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FFTF, COMPANION TEST AND DEVELOPMENT 

FACILITY FOR THE LMFBR PROGRAM 

W. M. Gajewski 

W.  H. Esselman 

B. Wolfe 

J .  J .  Tay lo r  

The Fast F lux  Tes t  F a c i l i t y * i s  t h e  r e a c t o r  t e s t  complex which 

w i l l  be used t o  a i d  i n  t h e  s o l u t i o n  o f  t he  f u e l s  and m a t e r i a l s  

problems which p r e s e n t l y  a r e  most c r i t i c a l  t o  t h e  development 
o f  a l i q u i d  metal cooled f a s t  breeder r e a c t o r  (LMFBR). 

paper descr ibes  t h e  FFTF and i t s  design fea tu res ,  i n c l u d i n g  

those t h a t  a r e  unique t o  t h i s  t e s t  f a c i l i t y ,  and those which 
a r e  p r o t o t y p i c  o f  expected f u t u r e  LMFBR's. The opera t i on  of 

t h e  FFTF i s  a l s o  discussed. 

T h i s  

The FFTF i s  being designed and cons t ruc ted  a t  t h e  

Hanford Engineer ing Development Labora tory  

Richland, Washington, operated by WADCO 

Corporat ion,  a s u b s i d i a r y  o f  Westinghouse 

E l e c t r i c  Corpora t ion  f o r  t h e  lJni t e d  Sta tes  

Atomic Energy Commission under Cont rac t  No. 
AT(45-1)-2170. 



INTRODUCTION 

The steadily growing demand for  e lectr ical  power, coupled w i t h  con- 

s tant ly  increasing costs of fossi l  fuel , and ever more rigorous anti-pollution 

requirements, a l l  combine t o  make nuclear power plants increasingly a t t rac t ive .  

I n  f a c t ,  the consensus of those in the power industry i s  t h a t  future e lectr ical  

needs cannot be met except w i t h  the aid of nuclear power plants. Work t o  date 

has been quite f r u i t f u l ,  and light-water reactor generating plants have been 

developed t o  the point where they are technically feasible and  economically 

competitive with fossil-fuel plants. Unfortunately, light-water thermal nuclear 

plants u t i l i z e  only abou t  1 %  of the uranium, and a t  t h a t  ra te  there will n o t  be 

enough nuclear fuel t o  sa t i s fy  future requirements. 

permits a 60 t o  80% ut i l iza t ion  of the uranium thus extending the nuclear fuel 

supply manyfold. 

sidered t o  be the most important power reactor program in the United States today. 

The importance of developing a breeder reactor was recognized years ago, 

A breeder reactor,  however, 

For these reasons, the breeder reactor program can be con- 

b u t  the need was n o t  as c r i t i ca l  then and the attendant d i f f i cu l t  technical 

problems permitted prime focus on thermal reactors. 

rapidly approaching when i t  will become c r i t i c a l .  

the U.S.A. and abroad indicate t h a t  the Liquid Metal-Cooled Fast Breeder Reactor 

(LMFBR) shows the greatest  promise of the different types of breeder reactors 

for  early and economical development. 

However, the time i s  now 

Studies conducted b o t h  in 

The key program being pursued by the Hanford Engineering Development 

Laboratory, i s  the design, construction and future operation of the Fast Flux 

Test Faci l i ty ,  which i s  a liquid-metal-cooled, f a s t  flux power reactor plant 

which will be used for  the testing of materials, the development of associated 

components, and the g a i n i n g  of operating experience. WADCO, a subsidiary of 
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Westinghouse Electric Corporation operates the Hanford Engineering Develop- 

ment Laboratory fo r  the Atomic Energy Commission. 

of the Atomic Energy Conmission recently stated t h a t  this laboratory was the 

“Commi ssion ’ s f i r s t  1 aboratory dedicated solely t o  the engineering development 

of c ivi l ian nuclear energy systems.” The f i r s t  project of the Laboratory i s  the 

Fast F l u x  Test Facil i ty.  I t  will provide a temperature, radiation and coolant 

environment typical of future f a s t  breeder power reactors. 

tes t ing in this f a c i l i t y  will be vi ta l  i n  the future development of such 

reactors. 

Commissioner James T. Ramey 

The resul ts  of 

The architect-engineer for  the FFTF project i s  the Bechtel Corporation of 

San Francisco, California. 

the project. 

I ron.  

They are  also acting as construction managers on 

The containment vessel i s  to be fabricated by Chicago Bridge and 

In addition to  the architect-engineering work, major parts of the plant 

a re  being designed by the Westinghouse Advanced Reactors Division, which is  

designing the reactor and main f luid portions of the plant; Atomics Inter- 

national, which i s  designing the main fuel handling equipment, and Aerojet- 

General, which has the contract for  the design of the equipment i n  the main- 

tenance cell  of the p l a n t .  

THE FAST FLUX TEST FACILITY 

The FFTF i s  being designed to  sa t i s fy  f ive  major objectives: 

1 .  Provide a controlled, instrumented, fast-flux environment for  

testing of fue l ,  fuel pins, fuel subassemblies, and reactor 

construction materials. 

2. Provide capabili t ies to  t e s t  fuel and materials up to  and 

including fa i lure  i n  dynamic sodium. 

n 

n 
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3. Prov ide  a t e s t  environment which 7's as c l o s e  t o  t h a t  expected i n  

f u t u r e  LMFBR's as poss ib le .  

4. Prov ide  r e l i a b l e  p l a n t  performance. 

5 .  Prov ide  a f a c i l i t y  t o  serve a l l  U .S .  f a s t  f l u x  requirements.  

I n  a d d i t i o n ,  t h e  FFTF program w i l l  c o n t r i b u t e  markedly t o  t h e  f o l l o w i n g :  

- The development o f  t h e  compe t i t i ve  i n d u s t r i a l  c a p a b i l i t i e s  

necessary f o r  the  u l t i m a t e  r e a l i z a t i o n  o f  i n d u s t r i a l  LMFBR's. 

* The development o f  systemat ic methods of safe,  economical p l a n t  

design, c o n s t r u c t i o n ,  and maintenance. 

* The development of standards and s p e c i f i c a t i o n s  f o r  t h e  LMFBR 

Program. 

- The development of sodium systems and components f o r  LMFBR's such 

as p u r i f i c a t i o n  systems, valves,  i n te rmed ia te  heat exchangers, 

and pumps. 

I t  w i l l  be noted t h a t  none of these goa ls  i s  concerned w i t h  t h e  u t i l i -  

z a t i o n  o f  the  heat produced by t h e  r e a c t o r .  Because o f  t h i s ,  t h e  monetary 

saving, and t h e  f a c t  t h a t  t h e  opera t i on  o f  the  Fast Tes t  Reactor (FTR) w i l l  

va ry  f rom low t o  f u l l  power and w i l l  be i n t e r m i t t e n t ,  t h e  d e c i s i o n  was made 

t o  dump t h e  heat t o  t h e  atmosphere. 

An understanding o f  t h e  fue l  problems which t h e  FFTF w i l l  be c a l l e d  upon 

t o  s o l v e  can be gained from a comparison o f  t h e  r e l a t i v e  performance c r i t e r i a  

f o r  LMFBR f u e l s  and thermal r e a c t o r  f u e l s ,  Table 1. 

The requirements f o r  r e a c t o r  and p l a n t  m a t e r i a l s  development a r e  com- 

pa rab le  t o  those f o r  fue l  development. 

m a t e r i a l s  may w e l l  r e s u l t  i n  t h e  emergence o f  problems which have n o t  p r e v i o u s l y  

been encountered o r  even a n t i c i p a t e d .  

a l ready  been i d e n t i f i e d  as a r e s u l t  o f  t e s t i n g  programs i n  exper imental  breeder 

r e a c t o r s  a r e  s t a i n l e s s  s t e e l  s w e l l i n g  and i r r a d i a t i o n - i n d u c e d  creep. 

Also t h e  new demands placed on r e a c t o r  

Two such m a t e r i a l s  problems which have 

0 
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TABLE 1 

RELATIVE PERFORMANCE CRITERIA FOR LIQUID METAL FAST BREEDER REACTOR 

FUELS AND THERMAL REACTOR FUELS 

Performance C r i t e r i o n  

Burnup (MWd/ton) 

Fuel Power Dens i ty  (MW/ ton )  

Core Power Dens i ty  ( w 1 )  
To ta l  Neutron F lux  (n/cm*-sec) 

Neutron Exposure o r  Fluence ( n v t )  

Thermal Shock ( O F/ sec ) 

Required Improvement i n  Fast  
Breeder Reactor Fuel as Com- 
pared w i t h  Thermal Reactor Fue 

5-10 X 

3 x  
10 x 
30 X 
50 X 

5-10 X 

Since t h e  p r i n c i p a l  purpose o f  the  FFTF i s  t h e  s o l u t i o n  o f  problems which 

p r e s e n t l y  i n h i b i t  t h e  c o n s t r u c t i o n  and use o f  LMFBR's as power p l a n t  heat  

sources, t h e  FTR has been designed, 

t h e  des ign  expected t o  p r e v a i l  i n  f u t u r e  power reac to rs .  

be l a r g e  enough t o  r e f l e c t  a c t u a l  LMFBR opera t i ng  cond i t i ons ,  p a r t i c u l a r l y  a 

h i g h  fas t -neu t ron  f l u x .  

des ign  o f  t h e  400 M W t  breeder r e a c t o r  shown i n  F igu re  1. 

des ign c h a r a c t e r i s t i c s  o f  t h e  FFTF i s  g iven  i n  Table 2. 

shown i n  F igu re  2. 

t e s t  f a c i l i t i e s ,  t h e  f u e l  hand l i ng  system, t h e  heat  t r a n s p o r t  system, and t h e  

containment and s t r u c t u r e s .  

wherever poss ib le ,  t o  be p r o t o t y p i c  of  

The r e a c t o r  must a l s o  

S a t i s f a c t i o n  o f  these requirements has l e d  t o  t h e  

A t a b u l a t i o n  o f  t he  

The f a c i l i t y  i s  

The p r i n c i p a l  sub-systems i n c l u d e  t h e  FTR, t h e  i r r a d i a t i o n  

4 



TABLE 2 

FFTF B A S I C  FACILITY DESIGN CHARACTERISTICS 

Core Arrangement 

Sub-Assembly Length 

Fuel Composition 

Fuel Target  Burnup 

Peak F lux  

Closed Tes t  Loops 

I n i  t i a1 Number 

U1 t i m a t e  Number 

O u t l e t  Temperature 

Number o f  C e l l s  Provided 

Open Tes t  Loops 

I n i t i a l  Number 

Fu tu re  Number 

Heat Transpor t  System 
(Three Pr imary Loops) 

Reactor Power 

Reactor Out l  e t  Temperature 
Core O u t l  e t  Temperature 

AT -- Core 
AP -- System 

Mean Temperature D i f fe rence 

V e r t i c a l  , 91 Hexagonal L a t t i c e  P o s i t i o n s ,  75 
D r i v e r  Fuel Sub-Assernbl i e s .  
12 f t  o v e r a l l  , 3 f t  f u e l  , 4 f t  Maximum Gas 
P1 enum (Advanced Cores) 

20-30 Weight % Pu02, 80-90 Weight % U02 

45,000 MWd/t Average, 80,000 MWd/t Peak 

I n i t i a l  F lux  0.7 x 1016 N/cmz-sec. 

Fu ture  F lux  1.3 x 1016 n/cmz-sec. 

4 - General Purpose 2 M W t  each 

6 - 4 General Purpose (4  MW) 

2 Special  Purpose ( 4  MW each) 

1400°F (Bypass f l o w  pe rm i t ted )  

4 I n i t i a l  w i t h  space f o r  two more l a t e r  

4 - One w i t h  P r o x i m i t y  Ins t rumen ta t i on  
3 - One w i t h  P r o x i m i t y  Ins t rumen ta t i on  

I n i t i a l  C a p a b i l i t y  Maximum Capabi 1 i ty  

400 MW 400 MW 

860" F 1 050" F 
900°F 1100°F 

300°F 400" F 

500 f t  o f  Na 500 f t  o f  Na 

In te rmed ia te  Heat Exchangers, Log 
85" F 

Dump Heat Exchanger Modules 

T o t a l  Coolant Flow 

Sodium System Cover Gas (argon) 

Containment Vessel 

Vessel M a t e r i a l  

Cons t ruc t i on  

S ize  and Shape 

Reactor Vessel 

Vessel M a t e r i a l  
Cons t ruc t i on  
S ize  

12 @ 33 MW 

43,500 gpm 

100°F 

1 2  (3 33 MW 

43,500 gpm 

ASTM-A-516 Low Carbon 

Welded Const ruc t ion ,  ASME Code 

135 ft diam. x 179 f t high, E l l i p t i c a l  Heads 

Type 304 S t a i n l e s s  Stee l  
Welded Const ruc t ion ,  ASME Code 
20 f t  diam. x 46 ft high, 2 - in .  w a l l  

5 



FAST TEST REACTOR 

The FTR i s  a f a s t  neutron t e s t  reactor. The core design provides 

locations for experiment placement, establishes the neutron f l u x  level 

and power density, and, i n  conjunction w i t h  the coolant and heat rejection 

systems, s e t s  the temperature levels a t  which the system will operate. A 

vertical cross-section of the reactor i s  shown i n  Figure 2. 

The reactor core consists of a hexagonal array of vertical elements, 

the positions and types of which a re  shown i n  Figure 3 .  

i s  constant a t  4.730 i n .  

shaped pattern of three radial corridors extending from the center outwarid. 

Test assemblies, i . e . ,  open t e s t s  and closed loops, may be interchanged 

(with the exception o f  one t e s t  position which can only accomodate a proximity 

The l a t t i c e  spacing 

Test positions a re  dispersed t h r o u g h o u t  i n  a Y -  

instrumented t e s t ) .  

system which u t i l i ze s  three in-vessel handling machines, each of  which serves 

a 120 degree segment of the core. 

The trisected design i s  compatible w i t h  the refueling 

The hexagonal core res t s  upon a core support plate and i s  la te ra l ly  

supported by a core barrel .  A radial r e s t r a in t  system i s  included t o  off:;& 

the effects  o f  irradiation-induced swelling , thermal bowing, and creep. 

This ent i re  assembly i s  contained w i t h i n  a s ta inless  s teel  reactor vessel 

which i s  designed for a m i n i m u m  service l i f e  o f  20 years under the neutron 

f l  uences expected. 

The neutron flux level i n  the FTR i s  controlled by vertical movement o f  

neutron absorbing material. The control components consist of ( 1 )  primary 

safety rods for  r a p i d  shutdown of the reactor; and (2)  control rods t o  regulate 

6 
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t h e  power l e v e l ,  shu t  down t h e  r e a c t o r  i n  a c o n t r o l l e d  manner, and m a i n t a i n  t h e  

r e a c t o r  s u b c r i t i c a l .  The l o c a t i o n s  o f  t he  s a f e t y  and c o n t r o l  rods a r e  shown i n  

t h e  core  map, F igu re  3. 

Coolant en te rs  t h e  r e a c t o r  vessel through t h r e e  16 i n c h  i n l e t  nozzles,  

120" apa r t ,  l o c a t e d  near t h e  bottom. 

l a r g e  i n l e t  plenum from which i t  flows t o  the  r e a c t o r  core.  

From the  nozzles,  t h e  c o o l a n t  en te rs  a 

The f low i s  then 

i n  p a r a l l e l  up through t h e  d r i v e r  f u e l  assemblies, open t e s t  assemblies, and 

around t h e  c o n t r o l  rods, r e f l e c t o r s ,  and s h i e l d i n g ,  O r i f i c i n g  o f  t h e  i n l e t s  o f  

t h e  va r ious  assemblies l i m i t s  t h e  f low i n  each and es tab l i shes  proper  f l o w  

d i s t r i b u t i o n .  

About f o u r  percent  o f  t h e  t o t a l  f l o w  i s  d i r e c t e d  through t h e  annulus between 

t h e  thermal l i n e r  and t h e  w a l l  o f  t h e  vessel t o  a t tenua te  thermal t r a n s i e n t s .  

Another f o u r  percent  passes between the  assemblies and between o t h e r  c l o s e  f i t t i n g  

mechanical p a r t s .  A p o r t i o n  o f  t h i s  f l o w  i s  used t o  m a i n t a i n  a h y d r a u l i c  f o r c e  

balance across t h e  i n l e t s  o f  t h e  f u e l  assemblies. 

To s t a y  w i t h i n  t h e  c a p a b i l i t y  o f  e x i s t i n g  pump technology, t h e  maximum 

a l l o w a b l e  p ressure  drop from the  coo lan t  i n l e t  nozzles t o  t h e  o u t l e t  nozzles 

has been s e t  a t 1 4 5  p s i .  

mate ly  20 p s i a  a t  t h e  o u t l e t  nozzles t o  165 p s i a  a t  t h e  i n l e t  nozzles. 

The pressure i n  t h e  r e a c t o r  vessel v a r i e s  f rom approx i -  

The a c t i v e  core  c o n s i s t s  o f  d r i v e r  f u e l  assemblies, t e s t  assemblies, and 

c o n t r o l  and s a f e t y  rods. 

i n  t u r n  i s  surrounded by t h e  r a d i a l  s h i e l d .  A l l  o f  these components a r e  

supported by t h e  core  support  s t r u c t u r e  and a r e  l a t e r a l l y  r e s t r a i n e d  w i t h i n  the  

core  b a r r e l .  In-vessel  s to rage l o c a t i o n s  f o r  i r r a d i a t e d  f u e l  assemblies and 

o t h e r  components a r e  p rov ided o u t s i d e  t h e  core  b a r r e l .  

( i ns t rumen t  t r e e s )  a r e  mounted on p lugs  i n  t h e  vessel head and a r e  l a t e r a l l y  

It i s  surrounded r a d i a l l y  by a r e f l e c t o r  r e g i o n  which 

The ins t rumen t  s t r u c t u r e s  

/ , \ 

supported by t h e  core  b a r r e l .  w 
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con ta in ing  a close-packed hexagonal a r r a y  o f  217 

diameter.  The a c t i v e  core s e c t i o n  o f  each f u e l  p 

U02 pe l1  e ts .  H e l i c a l  w i r e  spacers p rov ide  r a d i a l  

The main component o f  the  d r i v e r  f u e l  assembly i s  t h e  f l o w  duc t  reg ion  

0.230 inch  

umn o f  IPuO2- 

p ins  and 

ensure space between them f o r  coo lan t  f l ow .  

t h e  f u e l  assembly i s  t h e  coo lan t  f l o w  duct .  

w i t h  t h e  core suppor t  p l a t e  t o  separate the  h igh  pressure i n l e t  plenum from 

t h e  low pressure plenum surrounding the  f u e l  assemblies. 

f l o w  duc t  i s  designed t o  mate w i t h  t h e  ins t rument  t r e e  and t h e  in-vessel  

f u e l  hand l ing  machine grapple.  The ins t rument  t r e e  prov ides a secondary 

support .  

The ex te rna l  s t r u c t u r a l  member of  

The bottom i n l e t  nozz le mates 

The t o p  end o f  t h e  

Load pads a re  prov ided on t h e  ou ts ides  o f  t h e  ducts  a t  e leva t i ons  above 

t h e  a c t i v e  core  and a t  t he  tops o f  t h e  ducts.  

j a c e n t  ducts  and p rov ide  bear ing  sur faces f o r  r e s t r a i n i n g  loads and i n t e r a c t i o n s  

between ducts .  

p rov ides  s t r u c t u r a l  suppor t  f o r  a l l  o f  t h e  removable and semi-removable compo- 

nents w i t h i n  t h e  r e a c t o r  core.  

t h e  h igh  pressure i n l e t  plenum and t h e  o u t l e t  sodium pool .  

w i t h  al lowance f o r  r a d i a l  thermal expansion, i s  a f fo rded  by a c o n i c a l  s k i r t  

which i s  welded t o  t h e  ou te r  r i n g  f o r g i n g  o f  t h e  core support  s t r u c t u r e  atid t o  

t h e  r i n g  f o r g i n g  on t h e  r e a c t o r  vessel .  

s t r u c t u r e  cons is t s  o f  a removable basket which conta ins t h e  removable core 

components. Outboard o f  t he  removable sec t ion ,  t h e  core  support  s t r u c t u r e  

prov ides a space f o r  t h e  in -vesse l  r a d i a l  s h e i l d i n g  which i s  supported 

l a t e r a l l y  by t h e  core b a r r e l .  

These load  pads separate ad- 

The core suppor t  s t r u c t u r e ,  made o f  Type 304 s t a i n l e s s  s t e e l ,  

I t  a l s o  prov ides t h e  pressure b a r r i e r  between 

V e r t i c a l  suppor t  

The c e n t r a l  s e c t i o n  o f  t h e  core suppor t  

8 
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IRRADIATION TEST FACILITIES 

Fuel t e s t i n g  under breeder r e a c t o r  cond i t i ons  c a r r i e s  w i t h  i t  

u n c e r t a i n t i e s ,  e s p e c i a l l y  a t  ope ra t i on  near extreme r e a c t o r  condi t 

temperature, f l u x ,  and f luence. Ma l func t ions  and f a i l u r e s  o f  t e s t  

many 

ons o f  

samples 

can be expected under such cond i t i ons .  

d i s r u p t i v e  t e s t s  i n  the unprotected core  o f  t h e  r e a c t o r  where they cou ld  cause 

ex tens i ve  damage which would r e s u l t  i n  s h u t t i n g  down t h e  r e a c t o r .  To o b v i a t e  

such an occurrence, c losed t e s t  loops  have been designed i n t o  t h e  system. 

I n i t i a l l y  t h e r e  w i l l  be two such c losed loops. 

f o u r  a d d i t i o n a l  loops  t o  be added i n  t h e  f u t u r e .  The t e s t  p o s i t i o n s  a re  spaced 

th roughout  t h e  core, see F igu re  3. 

I t  i s  n o t  f e a s i b l e  t o  r u n  p o t e n t i a l l y  

P rov i s ions  a r e  be ing  made f o r  

A c losed loop  i s  an i s o l a t e d  c i r c u i t  which permi ts  p r e c i s e  c o n t r o l  over  

a1 1 exper imental  parameters i n c l u d i n g  coo l  a n t  f l o w  r a t e  and p u r i t y  , temper- 

a tu re ,  and pressure.  The c losed l o o p  c i r c u i t  a l s o  i nc ludes  an i n - c o r e  t e s t  

s e c t i o n  exposed t o  known, p r e d i c t a b l e  neu t ron i cs .  

separate and d i s t i n c t  system. 

coo lan t ,  and coo lan t  pump; an i n te rmed ia te  heat exchanger; secondary p i p i n g ,  

coo lan t ,  and c o o l a n t  pump; and an a i r - b l a s t  heat  dump. 

Each c losed l o o p  i s  a 

It inc ludes  an i n - r e a c t o r  tube; p r imary  p i p i n g ,  

The i n - r e a c t o r  tube c o n s i s t s  of a f l o w  tube i n s i d e  a p ressure  tube 

assembly arranged t o  fo rm a r e - e n t r a n t  f l o w  system. 

end o f  t h e  pressure  tube and e x i s t s  f rom t h e  t o p  end o f  t h e  f l o w  tube. 

Coolant en te rs  a t  t h e  t o p  

A t e s t  

i s  supported on t h e  end o f  a hanger 

t h e  des i red  i ns t rumen ta t i on  

ow tube and then upward through 

sample i s  l o c a t e d  i n  t h e  f l o w  tube and 

tube which has a x i a l  spacing f i n s  and 

leads. Coolant f l o w  i s  downward ou ts  

o r  around t h e  t e s t  assembly. 

con ta ins  

de the  f 
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Both t h e  f l o w  tube and t h e  pressure tube a r e  double w a l l e d  w i t h  i n -  

s u l a t i n g  m a t e r i a l  o r  spacers i n  t h e  a n n u l i  t o  m a i n t a i n  c o n c e n t r i c i t y .  Both 

i n n e r  and o u t e r  w a l l s  a r e  designed so t h a t  each i s  capable o f  w i ths tand ing  

t h e  design temperature and pressure cond i t i ons .  The assembly conta ins  a 

r e f r a c t o r y  metal  cup a t  t h e  bottom o f  the  pressure tube t o  r e t a i n  mo l ten  

t e s t  f u e l  w i t h o u t  causing r u p t u r e  o f  t h e  o u t e r  pressure w a l l .  

have been made t o  p revent  t h e  escape of any m a t e r i a l  f rom a c ladd ing  f a i l u r e  

o r  f u e l  meltdown. 

o u t s i d e  t h e  pressure tube. 

P rov i s ions  

Backup c o o l i n g  i s  p rov ided by t h e  r e a c t o r  coo lan t  pool 

The p r imary  heat t r a n s p o r t  system inc ludes  two c o o l a n t  pumps i n  p a r a l l e l ,  

e i t h e r  o f  which can handle t h e  f l o w  requirements and which a r e  connected t o  

bo th  normal and a u x i l i a r y  power systems. There i s  a l s o  an a u x i l i a r y  sodiuim 

supply tank  which con ta ins  enough sodium t o  p rov ide  s u f f i c i e n t  c o o l i n g  t o  

preserve the  s t r u c t u r a l  i n t e g r i t y  o f  t h e  tube i n  case o f  a l e a k  i n  t h e  pr imary  

system sma l le r  than t h e  complete r u p t u r e  of a p i p e l i n e .  

o f  t he  secondary heat  t r a n s p o r t  system, t h e r e  i s  s u f f i c i e n t  mass o f  sodium i n  

t h e  a u x i l i a r y  system t o  absorb t h e  decay heat. 

I n  t h e  case o f  f a i l u r e  

There i s  a l s o  a group o f  open t e s t  p o s i t i o n s  i n  t h e  core  o f  t h e  FTR. There 

w i l l  be seven i n i t i a l l y ,  w i t h  t h e  number be ing  reduced t o  t h r e e  i n  t h e  fu tu re  

as f o u r  a re  rep laced by c losed loops. 

t h e  r e a c t o r  core  and are  supp l i ed  w i t h  r e a c t o r  p r imary  coo lan t  i n  t h e  same way 

as t h e  d r i v e r  f u e l  channels. These t e s t  p o s i t i o n s  p rov ide  the  c a p a b i l i t y  f o r  

i r r a d i a t i n g  s p e c i a l l y  instrumented assemblies. The open t e s t  loops  w i l l  be 

r e s t r i c t e d  i n  power and c o n f i g u r a t i o n  t o  c m d i t i o n s  s i m i l a r  t o  those o f  a d r i v e r  

f u e l  assembly. Each t e s t  design w i l l  be sub jec ted  t o  a s a f e t y  rev iew p r i o r  t o  

i n s e r t i o n  i n t o  t h e  core  t o  make c e r t a i n  t h a t  no p o t e n t i a l l y  d i s r u p t i v e  t e s t s  

a re  conducted i n  open t e s t  loops. 

The open t e s t  loops  a r e  i n t e g r a l  p a r t s  of 

n 

n 
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FUEL HANDLING SYSTEM 

The f u e l  hand l ing  system i s  designed t o  handle the  var ious  components 

which must be p u t  i n t o  the r e a c t o r  o r  removed from i t  f o r  exper imental  o r  

maintenance purposes. It consists o f  two main sub-systems. The portion 

which l i e s  o u t s i d e  t h e  r e a c t o r  vessel i s  c a l l e d  the c losed- loop, ex-vessel 

machine (CLEM) and the  p o r t i o n  which i s  i n s i d e  the  r e a c t o r  vessel i s  c a l l e d  

t h e  in -vesse l  hand1 i n g  machine (IVHM). 

The f u e l  hand l ing  system has been designed t o  s a t i s f y  a number o f  

s p e c i f i c  requirements i n c l u d i n g  the  f o l l o w i n g :  

Prevent c o n t a c t  o f  a i r  w i t h  sodium and minimize the  escape 

o f  any substance d u r i n g  the hand l ing  procedure. 

Prov ide  adequate r a d i a t i o n  s h i e l d i n g .  

Prevent dangerous o r  i n a d v e r t e n t  re lease  o f  l oad  from an I V H M  o r  

CLEM grapple.  

Prov ide  adequate measurable c o o l i n g  f o r  component hand l i ng  and 

removal o f  decay heat.  

Prevent t h e  occurrence o f  a c r i t i c a l  a r r a y  o f  f u e l  components. 

Minimize t h e  p o s s i b i l i t y  o f  r e a c t o r  contaminat ion.  

Pe rm i t  i d e n t i f i c a t i o n  o f  core components be fo re  l o a d i n g  and 

i n d i c a t e  p o s i t i o n  and o r i e n t a t i o n  o f  components placed i n  the  core. 

I nco rpo ra te  a1 1 s a f e t y  fea tu res  i n c l u d i n g  emergency power, manual 

o v e r r i d e ,  and a "dead man" c o n t r o l  t o  a u t o m a t i c a l l y  r e t u r n  the 

system t o  a safe p o s i t i o n  i n  the event o f  a ma l func t i on .  

11 



Provide adequate heat ing  and c o o l i n g  t o  p revent  sodium freezeup 

o r  thermal shock t o  components d u r i n g  handl ing.  

The system which has been designed t o  s a t i s f y  the  s p e c i f i e d  o b j e c t i v e s  

can bes t  be descr ibed by o u t l i n i n g  the hand l ing  sequence t o  p lace  a d r i v e r  

f u e l  assembly i n  the  core. 

The assembly i s  t ranspor ted  on a t r a n s f e r  d o l l y  through the  equipment; 

a i r  l o c k  i n t o  the  containment b u i l d i n g  (see F igure 2)  and i n t o  a c o n t r o l l e d  

environment c e l l .  A l l  t r aces  o f  a i r  and mois tu re  a r e  removed and the  assembly 

i s  temperature condi t ioned.  

p laced i n  a f i nned  p o t  f o r  i n t e r i m  storage. 

i s  nex t  t ranspor ted  by the  CLEM t o  the  in -vesse l  t r a n s f e r  s t a t i o n .  

t he  I V H M  takes t h e  assembly o u t  o f  t he  f i nned  p o t  and p laces i t  i n  the  core.  

With t h e  a i d  o f  t he  CLEM the  assembly i s  then 

The f i nned  p o t  w i t h  i t s  contents  

From there  

A t  t he  complet ion o f  i r r a d i a t i o n ,  t he  I V H M  t r a n s f e r s  the  d r i v e r  f u e l  

assembly t o  an in -vesse l  s torage p o s i t i o n  f o r  decay d u r i n g  the  nex t  ope ra t i ng  

cyc le .  

and then moved by the  CLEM t o  the  i n t e r i m  decay s torage.  

d r i v e r  i s  p laced i n  a core component t r a n s f e r  cask. 

i s  used t o  p lace  the  cask and i t s  con ten ts  i n  a t r a n s f e r  d o l l y  which c a r r i e s  

the  cask through the  equipment a i r l o c k  t o  the ou ts ide .  

The assembly i s  nex t  l i f t e d  o u t  by the IVHM, rep laced i n  a f i nned  pot ,  

From storage, the  

The p o l a r  b r idge crane 

The c losed- loop,  ex-vessel machine (CLEM) i s  a cooled, sh ie lded,  

g rapp le -ho is t  machine t h a t  i s  mounted on a t r o l l e y  which i s  supported by a 

gant ry .  Cont ro l  i s  semiautomatic and i s  accomplished from a l o c a l  c o n t r o l  panel .  

Coo l ing  o r  hea t ing  i s  achieved by heat  t r a n s f e r  t o  a NaK-cooled c o l d  w a l l  

by a combinat ion o f  r a d i a t i o n  and na tu ra l  connect ion.  

c a p a b i l i t y  t o  handle a 10 M W  open p o s i t i o n  t e s t  assembly i n  a f i nned  po t ,  a 

The CLEM has t h e  thermal 

assembly, o r  a 2 t o  4 MW closed- loop. 7 MW d r i v e r  fue  

Q 

n 
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HEAT TRANSPORT SYSTEM 

The HTS c a r r i e s  t h e  heat generated i n  the  core  o f  the r e a c t o r  t o  t h e  

dump heat  exchangers which d i s s i p a t e  i t  t o  the  atmosphere. There a r e  t h r e e  

independent, p a r a l l e l  heat t r a n s p o r t  c i r c u i t s .  A f l o w  diagram o f  one c i r c u i t  

i s  shown i n  F igure  4. The HTS has been designed so t h a t  t h e  f a c i l i t y  w i l l  be 

capable o f  o p e r a t i n g  w i t h  one c i r c u i t  i n o p e r a t i v e  e i t h e r  as  a r e s u l t  o f  an 

acc iden t  o r  f o r  maintenance. 

Sodium heated i n  the core  o f  t h e  r e a c t o r  f lows o u t  through t h e  normal ly -  

open, h o t - l e g  i s o l a t i o n  valves t o  the  s u c t i o n  s ides  o f  t h e  c e n t r i f u g a l ,  f r e e -  

surface, pr imary- loop, c i r c u l a t i n g  pumps. Sodium from t h e  pump discharges f l ows  

t o  t h e  i n te rmed ia te  heat exchangers (IHX) and v e r t i c a l l y  downward through t h e  

s h e l l ,  s ide ,  t r a n s f e r r i n g  heat  t o  t h e  tube-side, secondary sodium. From t h e  

I H X  o u t l e t s ,  t h e  pr imary  sodium f lows through check va lves  and t h e  c o l d - l e g  

i s o l a t i o n  valves t o  t h e  r e a c t o r  vessel i n l e t s .  The r a t e  o f  sodium f l o w  i s  

a d j u s t a b l e  by means o f  var iable-speed pump d r i v e s .  

The t h r e e  secondary loops c i r c u l a t e  t h e  non- rad ioac t ive  sodium coo lan t  

f rom t h e  i n te rmed ia te  heat exchangers t o  t h e  dump heat exchangers. Each 

secondary l oop  has one pump, one expansion tank, and t h e  necessary va l v ing .  

Heat f rom t h e  secondary sodium i s  t r a n s f e r r e d  t o  ambient a i r  by means o f  

f o r c e d - d r a f t ,  sod ium- to-a i r  hea t  exchangers. Each o f  t h e  t h r e e  heat  dumps 

c o n s i s t s  o f  mu1 t i p l e  heat exchanger modules. 

The fo rego ing  descr ibes t h e  normal opera t ion .  There a r e  a l s o  many fea-  

t u r e s  t o  ensure adequate Emergency Core Cool ing (ECC). The f u n c t i o n  o f  Emergency 

Core c o o l i n g  i s  t o  ma in ta in  a minimum r e a c t o r  c o o l a n t  f l o w  i n  t h e  event o f  a com- 

ponent f a i l u r e ,  a breach of t h e  pr imary  r e a c t o r  coo lan t  system boundary, o r  a 

loss o f  e l e c t r i c a l  power. w 
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I n  the event o f  a complete loss of  a l l  power, b o t h  o f f - s i t e  and on-site 

the equipment elevations and the low system hydraulic resistance provide 

suff ic ient  natural convective cooling t o  ensure core integri ty .  I n  the event 

of an o f f - s i t e  power fa i lure ,  pony motors supplied with emergency power drive 

the primary and secondary pumps t o  supply approximately 7 1 /2% of normal flow. 

This i s  suff ic ient  t o  remove the normal decay heat d u r i n g  emergency cooling. 

The pony motor operation will also be used t o  remove heat d u r i n g  refueling. 

In the event of a leak in the sodium system or a component fa i lure ,  other 

safety provisions become operative. 

l ines are 14 fee t  below the normal sodium level i n  the reactor. From the 

nozzles, the out le t  p i p i n g  r i ses  approximately 1 2  fee t  before i t  passes over 

the t o p  of the gua rd  vessel. The sodium volume i n  the reactor vessel, above 

the m i n i m u m  safe level for  ECC, i s  greater t h a n  3500 f t  . This reservoir,  i n  

combination w i t h  the other ECC features,  prevents the sodium level in the 

vessel from fa l l ing  t o  the top of the out le t  nozzles in the event of leakage a t  

any p o i n t  i n  the coolant boundary, thus the siphoning action of transferring 

sodium t o  the primary pumps remains unimpaired. 

The reactor vessel ou t le t  nozzle center- 

3 

A guard  vessel i s  f i t t e d  around the reactor vessel, the f ree  annular 

space between them has a volume, t o  the top of the guard vessel, of about 

2800 f t  . The reactor vessel ou t le t  elbow and vertical piping are  contained 

within the guard vessel up  t o  the t o p  of the gua rd  vessel. 

3 

The reactor vessel i n l e t  piping i s  installed ver t ical ly  between the 

reactor vessel and the guard vessel and i s  shrouded by a guard-pipe. If  a 

leak occurs i n  the in l e t  piping close t o  the reactor vessel nozzle, the sodium 

level r i ses  quickly in the small clearance volume inside the guard pipe anid 

b u i l d s  u p  a back pressure above the leak t o  main ta in  suff ic ient  core flow. 

1 4  



Guard tanks o f  l i m i t e d  c learance volume a re  f i t t e d  around a l l  t h r e e  IHX's 

and pr imary  pumps. 

t a i n e d  w i t h i n  t h e  guard tanks. 

t a i n e d  w i t h i n  the  guard vessel and guard tanks o r  i s  e leva ted  above t h e  t o p  

o f  t h e  guard vessels.  

t h e  s h u t o f f  head developed by the  pr imary  pumps a t  pony motor speed i s  approx i -  

ma te l y  5 f e e t .  

i n  t h e  r e a c t o r  vessel w i l l  f a l l  as t h e  guard tanks f i l l  up o r  f l u i d  i s  pumped 

o u t  o f  t h e  e leva ted  p i p i n g .  

sensed by the  system ins t rumenta t ion  and t h e  pumps will be t r i p p e d  t o  pony 

motor d r i v e .  The sodium i n v e n t o r y  above t h e  o u t l e t  nozzles ensures t h a t  when 

t h e  pumps have coasted down t o  pony motor speed t h e  sodium i n  t h e  r e a c t o r  w i l l  

n o t  have f a l l e n  below a sa fe  l e v e l  above t h e  o u t l e t  nozzles. When t h e  sodium 

i s  a t  t h e  minimum l e v e l ,  t h e  head developed by t h e  pumps a t  pony motor speed 

i s  i n s u f f i c i e n t  t o  l i f t  t h e  sodium over t h e  t o p  o f  t h e  r e a c t o r  guard vessel  

and t h e  guard tanks o r  ou t  o f  t h e  e leva ted  pr imary  p i p i n g .  

The v e r t i c a l  p r imary  p i p i n g  t o  these components i s  con- 

A l l  o t h e r  p r imary  loop p i p i n g  i s  e i t h e r  con- 

Another impor tan t  f e a t u r e  o f  t h e  ECC system i s  t h a t  

I f  a l eak  occurs i n  one o f  t h e  pr imary  loops, t h e  sodium l e v e l  

However, as soon as a l e a k  occurs i t  w i l l  be 
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CONTAINMENT AND STRUCTURES 

I 

The FFTF containment and s t r u c t u r e s  i nc lude  the  Reactor Contain- 

ment Bu i l d ing ,  Reactor Serv ice Bu i l d ing ,  Engineer ing Operat ions and Contro'l 

B u i l d i n g ,  A u x i l i a r y  Equipment Bu i l d ing ,  and a u x i l i a r y  s t r u c t u r e s  i n c l u d i n g  

the  e l e c t r i c a l  subs ta t ion ,  main heat  dumps, c losed l o o p  heat  dumps, NaK heat  

dumps, i n e r t  gas storage, pumphouse, water s torage tank, and c o o l i n g  tower!;. 

The r e a c t o r  containment system inc ludes  an i n n e r  containment b a r r i e r  

c o n s i s t i n g  o f  s t e e l  l i n e d  r e i n f o r c e d  concrete c e l l s ,  and the  ou te r  contain-. 

ment vessel .  

The r e a c t o r  c a v i t y  houses the  r e a c t o r  vessel ,  t he  guard vessel ,  and 

assoc ia ted  sh ie ld ing .  

the  r e a c t o r  c a v i t y  on th ree  s ides.  A f u e l  decay s torage area occupies the  

f o u r t h  s ide.  

Three heat  t r a n s p o r t  system (HTS) c e l l s  surround 

Four c losed loop  c e l l s  and a u x i l i a r y  equipment a re  a l s o  

l o c a t e d  w i t h i n  the  containment vessel .  

The main work area i n s i d e  the  containment vessel i s  the  opera t i ng  f l o o r  

above t h e  r e a c t o r .  

most o f  the  area, hea t ing  and v e n t i l a t i n g  equipment, miscel laneous acces- 

F a c i l i t i e s  i n  t h i s  area i nc lude  a gan t ry  crane se rv ing  

sor ies ,  u t i l i t i e s ,  and c o n t r o l  s t a t i o n s .  Th is  work area i s  sh ie lded  f o r  

cont inuous occupancy. 

The containment vessel  i s  a cy1 i n d r i c a l  , welded, carbon-stee l  pressure 

vessel .  Penet ra t ions  c o n s i s t  o f  the personnel a i r l o c k ,  emergency a i r l o c k  

and the  equipment t r a n s f e r  l ock ;  ducts f o r  the supply and exhaust o f  ven- 

t i l a t i o n ;  and penet ra t ions  f o r  p i p i n g  and w i r i n g .  Penet ra t ions  a re  designed 

and t e s t e d  f o r  l eak  t i gh tness  t o  meet the  o v e r a l l  l e a k  r a t e  requirement o f  t he  

containment vessel .  

n 

n 
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The containment vessel i s  equipped with vacuum re l ie f  and pressure 

re l ie f  devices as well as a lightning rod .  Buildup of  potential t o  ground 

i s  prevented by grounding. 

The reactor cavity, approximately 36 fee t  diameter x 48 fee t  h i g h ,  i s  

A pipeway inside the containment vessel and i s  formed of reinforced concrete. 

space i s  located between the reactor cavity and each HTS c e l l .  

surfaces o f  the cy1 inder wall s and bottom, and o f  the pipeways, are 1 ined 

w i t h  s teel  plate t o  make them gas t i g h t  and a l so  p r o v i d e  a barrier in the 

event o f  a sodium leak. 

a short-term pressure surge of 35 psig. 

The in te r ior  

The cavity and pipeways are capable of  withstanding 

The heat transport system ce l l s  are also formed o f  reinforced concrete 

lined with steel  plate.  

by 36 f e e t  long. About half of each cell  has a depth of 1 7  f ee t  and the 

remaining area,  nearest the reactor,  has a depth of  44 fee t  for the primary 

pumps and the intermediate heat exchangers. 

They are rectangular, approximately 33 fee t  wide 

Shielding between the cavity and pipeways and the HTS ce l l s  permits 

limited personnel access t o  the ce l l s .  

a pressure of approximately 10 psig. 

The ce l l s  are capable of  sustaining 

The reactor head access ce l l  i s  the volume above the reactor vessel head 

and cover r i n g .  Closure for  t h i s  volume i s  the operating deck cover plate.  

The head cavity i s  designed t o  accommodate an a i r  atmosphere d u r i n g  reactor 

operation. Low r a d i a t i o n  levels will permit manned access d u r i n g  reactor 

operation. To provide an inerting capabili ty,  the operating deck i s  designed 

so that  i t  can be sealed i f  required. Irrespective o f  the cavity atmosphere, 
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the operating deck serves as a missile barrier and provides structural  support 

for  refuel i ng and mai ntenance equipment . 
The closed loop and other ce l l s  are isolated from the ce l l s  forming the 

A1 1 of the cell  s contai n i n g  primary sodium, pl tis inner contai nment barrier.  

the maintenance assembly and disassembly cell  , are lined w i t h  s teel  plate. 

These ce l l s  include: 

storage c e l l s ,  and the primary sodium storage and overflow t a n k  ce l l .  

closed loop c e l l s ,  pipeways, cold t r a p  c e l l s ,  fuel decay 

All penetrations through a wall i n  any p a r t  of the containment system 

are designed to  maintain the integri ty  of the system under a l l  normal and 

hypothesized conditions 

The s ta tus  of the FFTF program is  as follows. The plant i s  now in the 

mid-course of the design stage. Conceptual studies have been completed and 

designs are being released fo r  fabrication. 

pressure vessels, pumps and valves have been ordered. 

s i t e  for  major construction is  now underway. All plans are  targeted toward 

a c r i t i c a l i t y  date of June 1974. 

Long lead hardware such as 

The preparation of the 

Stringent quality control procedures will be applied during the fabrica- 

tion and construction phases o f  the FFTF plant, and i t  i s  anticipated that 

much worthwhile experience will be gained for  future liquid metal f a s t  breeder 

reactor systems. 

Some detail  on the Fast Flux Test Facil i ty and i t s  present s ta tus  has been 

presented. 

ambitious program ahead. 

Of greatest  importance i s  the progress that  s being made and the 

Q 
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FIGURE 2 .  Reactor Elevat ion 
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Note: Rea 
6 (  

GENERAL PURPOSE CLOSED LOOPS-2 @ 
SPECIAL PURPOSE TEST - 2 @ 

OT OPEN TEST ASSEMBLIES- 3 0 pq 
OT OPEN TEST ASSEMBLY WITH PROXIMITY 

INSTRUMENTATION-1 

@ OSCILLATOR - 1 

DRIVERS-28 INNER (ROWS 1-41 
- 4 7  OUTER (ROWS 5-6) 

SAFETY RODS-3 

IN-CORE SHIM/SCRAM RODS-4 

PERIPHERAL CONTROL RODS- 8 

FIXED SHIM RODS-7  

REFLECTORS- 9 3  

FIGURE 3 .  Core Map ( I s s u e d  November 1970) 
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