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of Chiral Symmetry(*)

In this lecture I will illustrate some general features of
lagrangian theories of strong interactions where the lagrangian can
be meaningfully separated into two terms: a term "‘Co symmetrical
under the chiral SU(3) @ SU(3) group, and a breaking term aﬁB which
is assumed to transform, under the same group, according to the
representation (3,3) @ (3, 3). This is the kind of theory one abstracts
from simple quark models (in these models IB representing just a
quark-mass term) or from more elaborate o-models (where ocB is
related to fundamental scalar fields), As we shall see, the theory
displays a remarkable degree of symmetry and allows some general
features of hadron spectrum to be interpreted in a very simple way,

In the following I will restrict myself to rather general con-
siderations, without going much into a detailed connection of the

parameters appearing in the theory with physically measurable
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quantities (such as masses, decay amplitudes, etc.). These aspects
are fully covered in the lectures by R. Dashen at this School, where
also a comparison with other schemes, different from the one
discussed here, is given,

Let me conclude this introduction apologizing for not presenting
any particularly new material, except for some speculation on scale
invariance discussed in the end.

This lecture has a rather pedagogical character, and I hope
can provide some useful iatroduction to the wide literature appeared
in the last few years on the subject.

The relevance of chiral SU(3) ® SU(3) was pointed out by
M. Gell-Mann since 1962( l), in the frame of what has afterward been
called the free quark model. So, let me start by considering a free,

massive quark lagrangian:
L=iF, A, + T ey =iTAb+Tey (1)

€ is a 3x3 real diagonal matrix, representing quark masses, and
« and B run from 1 to 3.

It is useful to introduce the left and right handed quark iields:

¢La =24 ll"ct ; "pRoc =a. ll"OL ’ azx =

If the quarks v’ere massless, so that L would reduce to the kinetic
energy term, L would be fully symmetrical under the set of tran-

sformations:

lpLa_. UaB ¢LB ; ¢Ra VaB ¢RB (Z)

Tt ey RO by




U and V being 3x3 unitary, unimodular matrices,

This set of transformations, each of which is evidently charac
terized by rhe pair of matrices (U, V), is the chiral SU(3) @ SU(3)
group.

Actually the massless version of Eq. (1) is symmetrical under
the transformations Eq. (2) even when U and V are unitary but not
unimodular, this corresponding to symmetry under U(3) @ U(3) =
= U(1) ® U(1) @ su(3) @ su(3).

One of the two U(1l) groups can be identified with quark number
conservation (corresponding in the real world to baryon number con-
servation) and the other one with the quark helicity conservation.

The relevance to the real world of this latter symmetry is, at
the moment, more dubidous than anything I will say in this lecture,

(2)

so that I will forget about it in the following" °. Also, I will not
merntion quark number conservation anymore, it being implicit in all
I will say. SU(3) ® SU(3) symmetry brings with it sixteen conserved

currents, which can be written as:

Lis () = T )y, by, (%)
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or, in terms of the more familiar vector and axial vector currents,
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In terms of quark fields we also construct the operators:

Mg () = Fpp () Uy, ()

(MM, () =T, 5 () b, ()

which again are ¢onnected to the familiar scalar and pseudoscalar

(z)

densities’ ~ azcording to:
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here i goes from 0 to 8.

The matrices M and M' have simple transiormation properties

under the transformations c¢f the quark fields given by Eq. (2):

M —e UMV
(U, V)

M —— v MT Ut
(U, V"

which reveal that M transforms according to the (3, 3) representation,

and M according to the (3, 3), We will also consider infinitesimal

transformations, both left and right-hahded:
(G, V) =(1+iai;, 1)

~ i ol + - s A oagt
6LM--.1a"XiM, 6I_M =-ia M\




(U, V) = (1,1+1iB" ;)

+

H

SeM=-iB M\, ; sxM'=ipgiy; Mt

We conclude these preliminaries by giving the transformation

properties of the currents, which can be derived from Eq.(3):

+

L“ —-(U,v) ULu U (10)
R —= VR V! (11)
(U, V) H

Eqs. (10) and (11) indicate that I transforms as the (8,1) and R"

as the (1, 8) representations,

We now introduce e. m. and weak interactions in the lagrangian

eq. (1), writing

=10 Fy+ 0y +g [W“ Evu(lws).\,Wh.c.] +

T s (T —
+e A w7“XQ¢—1(¢Lﬁ¢L+¢RI5¢R)+
+ (q_JR.g LJJ]_ +$L6¢R) +2g [W“ \L-Lyu xw ¢L+h.'c.i| +

u -~ -
te AT (B v Moy + oy, Aody) =

etvo + Tr (Me + M+€) +2¢g [W“ Tr(L“ )‘w) + h.Ac.] +
it .
+e A Tr (L“+R“)/\Q

We fixthe charge spectrum by requiring
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2
3 0 0
v =L 0o L o (13)
Q 3
1
0 o -3

)\w is then determined(by the requirements of having charge +1 and

3
of generating with )\"‘; an SU(2) group( )) to have the form:

0 cos 0 sin 6
A = 0 0 0 (14)

0 0 0

We see that the lagrangian Eq. (12) can be thus splitted into:

i) a symmetric term 'Lo ;

ii) an SU(3) @ SU(3) breaking term :’B , transforming as
(3,3) ® (3, 3);

iii) e, m, and weak terms, transforming according to (8,1) @ (1, 8)
and given in terms of the SU(3) @ SU(3) currents via the matrices Ao
and \_ .

6 is (with some qualification to be given later) the Cabibbo
angle(‘).'

Properties i), ii) and iii) are those which we want to abstract
from quark model, and constitute the basis of our considerations,

However the breaking term LB as given by Eq,(12) is not the
most general (3,3) @ (3, 3) element, compatible with hermiticity

of £, B . This is rather given by

LB =Tr (Me' + Mte) (15)
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€ being any 3x3 matrix. If € is real and diagonal we get backEq. (12).

In conclusion, let us write our L.agrangian as:

L=Lo+d () +L, n OH+L,(N) (16)

)‘Q and X\ are given by eqs.(13) and (14), I’B is given by eq.(15),

€ being any matrix consistent with change conservation:

a,b, c,d =arbitrary complex

numbers (17)

In the free quark model L, and £} are trivial, but it is easy to

construct more complicated models in which L o and ‘LB both

contain non trivial interactions, like the ¢ -mod~l or the gluon model,
Our first problem will be that of determining what symmetries

()

The first observation is that, if ¢ has the general form eq. (17)

can L B retain or violate

‘LB seems to violate strangeness and parity. Why ? Let us rewrite

Eq.(15) as

L - Tr(M)(e be) Tr(M‘,M*)(G‘,“L)
B 2 21 i
comparing with Eq. (16), we see that £B contains terms of the
form (n\) and i(n Y, \) i.e. both parity (P) and strangeness (S)
violating. Actually there have been attempts to connect at least
parts of the S-violating non leptonic decay amplitudes to an "effective"

lagrangian transforming as a piece of a (3,3) ® (3, 3). What we will
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show now is that, in the scheme represented by Eq. (16), these pieces
are illusory because:

a) L g can violate P only if it violates also CP;

b) 4, g is always strangeness conserving.

i L B contains other pieces besides the (3,3) @ (3, 3) term,
then b) does not hold any more, whereas a) is still true. Since the
main part of the observed non leptonic decays is CP-conserving,
then a (3,3) can represent at most P-conserving, AS =1 non

leptonic amplitudes, provided L g contains more terms than in our

scheme (e.g. an (8.1 @ (1. 8) piece). Elementary considerations,
which I will not report here(6), show that any 3x3 matrix € can always

be written as:

wie

i

€=U eDV+ e (18)

U and V being suitable uritary and unimodular matrices, €p a real

diagonal matrix and ¢ some real phase (Eq. (18) holds in general
for nxn matrices, with the substitution -;— (/M -r!{ ).

Suppose now to apply to the basic fields in L (whatever they
are) the SU(3) @ SU(3) transformation (U, V), Then:

L -4,

.9 . 9@
l—

Lo~ MVt U+ MUTe V) = Tr(M gge™ 3 + MYe ¥ 3)

L e A Tr(L UNA_U+R VI A_V)
e.m, u B Q

Q

N .
S Zg[W” Tr (L, Ut )\, U)+h.c.]




Since [e, \Q] = 0, we can furthermore choose U, and V such that

they commute with \Q » So that I. e.m. Yémains unchanged.

Then we see that the lagrangian eq.(16) is equivalent to:

wie

L=C,+8,pe )+L o0+ L, (U, U

where
a) c is replaced by a diagonal matrix, so that it has no more

S-violating terms;
b) A\, ~ ut A, U , this corresponding just to a redefinition of

the Cabibbo angle.
In fact, since [U, )‘Q] =0

1 0 0
U = 0 cos @ sin ¢
0 -sin ¢ cos @

0 cos(@+¢@ sin(6 +@)
0 0

0 0 0

This disposes of S-violation.
As for parity, we observe that the now ‘[‘B , if @# 0,contains

both terms like ;p and terms like i ; Y_p which have not only

opposite P, but also opposite CP (having the same C).
In conclusion, the best Eq.(16) can do is to provide us with CP

and P violation in AS = 0 channels (i,e. for example in nuclear levels),
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This restricts ¢ to be extremely small, and from now on we will
assume that € is such that ¢= 0. Actually it is very simple to see

if a given ¢ will give a CP-conserving theory. FromEq. (18)
ig
det e=e det €

i,e, if det € is real ¢= 0 and viceversa. Two comments, are in

order.

First observe that if ‘t'o were invariant under U(3) @ U(3) we
4

could put the factor ei 3 into U or V+, and in this case we could
always eliminate CP-violation just as we have done for S-violation.
This means that in free quark models (or even in the gluon
model) one can never get a CP violation out of Eq.(16). The second
comment is this, If e is proportional to the unit matrix, we can

make an additional transformation (Ue ) Ue) of the basic fields such

that
0 1 0
ut o o o
0 "w UG-
0 0 0

i,e. in absence of SU(3) breaking, we can always rotate away the
Cabibbo angle eliminating S-violation also from weak interactions,
This points to a deep connection between the actual value of 6

(6 ~ 0,22) and the breaking of SU(3) and possibly of SU(3} @ SU(3),

and to an interplay of weak and strong interactions, which must

cooperate somehow to produce the bizarre angle observed in nature,

This idea has been pursued by various authors(b-s) even with
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encouraging results, but a real breakthrough has not yet been
\
achieved.

The value of @ remains still as one of the most challenging

problems for theorists,

From now we will understand ¢ as to be of the form:

€, 0 0
€ = 0 € 0 (19)
0 0 €,

Using Eq. (6), L g can be written alternatively, as, (see e.g. ref.(9)):

I,Bzao u, + a'au8+ a;u,
@ ., being related to the €/ s according to:
_ 1
@, = — (€, + €, +¢€;)
3
@y =—— (€ +€,- 2¢,) (20)
2 3
1
(1'3 ='2' (61“62)

Observe that we have left open the possibility that L g contains some
I-spin violating term,

Before connectingLB to experiments (e, g. ratios of €, or a,
to meson spectrum) one has to be sure that the parametrization
Eq.(19) is unique, and that there are noPmbiguities.'

Actually this not so( 10)‘. The requirement that € is diagonal

does not fix uniquely the ei's.' We can still perform SU(3) ® SU(3)
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transformations which: 1) exchange two ¢€{'s (actually only €, and e,,
if we want to keep the spectrum of \g fixed), 2) flip the sign of any
two of them, Any of these transiormations do not change Le.m. or
Lw (apart from trivial redefinitions) but drastically change the
pattern of the parameters €; or a; so that it does not make sense at
the present level to attach, say, to a. the meaning of an I-spin
violation, In quark language, these transformations correspond to

exchange n and\ quarks and/or change the intrinsic parities of any

two quarks,

(11

We will fix this ambiguity in the following and will see that
its elimiration is obtained cnly when one takes into account the fact
that eDby itseif deces not give a complete description of the symme-
try breaking.

From now on let us neglect L e and L w ¢ and restrict to

a[.:' L0+ I‘B .

We infroduce a very important quantity, which is the vacuum

m.

12 5) .
expectation value (VEV) of the fields contained in M(x)( ’ );
<ol M(x) lo> =< ol m(0)| 0> = 7

m is, anaiogously to ¢, a 3x3 matrix,
If our theory were exactly invariant under SU(3) @ SU(3), n
would vanish, To see this, recall that it can be shown that all

(13)

symmetries of the vacuum are symmetries of the world" *, so that

if W (U, V) is the Hilbert space operator corresponding to the element
(U, V) of SU(3) ® SU(3), then W (U,V)|0>=]0> implies:

n =<o|M|o>=<o| W (U, VMU (U, V)]0> =

(21)
= U<0|M|o>VvF =Uq Vv*
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for any (U, V). This can be satisfied only if n = 0,

When J, p # 0 we have then n # 0. However, in certain models
it happens that 1 does not vanish even in the limit & _ = 0. This
situation is usually referred to as ''spontaneous breaking' of
SU(3) @ SU(3) and is the one I will discuss here. It corresponds to
the presence of stable solutions for the vacuum which display a lower
degree of éymmetry than the lagrangian. In fact in the limit L - "['o
the lagrangian is symmetric under the full SU(3) @ SU(3) whereas the
vacuum is left invariant only by those transformations such that
Eq.(21) holds. This phenomenon in turn is connected with the appea-
rance of massless spin zero bosons (Goldstone bosons), one for each
generator of SU(3) @ SU(3) which does not leave invariant n (14’9).

Before touching upon the argument of Goldstone bosons, however,
let me consider in some detail the symmetry structure of n .

To visualize the situation, let us consider first a classical
example, that of a ferrornagnet,

Consider a system of spins in an infinite volume. In absence
of external fields, the system is described by a rotationally invariant

Hamiltonian ¥ . Call |0> the ground state of Mo .

0 [ 4

Usually the magnetization of the ground state
<olm|o>

vanishes, This is certainly so if ,0> itself is rotationally invariant.

However, in the case of a ferromagnet Ko is such that the
stable ground state has a non vanishiig magnetization m =<0 l ‘VV\, ,O>,
so that [0 > is not symmetrical under the full rotation group, but

v - . g
only under rotations around m , Of course, we can orientate m

in whatever direction we want, and ground states with different
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orientations of m are degenerate with respect to energy.

These states do not lie in the same Hilbert space, but rather
each of them corresponds to mathematically inequivalent though
physically identical theories.

Suppose we introduce now a weak external magnetic field ﬁ

The Hamiltonian is changed into:
N-W, + M- H

and out of all the infinite number of degenerate ground states one is
selected as the lowest energy state, this being that one in which m
is parallel to H. How are m and H connected? For weak fields lr'ﬁl
depends little upon ﬁ, and is mainly determined by ')&0 . However,
no matter how weak is the external '"breaking" H , there is always
a strong correlation in that the stable ground state has to have m
parallel to ﬁ

Let us now go back to our case. Here m is the analog of m
and in the limit ¢= 0 identical theories correspond to matrices

related by SU(3) ® SU(3) transformations:
n -~ Un V+

Using Eq. (18) then we can always choose a frame where N is
diagonal so that we have always S-conservation, However, when
€ # 0 the question arises whether n is diagonal in the same frame
where € is such, i,e, whether ¢ and n are in some way constrained
to be ""parallel" as in the ferromagnet analogy., This is actually the

case, We insert Eqs,(8), (9) and (15) in the divergence formulae:

|
!
1
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i s L. 6-[»3
L

o - -
! 6 a; ba;
apRl - 6L - 6LB
hoo 8B, 6 B,

and we obtain (e is real and diagonal):

B“Lluzi Tr (A M- MY\ e
(22)
a" R:‘ =i Tr (M) - \' M) €

The VEV of Eq. (22) must vanish by translation invariance and
this gives us a set of relations between € and mn . It is then a simple
matter of algebra to show that these equations imply precisely that ¢
and M can be simultaneously diagonalized by an SU(3) ® SU(3)
rotation,

It remains the possibility that € and M may not be relatively
real, This would give rise to a kind of '"'spontaneous breakdown of P
and CP"(IS) which has the same features and disadvantages as the one
previously discussed, I will not insist therefore on this, and assume
that 1 and € can be both brought into a real diagonal form; This form
does in general suffer from the ambiguities we mentioned above, but
now we are in the position to fix them,

We have already mentioned that n must possess all the symme
tries of the vacuum, i,e. of the real world, Now the particle spectrum
clearly displays a very good I-spin symmetry and a more approximate

SU(3) symmetry, This implies that it must be possible to choose an

SU(3) ® SU(3) frame such that 1 takes the form:
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n, 0 0
n = 0 n, 0
0 0 .
with
n, M, up to I-spin corrections
N, . M., up to SU(3) corrections

Note that this frame is now uniquely defined. We are not allowed
any more to exchange 1, with n, or to change sign to any two 7;'s,
as this would spoil our approximate equalities(u). In this frame then
the diagonal elements of both n eand € have a physical meanring and
can be compared o physical quantities, Also, this framc defines the
physical Cabibbo angle,

Moreover, if the symmetries of M are also symmetries of the
vacuum (i.e, if N gives a complete description of symmeiry breaking
in the vacuum) thern i¥ we want chiral symmetry to be much more
badly broken in particle spectrum then SU(2) or SU(3) (as it is indicated

by the absence of parity doublets) we must also require

'T]i >> 'ni-— "le for any i and j

This statemeni, however, is more model dependent than the
others, and we are unable to prove it in general, It is in fact verified
in the ¢ -model and we shall assume its validity,

The ferromagnet analogy also clearly indicates what is the
connection betweenn and ¢ . In the limit € =0 we expect M to tend
to a finite value which will display all those symmetries which are

not spontaneously broken, i,e, realized with particle multiplets,
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SU(2) and SU(3) symmetries appear indeed to be of such type, so

that we expect:

limn =7, =1 (23)
€-~-»0

n_is determined by L only, and we have an octet of pseudoscalar
0 0

massless bosons., When ¢ ;é 0, we expect
n =n,+0(e) (24)

i & gcan be considered in some sense a small perturbation, 7 wili
depend very little upon ¢ and be mainly determined byLO . In this
scheme, it may be meaningful to apply perturbation theory in 'LB .
starting from the spontaneously broken solution M, , as discussed
by Dashen(g ).
Let me now very briefly discuss pseudoscalar meson mass

formulae(lz’ 16), as an illustration of the arguments presented above.
I will restrict tom™ and K masses, and, for the sake of brevity, will

not give any derivation, but simply quote from ref.(2). Then (neglecting

I-spin violations, i.e, putting ¢: =€, , m, =M, ) we have:

m2=-2° %- (25)
ml‘z = - le{ E-:—I—%; (26)
m;’-rf;r =-Z§Z_ (27)
miE =- (€, +€)Z (28)

where we have defined:
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z_ =<u|vr|lo> Z, = <K | vk|o>

K
<n|o*A |o>=m®? F , <k|"A |®=mlF
i T T i
Eqs.(27) and (28) can be re-written as:
Z F, =27 , ZyFy =m, tn (29)

These equations clearly display the Goldstone phenomenon: if M
remains finite when € — 0, then by Eqgs.(25), (26) and (29) both m
and my vanish in this limit. Also, if we assume Eq. (24) to hold,

then

z =2+ O(e) , F =F + O(e)

so that, to lowest order in €:

2
m, 2 €

2
mK €1+€3

which indicates that €, << €, (this corresponds in Dashen's notations
to C ~- V-Z-)

Finally, these equations show that the vacuum breaking n is
connected to E and F (which in fact display an approximate SU(3)
symmetry) whereas € is related to the meson masses, the smallness
of pion mass indicating that L gis» to a good approximation, SU(2)® Su(2)
invariant,

A complete analysis of the relations linking € and m to the
observed p-s meson masses, and to the decay coupling constants F,
and F, is beyond the scope of this lecture and I will not elaborate

on this any further (see e,g. ref.(2), (9), (16) and also ref,(17)).

4
S I S . Y T S P SR N e e

E:
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Rather I will conclude by presenting some further speculations
on the symmetry structure of L, which have recently received some
attention.

If we go back to eq.(1), we see that the quark kinetic energy
term is not only invariant under SU(3) @ SU(3), but also under scale

(18)

transformations, as discussed in Prof. Callan's lectures . Itis

then interesting to see what happens if we conjecture the same to be
true for the symmetric lagrangian L o appearing inEq.(12), i.e.
assume that scale invariance is broken only by the same term
which breaks SU(3) @ SU(3) (apart from c—numbers)(l9’zo).

It is very easy to see qualitatively what is going on in this case,
What happens is that, if in the limit € =~ 0, n stays finite, we will
have, in addition to SU(3) @ SU(3) breaking, a spontaneous breaking
of scale invariance, Correspondingly, a scalar Goldstone boson
(called "dilation") appears. If in the same limit Eq. (23) holds, the
dilaton is coupled mainly to the SU(3) singlet scalar density u,.
When € # 0, the (mass)zof the dilaton is of order € (i.e. ™~ rnl:) and,

. . 20, 21
As a consequence, we will have a systematic enhancement( »21) of

the matrix elements of u, with respect to the matrix elements of ug.

(18)

Another consequence of this assumption is that, since
6" =- (4- )Ly

22
0: being the "improved'" energy-momentum tensor( ) and d the

dimension of &, the mass of any hadron A is proportional to the

B’
matrix element ofLB :

M, =- (4-d) <Al L |A> (30)

Eq.(30) may look rather strange since we expect in general M, tobe

Y . o
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approximately SU(3) invariant, whereas we have seen that {§, p 1S
far from being so. However, the enhancement of < Aluo 'A > with
respect to <A|u8 |A> that we have juct mentioned compensates for
the unsymmetrical nature of LB » and makes M, to have a large
SU(3) singlet part.

It is very unclear at present if these considerations are of any
value especially in view of the anomalies found to appear (in pertur-
bation theory) in the Ward identities derived from approximafe scale

(23)

invariance  °, It is however interesting that they are qualitatively

supported by recent calculations of the ¢-term in m-N scattering,

(25)

by Cheng and Dashen(u) and by others ™., The large value for ¢

20,25
there found is qualitatively in agreement with the nucleon mass( ’ ),
as given by Eq. (30) with d = 3 (as in the quark model), It also gives
evidence for the presence of an enhancement of < Nluo |N>with respect

to <N|u8|N>of the right order of magnitude.
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Riassunto - Alcuni aspetti della violazione della simmetria chirale
con termini della rappresentazione (3, 3) @ (3, 3).

Si discutono alcuni aspetti generali delle teorie in cui la sim-
metria chirale & violata da un termine che si trasfcrma secondo la
rappresentazione (3,3) @ (3, 3). In particolare vengono illustrate le
connessioni tra la rottura del vuoto e la rottura della lagrangiana e
il modo in cui si eliminano possibili ambiguita nelle relazioni che le
gano i parametri della rottura a quantita osservate. Infine vengono-
illustrate alcune congetture avanzate recentemente sulla rottura del-
la simmetria di scala,

Abstract - Some Features of (3, 3) @ (3, 3) Breaking of Chiral Symme
try.

In this lecture some general properties of the (3, 3) @ (3, 3)
breaking of chiral SU(3) ® SU(3) are discussed, These include the
relations between vacuum breaking and explicit breaking and the
elimination of possible ambiguities in the connection of the breaking
parameters to experimentally observed quantities, Some recently
advanced speculations on the breaking of scale invarianze are
iilustrated,
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