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NUMERICAL SOLUTION OP ABEL'S INTEGRAL EQUATION WITH SPLINE

FUNCTIONS

Bo Einarsson

Research Institute of National Defence,

Box 98, S-147 00 Tumba, Sweden

Abstract; The integral equation of Abel can be solved with

the help of spline functions in several ways. In this report

it :\s assumed that the function which is not integrated in

the integral equation is given at a finite number of points,

not necessarily equidistant. The following three methods

are discussed.

It is very natural to approximate the known function by its

spline approximation. In the special case studied here,

this was not realistic, since this function was not

differentiable at one of the boundary points.

Another possibility is to approximate the unknown function

with a spline approximation with unknown parameters both for

the function values and the moments. Prom the integral

equation we then obtain a system of linear equations, which

i& solved together with the continuity conditions for the

spline approximation.

In the third case a least squares method was added to the

indirect method above in order to take care of rounding and

measurements error. This method appears to be the best one*

This paper was presented at the Scandinavian computer

congress NordDATA-70 in Copenhagen, August 26-28, 1970.
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Introduction

The mathematical problem was initiated by the following

physical problem. A cylinder-symmetric object is radiated

with X-rays from a source at a large distance, A detector

is placed behind the object and gives the intensity as a

function of the coordinate z, cf. figure 1.

HADIATIOH

DETECTOR

Figure 1

The radiation intensity I after passage of the object

depends on the absorption by

t2 2
vR -z

(1) I = IQ.f ( J p(r) ds)

-z

where I is the intensity before the passage, p(r) is the

density at the distance r from the center and s is the

distance the radiation passes in the object. We put

(2)



and obtain the integral equation

R

(3) 2
rdr

2 2
z vr -z

If we assume that the function f(n) has been determined by a

measurement process, the problem is reduced to obtaining

p(r) for known

In order tö solve the integral equation we introduce the

coordinates

(4)

(5)

5 = - (I

•MS?
and the functions P(5) and G(^) by

(6) = H.p(r) = H.p(R

(7) 0(T|) =

The integral equation (3) is thus transformed to

(8)



We now assume that

(9) (H) = crTl + g

where g..(t) has a continuous derivative on [0,1], or that

(10)

where g (z) has a derivative for O * z < E and with

g'(o) = 0, Also this derivative is assumed continuous.

We now use the following theorem, which is a slight modifi-

cation of the theorem of Bocher (1914-).

Theorem. The integral equation of Abel

(11) g(y) = J ^ _
0 Vy-x

dx

has the continuous solution

(12) f(x) =±

o

if g(o) s 0 and g(y) = cr^" + g (y), where g (y) has a

continuous derivative in the considered interval.

The solution of (8) is then given by

(13)

0 VS -1



k.

which gives

R

(H) p(r) - - I

Prom the symmetry it follows that u*(o) = 0, and it only

remains to discuss the behaviour for z = R. If we assume

the density p(r) to be continuously differentiable we find

that the regularity conditions on n(z) are satisfied.

Numerical solution with the direct method

For the numerical solution with the first method the interval

[0,R] is divided into two parts [0,R'] and [R',R] i a order

to take care of the singularity at z = R, where ̂ (z) has an

infinite derivative»

In the interval [R',R] the density is assumed to be a

constant p • This assumption i
o

example. We obtain for R1 < z < R

constant p • This assumption is valid in the physical
o

(15) nU) = 2f ° = 2p
I

and

(16)

Por 0 « r < R1 we get

(17) Jl^^i
H -r
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We now introduce the spline approximation of p(z) on the

interval [0,3']. After differentiation, multiplication with

the weight function and integration, the solution p(r) is

obtained.

This method has been documented with complete PORTHAN

routines in Einarsson (1968). The disadvantage of the method

is the difficulty of obtaining she point R1 from the observed

values of |j.(z) whereas th* rsrlts depend strongly on the

choice of this value. It is therefore natural to look for

a method where the use of two expressions is unnecessary.

We obtain such a method by approximating the unknown instead

of the known function with i^s spline fit.

Numerical solution with the indirect method

In the second method we acsirae that the density p(r) is

twice continuously different:Labl<- and determine the inter-

polating spline S(r) to the &e\ (r., p. ). For the deter-

mination of S(r) we need two boundary conditions. Por r - G

we use the symmetry to obtain S'(o) = 0 and for r = R we

have two possibilities, S'(R) = 0 for a distinct boundary

and S"(R) = 0 for a smooth one.

The spline fit is determined by, ef. Ahlberg et al. (1967),

(x.-x)3

(18) S(x) = Mi_>1 — | - + J/L
i 6h.

i

for x ., * x * x. and with h.—i i i x. - x. 1
i i** •



We will also use

R

(19) - 2
/ 2 2

Z «i/X - Z

dx

to determine y. and M. from the values JA(Z.).

At the numerical solution we consider the case R = 1 and

divide the interval [0,1] into N subintervals with partition

f 1 N
points ix.V , Two unknown parameters, namely y. and M.,

belong to each of these points. These are to be interpreted

as the parameters in (18) for the spline fit of p(r). This

equation is substituted into (3)f for z = z , zt, ,,»fz^

with the given values of p,(z.),and gives (19).
J

With this method it is natural to choose z. = x.. We then

find that for j = N equation {3) becomes trivial, since

z-j = 1 and ji(i) = 0. We therefore obtain only N equations

i'rom equation (3). We obtain N + 1 additional equations from

the continuity conditions of the spline approximation together

with its boundary equations. The remaining equation is ob-

tained rather arbitrarily from the condition that SrM (x) is

continuous in the last interior point, i.e.

(20) S"f
<->-1> • -1

We then have 2(N+1) equations and 2(N+1) unknowns. The

formulas for obtaining the linear equation system are rather

complicated but the system is easily solved by standard

methods. In the test program the SSF routine DGELG, Gauss

elimination with complete pivoting, is used, see IBM (1969)»
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This indirect method showed very good convergence, the error

at the computation of p (r) being of order h , where h is the

largest step length h.. There was, however, also a problem in

connection with this metod. Por small values of h the round-off

error (and the measurement error) in pi(z) gave oscillations

in p(r), and p"(r) sometimes had alternating sign*: in the

nodes. To take care of this problem a third method, which

uses a fit in the least squares sense, has been studied.

Numerical solution with the least squares indirect method

The main difference between this and the previous method is

that we no longer take z. = x.« but instead uss a moch denser

distribution of z.. The number of points z. Is indicated by L
J f ,N J

and that of points Jx.p is still N + 1. We now have 2(N *- 1)
L 1J0

unknown parameters, the first H + 1 equations are

obtained from the continuity of the spline approximation

and the following L > N + 1 equations are the discrete

counterparts of (19). We thus have an overdetermined system

of equations and solve this with the method of Björck and

Golub (1967), where the first m = N + 1 equations are

satisfied exactly and the following m - m = L equations

are satisfied in the least squares sense. The number of

unknowns is n = 2(N + 1). The original algorithm by Björck

and Golub is in Algol, but here I have used a FORTRAN version

by Roy H. Wampler, National Bureau of Standards. This routine

is written in single precision with the inner loop of the

iteration (accumulation of inner products) in double precision,

The test computations showed that the single precision of

IBM with only six decimal digits is insufficient. The routine

was therefore changed to double precision (16 decimal digits)

and the accumulation of inner products was improved by adding

the products in increasing order, starting with the smallest

product. This course gives a higher precision than the random

order,but the use of multiple precision accumulation would

be advantageous.
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The problem with oscillations in p(r) was much less pronounced

with this method.

Description of the numerical tests

In order to, test the two algorithms we put

(21) p(r) = a + br + cr + dr + er .

The two boundary conditions p'(o) = p'(i) = 0 give

(22)

and

b = 0

(23)

Substituting (21) in (3) gives

(24) = {2 a + f c I + I e

75 e } ^ - z 2 +

z
2(l

dz*ln^1-z

We find immediately that this expression satisfies 1*0) = 0

and p,'(o) a 0. In the numerical tests the interval [0,i]was

divided into N equal subintervals of length h = 1/N, but the

routines were written for the general case.

All test computations were performed on an IBM 360/75 in

double precision (16 significant figures). The values of

\i,(z) from (24) were used as input in (19) and the obtained

values Jy.T aad { MIJ of tne s P l i n e approximation of p(r)

was the output of the computations*
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The first test that was performed was a = 1 and b=c=d=e=O,

giving p (r) = 1 and p,( = 2 \1 - z .In this simple case

the computations gave exact results, as was to be expected.
o

The next test was c = 1 and a=b=d=e=O, giving p(r) = r and
o 9 / P

li(z) = — (1 + 2z ) V1 - z .In this case we obtained

reasonable convergence for p(r), but rather bad results for

p"(r), since equation (23)> which is concerned with the

condition p' (i) = O,was not satisfied. Both these tests

were performed for both the indirect method and the least

squares method.

We now study the indirect method in the case with no round-

off error in the given values of p, (z) •

In the tables below we give the errors for the function p(r)

and its second derivative with four different stepsizes

h = 1/N when a = 0.5, b = 0 , c = -0.5, d = -1 and e = 1.

P(r)
Error in computed p(r)»10
= 5 N = 1 0 N

0.0

0.2

0.4

0.6

0.8

1.0

0.500000

0.473600

0.331600

0.233600

0.077600

0.000000

-55

175

-229

402

-830

1552

Table 1 a

5
4

5
10

25

99

15 :

1

1

0

1

-3
20

fir = 2 0

0

0

0

0

1

6

Error in computed p"(r)»10

0.0

0.2

0.4

0.6

0.8

1.0

-1.000000

-1.720000

-1.480000

-0.280000

1.880000

5.000000

N = 5

-33575

-138407

12253

-235486

170342

-383829

Table 1 b

N s 10

-21357

-21560

-24362

-32843

-58295

-96422

N = 15

-9110

-8958

-8524

-10767

822

-42907

N = 20

-5138

-5004

-5039

-5347

-8148

-24149
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These tables indicate that the error of the computed p(r) is

of order h in accordance with the convergence of the spline

approximation, see Hall (1968), the error of p"(r) is of the
2

order h .

It is very natural to try a single Richardson extrapolation

öf the values in table 1 in order to obtain smaller errors.

Such an extrapolation did not give higher accuracies at all

the considered points. This is probably due to an oscillating

component in the computed solution. By a simple smoothing

process we can reduce the oscillating component,and perform

extrapolation of the smoothed values. Some tests have in-

dicated that this is a possible way of increasing the

accuracy.

It is also important to study the behaviour of the computed

solution when the primary data (in this case jjk(z)) have

round-off or measurement errors. This is simulated by adding

a random function (with values between e and -e)• The random

function is such that repeated calculations give the same

value relative to e.

Prom the tables below we find that the solution is very

sensitive to this disturbance. The tables are for a = 1,

b = 0 , c = 2 , d = - 2 and e = 0.5 and h = 1/10.

• >

*l



Error in computed p(r)*1O

€ - 0.0001 « = 0.001 e = 0.01

0.0

0.2

0.4

0.6

0.3

1.0

1.000000

1.064800

1.204800

1.352800

1.460800

1.500000

-264

-383

-99

-102

-142

204

Table 2 a

-2668

-3849

-1014

-1069

-1528

1594

-26701

-38505

-10169

-10732

-15395

15494

p»(r)
Error in computed p"(r)

e = 0.0001 c = 0.001 e = 0.01

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

4.00

2.86

1.84

0.94

0.16

-0.50

-1.04

-1.46

-1.76

-1.94

-2.00

0.13

-0.18

0.25

-0.29

0.19

-0.15

0.09

-0.08

0.03

0.02

0.10

Table 2 b

1.37

-1.71

2.62

-2.85

2.01

-1.43

1.01

-0.77

0.57

0.06

-0.58

13.78

-17.06

26.27

-28.40

20.17

-14.24

10.27

-7.69

6.01

0.37

-5.38

These tables show that the error is proportional to the

magnitude of the random disturbance and that oscillations

in the second derivative (or spline moments) are obtained.
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We now turn to the indirect least squares method and first

consider the same test example as in the tables 1 . We thus

have a a 0.5t b = 0 , c = -0.5, d = -1 and e = 1. We use the

step length h = 1/N and L = 30 (the number of measurement

r

0.0

0.2

0.4

0.6

0.8

1.0

r

0.0

0.2

0.4

0.6

0.8

1.0

P(r)

0.500000

0.473600

0.381600

0.233600

0.077600

0.000000

p"(r)

-1.000000

-1.720000

-1.480000

-0.280000

1.880000

5.000000

Error in

N = 5

-809

483

-543

589

-303

521

computed

N = 10

6

5

6

11

19

19

Table 3 a

Error in

N = 5

103582

-253282

81714

-229852

54081

-208904

computed

N = 10

-23106

-22938

-25297

-32011

-35870

-33420

P ( P ) M 0 °

N = 15

1

1

1

1

0

0

PM(r)«106

N = 15

-9017

-8885

-8849

-9069

-8883

-5087

N = 20

0

0

0

0

0

0

N = 20

-4173

-4720

-4854

-4885

-4803

-4321

Table 3 b

A comparison between tables 1 and 3 shows that all entries

are of the same order, but that the least squares method

gives smaller errors, except with the coarsest partitition.

As in the previous method we can improve the solution by

RichardaOP extrapolation after smoothing.

i*
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We will now study the indirect least squares method and the

influence of random terms. We use the parameters a = 1,

b = O, c = 2, d = -2, and e = 0.5.

Error in computed p(r)»10

r

0.0

0.2

0.4

0.6

0.8

1.0

r

0.0

0.2

0.4

0.6

0.6

1.0

P(r)

1.000000

1.064800

1.204800

1.352800

1.460800

1.500000

P"(r)

4.0000

1.8400

0.1600

-1.0400

-1.7600

-2.0000

N = 1

L = 1

-1

1

1

1

0

1

Table

Error

0 N = 10

5 L = 60

4

3

4

8

17

19

4 a

in computed

N = 10 N = 10

L = 15 L = 60

-83

-90

-93

-94

-86

-85

Table

-126

-125

-144

-202

-266

-275

4 b

N = 20

L = 30

0

0

0

0

0

0

p"(r).1O4

N = 20

L = 30

-21

-24

-24

-24

-24

-22

N = 20

L = 60

0

0

0

0

0

1

N = 20

L = 60

-25

-25

-25

-27

-38

-42

We find that we can use a rather limited number of nodes

against a larger number of measurement points z.•
J

It is interesting to note that test computations with

equation (20) included among the equations to be satisfied

exactly, gave a significant decrease in the accuracy.

The slight decrease in the accuracy when L is increased is

partly due to increased oscillations.
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We now study the behaviour of the solution when a random

term is present. The same parameters as above are used and

h = 1/10 and L = 30.

Error in computed 0 irjMO
p(r)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p»(r)

Error in computed p(r)*1

e = 0.0001 e = 0.001

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000000
1.018050
1.064800
1.130050
1.204800
1.281250
1.352800
1.414050
1.460800
1.490050
1.500000

-121
-250
111
-11
11

-97
21

-24
-13
67

-51

Table 5 a

4.00
2.86
1.84
0.94
0.16

-0.50
-1.04
-1.46
-1.76
-1.94
-2.00

-0.11
0.12

-0.13
0.05

-0.06
0.05
-0.05
0.00
0.01
-0.06
0.05

Table 5 b

€ = 0.01

-1236 -12387
-2507 -25079
1089 10865
-107 -1071
83 797

-958 -9568
160 1546

-169 -1620
-218 -2262
682 6835
-594 -6027

Error in computed p"(r)

e = 0.0001 e = 0.001 e = 0.01

-1.03 -10.24
1.28 12.83

-1.21 -11.96
0.62 6.23
-0.48 -4.73
0.52 5.30
-0.38 -3.63
0.06 0.59
0.25 2.71

-0.57 -5.65
0.65 6.67

We see that the arror is proportional to the magnitude of

the random error.
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In the following table we give the corresponding results

for L = 60.

1.0

p(r)

p"(r)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4.00
2.86
1.84
0.94
0.16
-0.50
-1.04
-1.46
-1.76
-1.94
-2.00

Error in computed p(r)«10

e = 0.0001 e = 0.001

Error in computed p"(r)

e = 0.0001 e = 0.001

-0.04
0.04
-0.07
0.02

-0.04
0.03

-0.04
0.01

-0.02
-0.01
0.00

Table 6 b

-0.32
0.50
-0.57
0.30
-0.26
0.28
-0.24
0.10
0.03

-0.18
0.20

e = 0.01

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0,8
0.9
1.0

1.000000
1.018050
1.064800
1.130050
1.204800
1.281250
1.352800
1.414050
1.460800
1.490050
1.500000

-105
-126
57
-6
9

-53
19

-26
14
15
-2

Table 6 a

-1091
-1258

538
-55
51

-499
113

-145
-19
245

-186

-10952
-12576

5354
-541
472

-4961
1050

-1339
-351
2544

-2026

€ = 0.01

-3.04
5.08

-5.62
3.04

-2.46
2.87

-2.22
0.92
0.50

-1.83
2.27

We thus find that the error from the random term is reduced

when more points are U3ed as measurement points. Note however

that the random error occurs only in certain points. The

measurement points are given by z. = j/L,(j=O,1,2,...,L-i)

and the random error is included only for j a O(TC) I>-1,

This means that the same random error is used independently

of whether L = 15» 30 or 60. The solution of the problem is



19

however different in these three cases, since the values of

p,(z) used at the other points are those corresponding to no

random error. If tables 5 and 6 are compared it is therefore

necessary to remember that they correspond to different

functions

In order to understand the influence of the random error it

is necessary to consider the function n(z). This function is

given in table 7 in the case of no random error and a = 1,

b = 0, c = 2, d a -2, and e = 0.5.

z
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Table

2.533333

2.534500

2.533659

2.521058

2.484374

2.409660

2.281192

2.079631

1.775602

1.303108

0.000000

7

From this table we understand that an error of +0.001 has

a great influence on the solution. The reason we have studied

an absolute error, constant in magnitude over z, is that

this gives a good simulation of the background radiation and

the calibration errors.
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Finally, we want to point out that decreasing the step

length h in this case with random error increases the

oscillations. In the test case, N = 10 and L * 30 gave

slighter higher accuracy than ¥. = 20 and L = 60. It is

therefore recommended to use a small number of interpolation

nodes (small N) and a high number of measurement points

(large L).

We finally give the results with threo different step sizes

for the same parameters as above, the number of measurement

points L equal to 60 and e = 0.001.

.6

P(r)
Error in computed p(r)#10

N = 5 N = 1 0 N = 2 0

0.0

0.2

0.4

0.6

0.8

1.0

1.000000

1.064800

1.204800

1.352800

1.460800

1.500000

-2158

459

-484

220

-152

301

Table 8

-1091

538

51

113

-19

-186

a

-4113

1617

-565

644

-198

307

P"(r)
Error in computed p"(r)

N = 5 N = 10 N = 2 0

0.0

0.2

0.4

0.6

0.8

1.0

4.00

1.84

0.16

-1.04

-1.76

-2.00

0.28

-0.29

0.11

-0.14

0.03

-0.11

Table 8

-0.32

-0.57

-0.26

-0.24

0.03

0.20

b

3.74

-4.53

1.62

-2.38

0.32

-1.98

That the use of a least squares method to smooth a curve

requires many sample points is a wellknown fact. It is often

difficult to determine such parameters as the order of the
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least squares polynomial or the number and locations for the

nodes of the spline fit in advance. The use of interactive

systems for solving problems of this type is therefore re-

commended, see for example two recent articles by Lyle B.

Smith (Oct. and Dec. 1970). Another useful article is that

of Horsley et al. (1968).

Conclusions

The investigations on the numerical solution of Abel's

integral equation reported here show that the spline function

is a powerful tool. Three methods are considered: the direct

method (approximation of the measured function with a spline

fit), the indirect method (approximation of the unknown

function with a spline fit), and the indirect least squares

method. The test computations and the theoretical con-

siderations have shown that the last method is superior.

The FORTRAN listing for this method is available from the

author.
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