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The formalism developed by Ivanter and Smilga 1' 2 to 
describe the "muonium mechanism" of positive muon 
depolarization is adapted and extended to include 
situations involving more than one strongly depolarizing 
influence (e.g., muonium and a radical). In such 
cases the Laplace transform method is inapplicable, 
and the explicit time dependence cf the relevant spin 
systems must be solved. Calculations are shown for 
a plausible situation with the assumption of a transverse 
external magnetic field; the line of reasoning is 
outlined, and should be readily extendable to other 
cases, or to longitudinal field. 

Consider an ensemble of polarized positive muona coming to rest 

in a target: without loss of generality, we may assume that they are 

100% polarized, since imperfect polarization can be expressed as a 

multiplicative factor in all the formulas. The target may be gas, liquid, 

or solid, but we restrict this discussion to the case of liquids con

sisting of a reagent "X" dissolved in a solvent "S" in the "dilute limit" 
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(the concentration [X] of the reagent X is never high enough to significantly 

affect the density [S] of solvent molecules). This restriction facilitates 

treatment of muonium chemistry. All the muons capture electrons to form 

atomic muonium5, which may experience any of the subsequent fates outlined 

schematically in Fig. 1. This diagram is not intended to be all-inclusive; 

certain obvious possibilities, such as epithermal reactions with the 

reagent (causing a concentration-dependence of the "hot fraction", h) 

or chemical reactions with the reagent to form a second type of radical, 

have been omitted for the sake of simplicity; they are easily incorporated 

into the theory, if needed. 

The "residual" polarization, P , is the value obtained by ex

trapolating the observed precession of the muon to zero time, and is thus 

independent of such extraneous phenomena as relaxation or "beating" due to 

local fields. P reflects only the adventures of the muons at very early 

times, and will differ in magnitude and direction from the beam polarization 

only if the w o n spin experiences a strong influence such as the hyperfine 

interaction in muonium or a radical, which lasts for a time on the order of 1 

nsec and then desists. Any muons still evolring rapidly in muonium or 

radicals at observation times are phenomenologically considered to be 

completely depolarized. In solutions, as we will see, this early behavior 

depends strongly upon the reagent concentration [X], a parameter easily 

varied by the experiments*. 

Mathematically, the residual polarization P is obtained from the 

exact time-dependence P(t) by dividing out the Larmor precession and letting 

the time go to infinity. When muonium is the only depolarizing influence, 

one can take advantage of this by using the Lapxace transform technique 
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to circumvent the solution of the equations of motion; this method of 

solution for P depends upon the assumption that the muon spin evolves 

in only one environment until it gets into a diamagnetic compound, and 

can therefore not be used in the two-stage evolution involved here. 

With this in mind, we set out to obtain analytic formulas for all 

contributions at all times, with the residual polarization emerging as 

a special case. 

Following Ivanter and Smilga1, we define the density matrix in 

terms of the muon and electron polarizations P and P and their 

"cross-correlation" b ij' 

p = 1/4 (1 + P w- av + P e- ffe + E.. b.. cj1 a^ ) (1) 

and extract the Hangsness-Bloch equations of motion: 

K - hi ei j k<~ * % b i j - « p i •? 

K • hi e i j k

( + * wo b i j - p i 9 - 2 v p k 

bij - i ''o \ ei j k< Pk " Pk> + £mn < <Wi« + ^V 
2 v b ij 

(2) 

where o) is the hyperfine frequency in muonium, C is the ratio of li 

to electron magnetic moments, u> * eB/m c is the Larmor precession 

frequency of the electron in the external field, and \) is the frequency 

of electron "spin-flips" due to magnetic interactions with the medium. 

If the hyperfine interaction in 'the radical is a pure contact interaction, 

with strength fid) , then the equations of motion in the radical are identical 
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except for the substitution of to for w . When B is perpendicular to the 

initial muon polarization, the equations of motion decouple into "parallel" 

and "transverse" sets of equations, and we can formulate the problem 

in terms of a set of four complex equations1: 

fp 
u 

\?V + i p" ' x y 1 

p 
e 

P e + 1 P e 

x y 0 

P ' 
e 

b + 1 b xz yz 0 

I V. 
b + 1 b zx zy 0 

at t = 0 (3) 

where z is the direction of B, x is the initial polarization direction of 

the rauons, and y is the cross-product of x and "z. This complex 4-component 

vector then obeys the equation of motion P = A P, where 

A i = 2 u l 

2 ?x. 0 - 1 1 

1 - 2 x ± 1 - 1 

1 1Y ± 
+ 2 ? x ± 0 

-1 0 ^ 2x 

(4) 

for the 1 environment. Here x. = B/B. where B. is the hyperfine 

effective field in the 1 environment, and Y.. = 4v./<o t where \) 

and to. are the "spin-flip" frequency and the hyperfine frequency, 

respectively, in the 1 environment. For 1 = m (muonium), for example, 

to = U) = 2.8 x 10 rad /sec , and B = B = 1580 Gauss. Both values are m o m o 

probably less in a l l other environments. 

A. can be diagonalized ( th i s i s f a c i l i t a t e d when V •* 0, a s w 

believe to be the case for a l l l iquids of i n t e r e s t , because then A. i s 

j u s t i times a rea l symmetric matr ix.) to form the matrix D, as follows: 
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Let M be the matrix which diagonalizes A (muonium), and R be the matrix 

which diagonalizes A (radical); then M A M - D m and R'^A R = D r, r m r 
so that D,. = &.. A. and D.. =6.. A J. In terms of these matrices ij ij i ij ij i 
we can define the finite time evolution operators in muonium or radical, 

respectively: U (t,t') = M exp[Dm(t - t')] M _ 1 and Ur(t,t') = 
r -1 * 

R exp[D (t - t')] R which operate upon P(t) in the appropriate 

environment: P(t) = U.(t,t') P(t'). The time evolution operator for 

"hot" muonium is just unity (nothing happens on such a short time scale 

anyway), and that for muons in a diamagnetic compound ia U (t,t'), 

defined by V± (t, t') = & S±1 expfiw (t - t')], where to is the 

free muon Larmor frequency [here we neglect the effects of chemical 

shielding]. 

Returning now to Fig. 1, we must construct a time evolution 

operator for every possible sequence of environments that a muon may 

pass through. This will in general just be a time-ordered product; for 

example, if we label the completely specified fate of a given muon 

(including times of transition from one environment to the next) as "q", 

consider "q 7" : "hot" muonium •*• thermalized muonium •* radical (at time t..) 

[via normal chemistry] •+ diamagnetic compound (at time t 9). The overall 

time evolution operator for this process will be U (t,0) • 

U d(t,t 2) U r(t 2,t 1) A t j . O ) . 

The muon polarization which emerges at the end of process "q" 

(of which the real part is the polarization in the initial direction and 

the imaginary part is the component in the direction perpendicular to it 

and the field) is just {U (t,0) P(0) } , where \i denotes the first component 

[see (3)]. When we multiply this by the fraction of the ensemble which 
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experiences fate "q" [which we denote p(q)J, we obtain the contribution 

to the total complex muon polarization at time t, P(t), from the muons 

experiencing fate "q", which we denote P(q,t). That is, 

P(t) = £ P(q,t), P(q,t) = pO?) {Uq(t,0) P(0)} y (5) 

The sum over q may of course involve integrations (e.g., over the 

unspecified internal times t. and t_). 

We now define some empirical quantities directly related to 

liquids: k , is the chemical rate constant for the reaction Mu + X 

* Diamagnetic compound (Mu denotes muonium); k is the chemical rate 

constant for the reaction Mu + Solvent •* Radical; and k , is the 

chemical rate constant for the reaction Radical + X •+ Diamagnetic cocipound. 

In terms of these we define 1/T , = k .[X] = the rate at which muon

ium reacts chemically into a diamagnetic compound, 1/T = k [S] 
mr mr 

= the rate at which muonium reacts chemically into a radical, and 

1/x J = k j[X] = the rate at which the radical reacts into a diamagnetic 

compound. We also define 1/T - 1/T . + 1/T . The T are typically 

in seconds,- the k. in liters/mole-sec, and the concentrations in moles/liter. 

We now list all the contributions to P(t) from processes shown 

in Fig. 1; note that we include contributions which become negligible at 

large times and thus do not enter the residual pAlarlzation, P ; if 

one is interested solely in P , these contributions need not be calculated. 
res 

1) STILL-FREE MUONIOM: "q^': evolution in free Mu from t = 0 to t. 

{U^t.O) P(0) }u= S f c F k expfX" t] 

where Ffc - E M^fM" 1] 9(0) - M ^ M " 1 ] ^ (6) 
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pCq^ = (1 - h - r ) e x p t - t / T j 

thus P ( q r t ) = (1 - h - r) £ k P f c exp[(A™ - 1/T m )t] 

or PCq^t) = exp[iw y t ] (1 - h - r ) S f e F f c exp(6 k t ] (7) 

where we define 9, « A™ - 1/T - i a) . (8) 
k K m u 

[The arrangement of terms to place the Larmor precession factor outside 

a l l the r e s t w i l l be convenient l a t e r . ] 

2) HOT DIAMAGNETIC: "q , " : evolution in d .c . (diamagnetic compound) 

since combining epithermally a t t - 0. 

{J ( t , 0 ) P(0)} = exp[ito t ] 
Ho " ^ 

p(q 2 ) = h, so P ( q z , t ) - h explito^ t ] (9) 

3) MUONIUM + D.C. SHEMICALLY: " q " : evolution in Mu u n t i l time t , , 

followed by evolution in d.d. from t . to t . 

{Uq ( t , 0 ) P(0) } y = e x p [ K y t - t x ) ] H k F k expfx" t ] 

p (q 3 ) = (1 - h - r) ^ 1 exp[ - t 1 /T ] 
md 

so P ( q , , t ) = exptiiu t ] (1 - h - r) Zfc F f c ~1 exp[9, t ] 
" md 

We in teg ra te over t . from 0 to t to obtain P „ ( t ) , the contr ibution from 

the generic c lass of q, with a l l possible t.. values: 

P ( t ) - ejrpliw t ] (1 - h - r) \ X~9 F . (exp[9 k t3 - 1) (10) 
md k 

4) STILL-FREE HOT RADICAL: "q,": evolution in radical since 

combining epithermally at t = 0. 

This case is strictly analogous to case 1, and gives 
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P ( q 4 , t ) = exptiu^t] r Zfe Gfc exp[({ik t ] (11) 

where Gfe - K ^ I l f 1 ] ^ and * k = >^ - Ifr^ - i ^ . (12) 

5) HOT RADICAL -• D.C. CHEMICALLY: "q ": epithennal entry into 
radical at t = 0, evolution in the radical until time t.., 
subsequent evolution in D.C. 

This case is strictly analogous to case 3, and gives 

P5(t) = expfii^t] r ?,k T
 1 ^ Gfe (expt^t] - 1) (13) 

6) STILL-FREE CHEMICAL RADICAL: "q ": evolution until time tj 
in muonium, combination with S to form R" at time t„ 
subsequent evolution in R* (radical). 

{U (t,0) P(0) 1 = {U r(t,0 Um(t.,0) P(0)}„ 
qg V 1 1 y 

- £ i j k R u exp[A^t - t ^ l t R " 1 ] ^ M jkexP[X™ t ^ t M - 1 ] ^ 

Z i k W ik e x p [ X i t ] e x P t ( ^ " *£> ^J 

where V^ - S j R^ [ R " 1 ] ^ M ^ M - 1 ^ (14) 

p (q 6 ) = (1 - h - r) exp[ - ( t - t ^ / T fl] ^ - 1 e x p f - ^ / x J 
Iti" 

Thus P ( q 6 , t ) = expfiio t ] ( " " h " - r ) Z W exp[<Lt] exp[r t ] dt 
mr 

where ¥.. = A? - A? + 1/T . - 1/T . (15) 
ik k i rd m 

We integrate over t. from 0 to t to get P f i(t), the contribution from 
all such types of qfi with all possible t. values: 

Pg(t) = exp[iu• t] ( 1 ~T-h- ~ r ) 2 i k j ^ expt^t] (exptY^t] - 1) 
mr ik ( 1 6 ) 



7) MBONIUM + RADICAL •* D.C.! "q7": evolution until time ^ in 

muonium, followed by evolution from t. to t„ in R*, 

followed by evolution in d.c. from t- until t. 

{Uq (t,0) P(0)>u - {U d(t,t 2) B'dj,,^) A t j . t ) P(0) } y 

= exp[ioou(t - t 2 ) ] E l f c W l kexp[Xj t 2 ] exp[(X° - A*)^] 

p(q ? ) - (1 - h - r) ^ 2 rap[-(t2-t ) / T r d ] —•! expt-tjArJ 
rd mr 

giving P (q 7 , t ) = ezp[i« t ] (1 - h - r) 2 ± k W J k |^2 expt^t , , ] ^ 1 e x p t ^ t j 

rd mr 

The overall contribution from muons experiencing fates of the type "q," 

with all possible t1 and t. is then 

P I 

d 2 P ( q 7 , t ) ff ft d P(q- , t 

<* • J6 *2 j 0

2 - i - d ^ r 

- | [expt^t] - lj | (17). 

Assuming that Fig. 1 does not leave out any statistically 

significant processes, we now have the formula for the muon polarization 

at time t: 

P(t-)> = P( q i,t) + P(q2,t) + P 3(t) + P(q4,t) + P 5(t) + P g(t) + P 7(t). 

Note that this is the actual exact time dependence of the muon polarization, 

involving no approximations other, than that Fig. 1 is complete. 

Each term is conveniently of the form exp[id) t] P 1, making it 

easy to get P , the value obtained in precession experiments by 
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extrapolating to t = 0: keeping only those terms which are not still 
oscillating at a frequency beyong our practical resolution at large 
times, -.boosing a value for t which is » x + T ,, and dividing out 
the Larmor precession term exp[iu) t], we get 

Pres = ^ P l - i V J ( P < t |2' t ) + P 3 ( t ) + P7 ( t )J 

h + (1 - h - r) L — V |exp[6 t] - 1 'k x .8, md k 

+ 11 - h -

- h ( exp[$ t] - 1 | } (18) 
* i >. J t -> oo/ 

Setting t = 10(x ¥ x ,) seems to be an adequate approximation for t •*• <*>. 

These equations have been used to fit curves of P. versus [X] 
in several types of solutions. In most aqueous solutions, and in methanol6 

the evidence does not suggest significant radical formation, and fits are 
made with the assumption of r = k = k . = 0. In benzene, however, the 
experimental results flatly contradict the assumption of a pure muonium 
mechanism, and adequate fits are obtained only when we assume that con
siderable radical formation takes place.7 
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