions 

d> . . . i s a column vector 

p # # , i s a column vector 

The solution of the system may be found directly using a "direct method" 
or by using an iteration method ( a n "inner iteration"). 

4Л Direct \tethod 

A 
With regard to that fact the matrix A i s a symmetrical zone matrix 

it i s advantageous to solve the system ( 5 ) by using the "Banachiewitcz's 
root square-method" ( / 3 / ) : 

- 12 -
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The matrix A is to be divided intc a product of two reciprocally 
transposed matrices : 

А Л< А 

A» S S (6 ) 

Then the matrix equation (5) desintegrates into a system of two matrix 
equations : д . 

S Z =F 
§ф-К ( ? ) 

where Í is an auxiliary vector. 

Let us mark : 

A . (а. Л S = {..,} F - { ft] 

*={*<} *"{&) 
Then 

s 

z -

* • 

= 0 

S11 

Sim 

* * 

£4 

ф. * JbzÁ*J«-3* U^n) 

Using this method it ш necessary to reserve the computer-etore onlv 
for one half of the zone of the matrix including the diagonal. The matrix S 
is to be calculated only once because during the outer iteration ( s e e 
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further) changes only the right side P of the matrix equation ( 5) , If for 
definite x we obtain $ t̂* С 0 , the calculation may be formally continued 
by using the imaginary unit, fri this case the resulting flux values are real, 
but they have no physical meaning ( i .e . for such a c a se does not exist 
any solution of the problem). 

4.2 Inner Iteration 

A 

For the given type of the matrix A an iteration method in / 1 / is 
described ( the Young-Frenkel's successive overrelaxation method) : 

h< -0M +<v 1пл -9v J 

К - ^ j f«v Kijt + \< 4ir*,t * ( 8 ) 

в 

4 

CO . • • is an overrelaxation factor, the value of which lies in the 
ranges 1 + 2 and depends on the energy group. 

( i n ) . . . i s the index ( i . e . the order) of the inner iteration. 

After each of the inner iteration the following is to be calculated : 

™ " || j™<flm-l)H (9) 

where is any canonic norm, for instance 

ll W ««'f ; "fie-5 W; Wi - /%'#!* 
given by the equations ( 8 ) for the chosen factor (Д)* . 
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After ihe determination of the optimum va lue of the factor i s the following 
procedure (according to ( 4 ) ) advisable : 

When I ЕУ/рЛ — ®{т.~4)\ ^ £ л where c a i s ihe demanded e x a c t n e s s 
of G* ( usucdiy £ * ^,Q0i i s sufficient), then 

• • • 

a) for V(m\ ^ to)~4 we put <*>* * ">) 
/ Ч * 2 

4 * ) * 
«2 

• 

CO, 

4 

л4 ' * * 

- • / 

_ A 
1 

A 

b) for ^г(шл\ ' v*a *" / i s 

<*<= «*'<., т1*{7Т? W*= — — - = = = = — íť/„ ( i o ) 

А А / ч А 

wnere ( k i s the maximum eigenvalue of the Jacobian matrix 6 ~ С "~ D Ay 
* diagonal matrix defined 

, and E i s the unit matrix. 

£ А 
£/ i s * diagonal matrix defined by the diagonal elements of the matrix Д . 

Prom the upper follows for the optimum value of 0У : v • 6U — 4 
This i s a lso the limit for m -e* •» • 
The factor CO1 does not depend on the right s ide F of the equation 
( 5 ) and therefore its optimum va lue d o e s not change during the outer 
iteration p r o c e s s . 

The inner iteration in the i-th group i s cons idered to be finished if 

where £ ^ i s the c h o s e n e x a c t n e s s of the flux v a l u e s . 

4.3 Outer Iteration 

For *»££ 3 0 the outer iteration does not take place. In the 

contrary c a s e , If the inner iteration in all groups i s finished ( o r after the 
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termination of the direct method) the obtained Лих va lues may be \ ised for 
a process of improvement of the previous source-approximation : 

( 1 2 ) 

where ( £ ) i s the index ( i. e, the order ^ of the outer iteration. 

If 5 g о = 0 and v,< [fitfj^ 0 the new approximation of the eigen-
value Pi**' and its upper and lower limits ^|'*' and Д may be 
expresbed : 

Л .-Л m y j в „ и . л | 

р « и jjťt-Л "м Í c 4 
*'*> та 

т - г л » и о <« ] 

The outer iteration may be considered to be finished if 

*W-A W 

«A ( * ) 
< e £ 

where С J) i s the claimed relative exac tness of А- к 

ft 
в ) 

*tf 

i i «ад . «чМ| 

or for 

<€ i 2 
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for Сф0 

U an iteration of *t£f takes place the outer iteration may be accelerated 

by using the Chebyshev polynomials a s follows : 

In each Doint we use the following normalisation 

w<* ""J7U) « M (15) 

where 

**(w) w(i-2H ( 1 6 ) 

Where ОС * -J-— 3̂ « 0 

Por Í >"/ у 

" ffcu f- -*• ^тг=5=г (i7) 

a* ary,tosh x x - ~ - y 

д- . -л*." л " **ff 
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2 ^ 1 is the nearest of the lower eigenvalues which accommodates to 
the discussed problem. The ratio О may be estimated putting oC •* i\ 
0&L 0 . Then : 

6 л<*> 

.w K Л S 7 the normalization does not take place, i. e. 

N 
* * ( t ) 

W . w W 

(18) 

A« 
Then the value 6l% p *£ being used for calculation of г с t • 

by 

5. Determination of Reactor Power 

The heat-output г of the reactor in general is determined 
using the expression : 

p- sss[i (Efmi(K) + E'wziwjuito] <LV 
In a difference form we get 

where fjj is 

f £ f ^ + feXe] 

a) for x, у and r, (0 geometry 

Í Ныг. . fT H \.. ,, 2 
чежЫ 

W w<*x- нт —н~ stnvrirrh « IF 
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nttbť. . . . i s the extrapolated height of tne reactor core. 

14 . . . i s the actual height of the reactor core. 

b) for r, z geometry : 
(JO = 21Г 

which follows from the definition of Ou M • 

6. Conclusion 

Our experience tell us the described method of calculation i s conve­
nient for diffusion and removal-diffusion approxhnations using sufficiently 
short distances between the mesh-points. 
The optimum values of these distances depend on the physical properties 

/ DM of the d i scussed regions, particularly on тлп. ^ -SFJ and on the gradient 
of the flux and therefore it i s difficult to fix them in advance. One of the 
possible methods of solution i s to execute the calculation at least twice 
with different choice of the mesh-points. 

An important question of this method is the s^eed of convergence. 
From the present results we can s a y that for a large number of groups the 
contributions of neutrons from the slowing-down process into the discussed 
group are much higher in comparison with the fission neutrons ana 
therefore the outer iteration converges fastly. For such a c a s e the further 
acceleration of convergence i s not n e c e s s a r y because $ stabilizes on 
a certain value ( following ( 1 8 ) ) and the Iteration i s brought to an end. 
The using of the inner iteration i s often problematic. In many c a s e s i s the 
convergence also by using an optimal acceleration v e r y poor. 

Therefore we use exclusively the direct method which for the number 
of mesh-points up to lOOO ( i . e . the maximum practicable number of 
mesh-polnte ue&d for computers mentioned above ) i s with regard to time 
e c o n o m i c s .and numerical stable. 
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