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NUMERICAL SOLUTION OF ABEL’S INTEGRAL EQUATION WITH SPLINE
FUNCTIONS

Bo Einarsson

Research Institute of National Defence,
Box 98, 5-147 00 Tumba, Sweden

Abstract: The integral equation of Abel can be solved with
the help of spline functions in several ways. In this report
it is assumed that the function which is not integrated in
the integral equation is given at a finite number of points,
not necessarily equidistant. The following three methods

are discussed.

It is very natural to approximate the known function by its
spline approximation. In the special case studied here,
this was not realistic, since this function was not

differentiable at one of the boundary points.

Another possibility is to approximate the unknown function
with a spline approximation with unknown parameters both for
the function values and the moments. From the integral
equation we then obtain a system of linear equations, which
is solved together with the continuity conditions for the

spline approximation.

In the third case a least squares method was added to the
indirect method above in order to take care of rounding and

measurements error. This method appears to be the best one.

This paper was presentzd at the Scandinavian computer
congress NordDATA-~70 in Copenhagen, August 26-28, 1970.
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Introduction

The mathematical problem was initiated by the following

physical problem. A cylinder-symmetric object is radiated
with X-rays from a source at a large distance. A detector
is placed behind the object and gives the intensity as a

function of the coordinate z, cf. figure 1.

2

RADIATION /_\ | |
—— = f===m DETECTOR
\

—

Figure 1

The radiation intensity I after passage of the object

depends on the absorption by

432-22
(1) 1= Io.fCI o (r) ds>,
-'JR2-.z2

where I_ is the intensity before the passage, p(r) is the
density at the distance r from the center and s is the

distance the radiation passes in the object. We put

(2) u(z)=2"(%)

0]
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and obtain the integral equation

R
(3 2[e(@) =EE=ula).

’ 2 2
r -z

If we assume that the function f(p) has been determined by a
measurement process, the problem is reduced to obtaining

o (r) for known u(z).

In order to solve the integral equation we introduce the

coordinates
2
@ e=A1-(F)

(5) n=+1- (%)

and the functions F(£) and G(7) by

(6) P(E) = Rep(r) = Reo (R 41 = £7) |
M o) = (@) = w@ A1 - 12). §

The integral equation (3) is thus transformed to

M
(8)  e(n) = | r(e) =22 .
0




We now assume that

(9) &) =an + g,(n°),

where g1(t) has a continuous derivative on [0,1], or that

(10) b(z) = o \1 - (§)2+ 8,(2),

where gz(z) has a derivative for O ¢ z £ R and with

gé(O) = 0. Also this derivative is assumed continuous.

We now use the following theorem, which is a slight modifi-
cation of the theorem of Bocher (1914).

Theorem. The integral equation of Abel

J
(1) aly) = [ 22 &
0 Ny=-x

has the continuous solution

(12)  2(x) =7

O t—3 A
£
L]

x-3

if g(0) = 0 and g(y) = ayfy + g (y), where g (y) has a
continuous derivative in the considered interval.

8 5 i s At 1 e i e

The solution of (8) is then given by

4
(13) P(e) = ;,1- f <) dn)

0 Ng -1




which gives

R
(14) p(r)z_%jﬂ?.&

From the symmetry it follows that u'(0) = 0, and it only
remains to discuss the behaviour for z = R. If we assume
the density p(r) to be continuously differentiable we find
that the regularity conditions on u(z) are satisfied.

Nwnerical solution with the direct method

For the numerical solution with the first method the interval
[0,R] is divided intc two parts [O,R'] and [R',R] in order
to take care of the singularity at z = R, where p(z) has an

infinite derivative.

In the interval [R',R] the density is assumed to be a
constant po. This assumption is valid in the physical

example. We obtain for R' < z <« R

r dr
(15)  w(a) = j i 272

I‘-z

and

2p. 2
(16)  u'(z) = - =

JR2-22

For O € r < R' we get

R'
2 2 2
= l_1 2R'RTr7\_ 1 w'(z)
(17) p(r) = Py ( 5 - arcsin 72 ) - K == az.




We row introduce the spline approximation of p(z) on the
interval [0,3']. After differentiation, multiplication with
the weight function and integration, the solution p(r) is

obtained.

This method has been documented with complete FORTRAN
routines in Einarsson (1968). The disadvantage of the method
is the difficulty of obtaining +he point R' frum the observed
values of p(z) whereas %th» r=:-1lts depend strongly on the
choice of this value. It is therefore natural to look for

a method where the use of two expressicis is unnecessaty.

We obtain such a method by ap roximating the unknown ins-=ead

of the known function with i.s spline fit.

Numerical solution with tke¢ indirect methaod

In the second method we acsume *hat the density p(r) is
twice continuously differentiabi: and determine the inter-
poiating spline S(r) to the sex (ri, pi). For the deter-
mination of S{r) we need two toundary conditions. For r = C
we use the symmetry to obtuin S'(0) = 0 and for r = Rk we
have two possibilities, S1(R) = 0 for a distinct joundary

and S"(R) = O for a smooth one.

The spline fit is determined by, cf. Ahlberg et al. (1967),

(xi-x)3 (x-xi_1)3
(18) S(x) =M, | —gp— +M;, —g—+
i i
2 - M,h,2 X=X

ity B
t -5




We will also use

R
(19) u(z)=2j x 5(x) 4x

2 \]xz-zz

to determine y, and M. from the values u(zj).

At the numerical solutiori we consider the case R = 1 and

divide the interval [0,1] into N subintervals with partition
N

points {xi} « Two unknown parameters, namely v and Mi’
0

belong to each of these points. These are to be interpretea
as the parametcrs in (18) for the spline fit of p(r). This
equation is substituted into (3), for z = Zyy Zys ceesZy

with the given values of p(zj),and gives (19).

With this method it is natural to choose z. = xj. We then
find that for j
ZN = 1 and u(1)
from equation (3). We obtain N + 1 additional equations froem

N equation (3) becomes trivial, since

i

O. We therefore obtain only N equations

the continuity conditions of the spline approximation together
with its boundary equations. The remaining equation is ob-
tained rather arbitrarily from the condition that S'" (x) is

continuous in the last interior point, i.e.

" . -MN‘ MN" -MN‘
(20) 8" (x,_,) = — y L h':I-1 -

We then have 2(N+1) equations and 2(N+1) unknowns. The
formulas for obtaining the linear equation system are rather
complicated but the system is easily solved by standard
methods. In the test program the SSP routine DGELG, Gauss
elimination with complete pivoting, is used, see IBM (1969).

*’IPW‘\‘ VY, ) QAN A BB Y st e S
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This indirect method showed very good convergence, the error

at the computation of p(r) being of order h4, where L is the
largest step length hi' There was, however, also a problem in
connection with this metod. For small values of h the round-otff
error (and the measurement error) in p(z) gave cscillations

in p(r), and p"(r) sometimes had alternating signs in the
nodes. To take care of this problem a third method, which

uses a fit in the least squares sense, has been studied.

Numerical solution with the least squares indirect method

The main difference between this and the previous method is
that we no longer take zj = xj, but instead use a mvch denser

distribution of zj. The number of points Zj is indicatved by L

N
and that of points {xi} is still N + 1. We now have 2(N + 1)
0

unknown perameters, the first N + 1 equations are

obtaised from the continuity of the spline approximation
and the following L > N + 1 equations are the discrete
counterparts of (19). We thus have an overdetermined system
of equations and solve this with the method of Bjorck and

Golub (1967), where the first m, = N + 1 equations are

1

satisfied exactly and the following m - m, = L equations

are satisfied in the least squares sense.1The number of
unknowns is n = 2(N + 1). The original algorithm by Bjorck

and Golub is in Algol, but here I have used a FORTRAN version
by Roy H. Wampler, National Bureau of Standards. This routine
is written in single precision with the inner loop of the
iteration (accumulation 6f inner products) in double precision.
The test computations showed that the single precision of

IBM with only six decimal digits is insufficient. The routine
was therefore changed to double precision (16 decimal digits)
and the accumulation of inner products was improved by adding
the products in increasing order, starting with the smallest
product. This course gives a higher precision than the random
order,but the use of multiple precision accumulation wouid

be advantageous.




11

The problem with oscillations in p(r) was much less pronounced
with this method.

Description of the numerical tests

1n order to test the two algorithms we put

(21) p(r) =a + br + er’ + dr° + er .

The two bcundary conditions p'(0) =p'(1) = 0 give

(22) b =0
and
(23) 2c+3d+ 4e=0.

Substituting (21) in (3) gives

2 a ., 2 3 8
(24) u.(z)={2a+—3-c+§+56+z(—c+zd+15e

+-l§ - } J 1 .2 azt J:JG;;EE_

)+

We find immediately that this expression satisfies w(1) =
and '(0) = O. In the numerical tests the interval [0,1]was
divided into N equal subintervals of length h = 1/N, but the

routines were written for the general case.

All test compﬁtations were performed on an IBM 360/75 in
double precision (16 significant figures). The values of
w(z) from (24) were used as input in (19) and the obtained
values {y;} and {Mi} of the spline approximation of p (r)

waa the output of the computations.
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The first test that was performed was a = 1 and b=c=d=e=0,

giving p(r) = 1 and p(z) = 2 N1 - z2 . In this simple case
the computations gave exact results, as was to be expected.

The next test was ¢ = 1 and a=b=d=e=0, giving p(r) = r2 and

u(z) ='% (1 + 2z2) J1 - 22 . In this case we obtained
reasonable convergence for p(r), but rather bad results for
p"(r), since equation (23), which is concerned with the
condition p'(1) = Gywas not satisfied. Both these tests
were performed for both the indirect method and the least

squares method.

We now study the indirect method in the case with no round-

off error in the given values of p(z).

In the tables below we give the errors for the function p(r)
and its second derivative with four different stepsizes

h = 1/N when a = 0.5, b =0, ¢ = =0.5, d = -1 and ¢ = 1.

~

Error in computed p(r)-106

d o (x) N=5 N=10 N=15 N =20
0.0 0.500000 =55 5 1 0
0.2 0.473600 175 4 1 0
0.4 0.331600 -229 5 0 0
0.6 0.233600 402 10 1 0
0.8 0.077600 -830 25 -3 1
1.0 0.000000 1552 99 20 6

Table 1 a
" Error in computed p"(r)°106

r p(r) N=5 N=10 N=15 N = 20
0.0  -1.000000 -33575  =21357 -9110 -5138
0.2  =1,720060 =138407  =21560 -8958 -5004
0.4  =1.480000 12253  -24362 -8524 -5039
0.6  =-0.280000  -235486  -32843  -10767 -5347
0.8 1.880000 170342  -58295 822 -8148
1.0 5.000000  -383829  =96422  -42907  -24149

Table 1 b

‘ .
!
i
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These tables indicate that the error of the computed p () is
of order h4 in accordance with the convergence of the spline
approximation, see Hall (1968), the error of p"(r) is of the

order h2.

It is very natural to try a single Richardson extrapolation
of the values in table 1 in order to obtain smaller errors.
Such an extrapolation did not give higher accuracies at all
the considered points. This is probably due to an oscillating
component in the computed solution. By a simple smoothing
process we can reduce the oscillating component,and perform
extrapolation of the smoothed values. Some tests have in-
dicated that this is a possible way of increasing the

accuracy.

It is also important to study the behaviour of the computed
solution when the primary data (in this case u(z)) have
round-off or measurement errors. This is simulated by adding
a random function (with values between ¢ and -¢). The random
function is such that repeated calculations give the same

value relative to €.

From the tables below we find that the solution is very
sensitive to this disturbance. The tables are for a = 1,
b=0,c¢c=2,dd==2ande=0.5and h =1/10.

e —, (s g AP .




0.0
0.2
0.4
0.6
0.3
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p (r)

1.000000
1.064800
1.204800
1.352800
1.460800
1.500000

p"(r)

4,00
2,86
1.84
0.94
0.16
~0.50
-1.04
~1.46
-1.76
-1.94
-2.00

Error

= 0.0001
-264

-383

-99
=102
-142

204
Table 2 a

Error
= 0.0001
0.13
-0.18
0.25
-0.29
0.19
-0.15
0.09
-0.08
0.03
0.02
0.10
Table 2 b

in computed p(r)°*

¢ = 0,001
-2668
-3849
-1014
-1069
-1528
1594

in computed p"(r)
¢ = 0.001
1.37

-1.71

2.62
-2.85
2.01
-1.43
1.01
- =0.77
0.57
0.06
-0.58

14

106
€ = 0,01
-26701
-38505
-10169
-10732
-15395

15494

€ = 0.01
13.78

26.27
-28.40
20.17
-14.24
10.27
-7.69
6.01
0.37
-5.38

These tables show that the error is proportional to the
magnitude of the random disturbance and that oscillations

in the second derivative (or spline moments) are obtained.

T

L e s b

< ta Mt




15

We now turn to the indirect least squares method and first
consider the same test example as in the tables 1 . We thus
have a = 0.5, b = 0, ¢ = -0.5, d = -1 and e = 1. We use the
step length h = 1/N and L = 30 (the number of measurement

points). B
Error in computed p (r)* 10"

s p(r) N =5 N = 10 N=15 N =20
0.0  0.500000 -809 6 1 0
0.2  0.473600 483 5 1 0
0.4  0.381600 -543 6 1 0
0.6  0.233600 589 11 1 0
0.8  0,077600 -303 19 0 0
1.0 0.000000 521 19 0 0

Table 3 a
Error in computed P"(r)~106

¥ p"(x) N=35 N = 10 N=15 N =20
0.0  =1.000000 103582 -23106 -9017 -4173
0.2  =1,720000 -253282 -22938 -8885 ~4720
0.4 =1.480000 81714 ~25297 -8849 -4854
0.6 =0.280000 ~229852 -32011 -9069 ~4885
0.8  1.880000 54081 -35870 -8883 ~4803
1.0 5.000000 -208904 ~33420 -5087 ~4321

A comparison between tables 1 and 3 shows that all entries
are of the same order, but that the least squares method
gives smaller errors, except with the coarsest partitition.
As in the previous method we can improve the solution by

Richardson extrapolation after smoothing.

1 otoeri v i e e
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We will now study the indirect least squares method and the
influence of random terms. We use the parameters a = 1,
b=0, C=2,d=—2,a.nde=0.5.

Error in computed p(r)°106

. o (z) N = 10 N = 10 N = 20 N = 20
L =15 L = 60 L = 30 L = 60
0.0 1.000000 -1 4 0 0
0.2 1.064800 1 3 0 0
0.4 1.204800 1 4 0 0
0.6 1.352800 1 8 0 0
‘0.8 1.460800 0 17 0 0
1.0 1.500000 1 19 0 1
Table 4 a
Error in computed p"(r).104
N = 10 N =10 N = 20 N = 20
r P (x) L =15 L = 60 L = 30 L = 60
0.0 4.0000 -83 -126 -21 -25
0.2 1.8400 ~90 -125 -24 -25
0.4 0.1600 -93 -144 =24 ~25
0.6 -1.0400 -94 -202 -24 =27
0.8 -1.7600 -86 -266 -24 -38
1.0 -2.0000 -85 -275 -22 -42
Table 4 b

We find that we can use a rather limited number of nodes

against a larger number of measurement points zj.

It is interesting to note that test computations with
equation (20) included among the equations to be satisfied

exactly, gave a significant decrease in the accuracy.

The slight decrease in the accuracy when L is increased is

partly due to increased oscillations.

U
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We now study the behaviour of the solution when a random
term is present. The same parameters as above are used and
h = 1/10 and L = 30.

Error in computed p(r)0106
i o (x) ¢ = 0.0001 ¢ = 0.001 e = 0.01
0.0 1.000000 -121 -1236 -12387
0.1 1.018050 =250 -2507 -25079
0.2 1.064800 k 111 ' 1089 10865
0.3 1.130050 -11 -107 -10T71
0.4 1.204800 11 83 797
0.5 1.281250 -97 -958 -9568
0.6 1.352800 21 160 1546
0.7 1.414050 -24 -169 -1620
0.8 1.460800 =13 -218 -2262
0.9 1490050 67 682 6835
1.0 1.500000 . =51 ~-594 -6027

Table 5 a

Error in computed p"(r)

H

p"(r)

e = 0.0001 e = 0,001 e = 0,01
0.0 4,00 -0.11 -1.03 -10.24
0.1 2.86 0.12 1.28 12.83
0.2 1.84 -0.13 -1.21 -11,96
0.3 0.94 0.05 0.62 6.23
0.4 0.16 -0.,06 -0.48 -4,73
0.5 -0,50 0.05 0.52 5.30
0.6 -1,04 -0.05 -0.38 ~-3.,63
0.7 ~-1.46 0.00 0.06 0.59
0.8 -1,76 0.01 0.25 2.71
0.9 -1.54 -0.06 -0.57 -5.65
1.0 -2,00 0.05 0.65 6.67

Table 5 b

We see that the error is proportional to the magnitude of

the random error.
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In the following table we give the corresponding results
for L = 60,

Error in computed p(r).106

r - p(r)

0.0 1.000000 -105 -1091 -10952
0.2 1.064800 57 538 5354
0.3 1.,130050 -6 -55 -541
0.4 1.204800 9 51 472
0.5 1.281250 -53 -499 -4961
0.6 1.352800 19 113 1050
0.7 1.414050 =26 -145 -1339
0.8 1.460800 14 -19 ~351
0.9 1.490050 19 245 2544
1.0 1.500000 -2 -186 : -2026

Table 6 a

Error in computed p"(r)
T p"(x) € = 0.,0001 € = 0.001 e = 0.01
0.0 4000 -0004 -0032 "3.04
0.1 2.86 0.04 0.50 5.08
002 1084 -'0007 : -0.57 -5.62
0.3 0.94 0.02 0.30 3.04
004 0016 -0004 "0026 -2046
0.5 -0.50 0.03 0.28 2.87
006 -'1004 -0004 "0024 -2022
0.7 -1.46 0.01 0.10 0.92
008 -1076 "0002 0003 0050
0.9 -1.94 -0.01 -0.18 -1.83
1.0 -2.00 0.00 0.20 2.27

Table 6 b

We thus find that the error from the random term is reduced
when more points are uzed as measurement points. Note however
that the random error occurs only in certain points. The

measurement points are given by z, = j/L,(J=O,1,2,...,L-1)

J
and the random error is included only for j = OC%%) L-1,

This means that the same random error is used independently
of whether L = 15, 30 or 60. The solutior of the problem is

., msf.mmmm .
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however different in these three cases, since the values of
w(z) used at the other points are those corresponding to no
random error. If tables 5 and 6 are compared it is therefore
necessary to remember that they correspond to different

functions u(z).

In order to understand the influence of the random error it
is necessary to consider the function w(z). This function is
given in table 7 in the case of no random error and a = 1,
b=0,c=2y, d =<=2, and e = 0.5,

z u(z)
0.0. 2.533333
0.1 2.534500
0.2 2.553059
0.3 2.521058
0.4 2.484374
0.5 2.409660
0.6 2.281192
0.7 2.079631
0.8 1.775602
0.9 1.303108
1.0 0.0C60000

Table 7

From this table we underztand that an error of 10.001 has

a great influence on the solution. The reason we have studied
an absolute error, constant in magnitude over z, is that

this gives a good simulation of the background radiation and

the calibration errors.

e e
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Pinally, we want to point out that decreasing the step
length h in this case with random error increases the
oscillations. In the test case, N = 10 and L = 30 gave
slighter higher accuracy than ¥ = 20 and L = 60. It is
therefore recommended to use a small number of interpolation
nodes (small N) and a high number of measurement points
(1arge L).

We finally give the results with thre2 different step sizes
for the same parameters as above, the number of measurement

points L equal to 60 and € = 0.001.

Error in computed p(r)°106

T plx) N=5 N=10 N =20
0.0 1.000000 -2158 -1091 -4113
0.2 1.064800 459 538 1617
0.4 1.204800 -484 51 -565
0.6 1.352800 220 113 644
0.8 1,460800 -152 -19 -198
1.0 1.500000 301 -186 307

Table 8 a

Error in computed p"(r)

r P (r) N=5 ©N=10 N=20
0.0 4.00 0.28  =0.32 3.74
0.2 1.84 -0.29  =0.57 ~4.53
0.4 0.16 0.11  -0.26 1,62
0.6 -1.04 ~0.14  =0.24 ~2.38 ,
0.8  -1.76 0.03 0.03 0.32 |
1.0  -2.00 ~0.11 0.20 ~1.98 !

Table 8 b

That the use of a least squares method to smootb a curve
requires many sample points is a wellknown fact. It is often

difficult %o determine such parametgrs as the order of the
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least squares polynomial or the number and locations for the
nodes of the spline fit in advance. The use of interactive
systems for solving problems of this type is therefore re-
commended, see for example two recent articles by Lyle B.
Smith (Oct. and Dec. 1970). Another useful article is that
of Horsley et al. (1968).

Conclusions

The investigations on the numerical solution of Abel’s
integral equation reported here show that the spline function
is a powerful tool. Three methods are considered: the direct
method (approximation of the measured function with a spline
fit), the indirect method (approximation of the unknown
function with a spline fit), and the indirect least squares
method. The test computations and the theoretical con-

siderations have shown that the last method is superior.

The FORTRAN listing for this method is available from the

author.
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