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ABSTRACT

The interstitial impurities in a crystal are thought of as a system

of harmonic oscillators coupled by the vibrations of their host lattice. The

response function of an impurity is expressed by a host lattice and many-defect

contributions. The interaction of the impurities is renormalized vithin an

infinite-order perturbation theory, which provides the concept of '.'dressed

defects". The procedure is tested on the problem of localized modes on

impurities in a one-dimensional lattice.
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I. INTRODUCTION

Since the description "by Montroll and Potts (1955) of the "basic

features of the interaction of the defects in a crystal, the Green's function

formalism introduced the many-tody concepts and techniques into common

practice. Thus, the response function of a lattice with randomly distributed

substitutional impurities vas analysed in terms of diagrams accounting for

the alterations "by defects of the phonon propagation throughout the lattice

(Langer 196l; Davies and Langer 1963, Ludwig 196T). A complementary

approach concentrated on the one-defect response function. In this way the

localized modes on a single interstitial impurity perturbed "by its host lattice

was investigated "by Blaesser, Peretti and Toth (1968). The first aim of

the present paper is to extend the partition technique as used "by these

authors to the case of a crystal with essentially many interstitial

impurities.

The one-defect response function is found to he given "by a preen's

function of an Einstein harmonic oscillator along with a host lattice and

many7defect contributions. Appropriate diagrams are designed to describe

within an infinite-order perturbation theory the interaction of the; defects

through their host lattice. The interaction of each defect with the host

lattice "dresses" the defect. The dynamic coupling of the "dressed"

defects by host lattice vibrations is also affected by the alterations in

the host lattice due to impurities. As a consequence both defects and

their interaction are renormalized.

In the last section the "dressed" defects approximation is tested

in searching for localized modes of vibration of impurities in a one-

dimensional lattice.

II. RESPONSE FUNCTIONS OF INTERSTITIAL DEFECTS

Given a crystal with H lattice atoms and n -interstitial impurities

per cyclicity volume» the response function is defined (see, e.g. Ludwig

1967) as the 3{N + n) x 3(U + n)-sized matrix

R = (* - u 2 ^ ) " 1
 y . (1)

where $ is the tensor of the coupling constants and tni is the diagonal

tensor of the atomic masses.
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The matrix (l) can toe subject to the following natural partition:

E = V

V

12 Ik In

X »2

n 1 n 2

X\'"X\

D •
n k

\

3 Dn n

(2)

The 3N x 3N block matrix R L in the top left corner refers to all the atoms

of the host lattice but to them only. It stands as the response function of

the host lattice perturbed by the intrusion of interstitial impurities. The
of

3 x 3 matrices R^ _ , k = l,2,...,n along the diagonalAR stands as the
k k

response function of the individual interstitial impurities I). , D_,... ,D ,

perturbed by the surrounding lattice (the other interstitial impurities in-

cluded) .

inverted response function can also be subject to a similar

partition. Assuming that the density of defects and the range of the inter-

atomic forces fit each other such that there is no straight coupling between

any two interstitials, this matrix reads

,-1 - u2 A

,

0

0

0
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0

0
0
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0
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with obvious notations for the lattice atoms and impurity masses, and for

the unit matrices of appropriate sizes.

The 3 x 3 "block matrices along the diagonal are, by construction,

the inverted Green's functions of some interstitial harmonic oscillators

embedded in a "frozen" lattice, which will read as follows:

According to the requirement of invariance of the forces to "bulk translations,

the auto-force constants are given "by

v
where, following the previous assumption, the sum extends only on host lattice

atoms within the effective range of the coupling.

As for the 3N x 3H host lattice part in the top left corner of (3)»

it can be set in the form

*LL " -L ̂  X3N " *LL ~

oo
Here the force tensor 4> is split so as to exhibit a part $__ which

would correspond to the ideal host lattice and a part H__ which is supposed
——•— LL

to collect together all the alterations induced in the coupling scheme of

the host lattice by the intrusion of interstitial impurities. The straightest

of these alterations appear in the auto-force constants of the host lattice

atoms falling within the co-ordination sphere of the interstitials; thus,

one has

HZ ]Z v *kHZ ]
V k

V ? S,
Even apart from the changes in *.», by leakage of some of the point-group

symmetries of the ideal host lattice when the interstitial impurities come
into it, there is always the additional term \ $. bringing the defects

• k k

into play. By pointing out the ideal lattice tensor it became possible to

identify in Eq..{6) the inverted Green's function of the ideal host lattice as



o 2
LL L 3N

5 G.-1
LL

(8)

In many problems the quantity of interest is the response function

R~ n of a given defect in the lattice. To get it here, one multiplies the
k k

k-th column of R (Eq.(2)) by all the lines of its inverse (Eq.(3)). After

some manipulation one finds in the form
Yk

\
= G.\ D.

kk
D.L
k

-1

G $

vhere the sum in the right-hand side extends over all the n defects except

for P, itself.

gives the response function of an arbitrary interstitial

defect by an "unperturbed" part coming from the oscillating interstitial in

a fictitiously "frozen" host lattice, a host lattice contribution, and a many-

defect contribution. All the contributions are adduced to the defect under

consideration by appropriate coupling tensors.

When dropping out from Eq.(9): i) the many-defect part

GD D *D L a n d ii' t h e h o s t l a t t i c e alterations H_ , the result

of Blaesser et al. (1968) is refined. The response function R of the

host lattice can also be obtained from the multiplication table of R by

its inverse. The case of vacancies and substitutional impurities can be

derived straightforwardly following the concept of Blaesser et al. (1968).

III. THE INTERACTING DEFECTS

Using Eq.(9) in its raw form is difficult in general, because one has

to invert a 3N x 3N matrix in the right-hand side. One may obtain some

advantage by an iterative expansion of this matrix, vhich makes Eq.(9) read:

-1
DkDk

,-1

Vk k
-̂v1 i

-1"
*.LD,
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\

> $ ( G - H _ ) * ^ * G • $ ( G - H _ )
/ . D, L LL IiL IJJ D,D. D 1 LL LL

V ' ' V • ' _ x ! _ x

LD.

J

The terms in Eq.(lO) are assigned to describe the dynamical interaction of

the defects through the host lattice. Thus, one sees that the defect p.

interacts vith the defect D. through a lattice "propagator"
J

where

V - (GS - V " 1 • {1 - GLL

and a defect D. contributes to the response function of D by its green's

matrix G _ (Eq.. (U)
J J

denoted graphically as

matrix G _ (Eq.. (U)). These elements of the defect interaction can be
J J

n
D D
k j

0 (13)

This convention provides a diagrammatic representation of all the terms in the

iterative series (10). The technique is introduced in Fig.l. The first graph

denotes a self-interaction of the defect D through the host lattice. It

corresponds to a single propagator. Since no passing of the propagator line

through any but the k-th defect is involved, this may be termed as a aero-

th order contribution to the response function. The second diagram in the

figure involves passing through an additional D. defect, and therefore

stands as a first-order contribution. When using this, a sum over J has
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to gather all the first-order contributions. A second-order diagram can "be

drawn in two topologically non-equivalent ways , as shown "by the following

two graphs. The first depicts a double self-interaction of a single defect

through the lattice, while the other denotes a "chain" interaction of two

different defects. The remaining four graphs in Fig.l are third-order

topologically non-equivalent diagrams. Among them one notices the triple

self-interaction through the lattice of a single defect.

Higher-order diagrams can be devised along these lines to depict many-

defect contributions to the response function of a given defect. It is

already clear that in any order the self-interaction of a single defect is

always met among the topologically non-equivalent diagrams. The order of a

diagram is given by the total number of passings through the Green's -"nuclei"

of the defects involved. A reading convention can be assigned to higher-

order diagrams, i.e. to read the inner lines first.

The diagrammatic language facilitates renormalization of the inter-

action of the defects within the infinite series (10). This is particularly

desirable when the coupling of the interstitial impurities to the host lattice

is comparable or even stronger than the mutual coupling of the host lattice

atoms, in which case no straight cut-off in the iterative series (1Q) would

be a dependable approach. The renormalization requires summing up to the

infinite order of all graphs denoting self-interaction of the interatitials

through the host lattice. It starts as

k l

TTDA (1*0

Thus each defect "dressed" by its multiple self-interaction through the host

lattice provides a renormalized Green's nucleus

U S W DD " (15)
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Graphically the renormalization can "be fixed in all diagrams by the

substitution

O (16)

which implies elimination of all diagrams involving self-interaction, parts.

The "dressed defects" series starts now as shown in Fig.2, and the response

function series reads

ETC
h * (17)

Further improvements of the convergence of the response function

series are hardly expected in a general frame. That is, answering the

questions: i) how many defects surrounding a given one are to be taken into

account? and ii) to what order is the series to be cut off? requires

inspection of the physical problem under consideration. However, there are

at least two advantageous circumstances to be pointed out. Thus it can be

seen by inspection that the series can be restricted to only low-order

diagrams if the coupling of the interstitials to the host lattice surrounding

is much weaker than the mutual cdupling of the host lattice atoms. On the .

other hand, one can limit oneself to only a small number of defects. if only

frequencies exceeding the top frequency of the lattice are considered

(localized modes); it comes from the fact that for u > to, . ., the ideal

lattice. Green's function G-, involved in the propagators TT , induces an

exponential decay of the interaction with increasing distance between the

defects D, D1 .

A circumstance which may eventually restrict the versatility of the

"dressed defects" approach is that the matrix A^ (12) can hardly be ob-

tained in general in a closed form. The matrix A-- may be considered to

describe the phonon propagation through the host lattice from defect to

defect. Had the host lattice remained identical to the ideal one, the phonon

propagation would be described by the Green's function GTT of the ideal

lattice, as usual. But, since the host lattice "feels" the defects by the
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matrix IL_ the phonon propagation occurs renormalized in the form

For a low density of defects and short-ranged forces it may be possible to

handle A_L in closed form, as shown in the final section. To handle the

problem in general one may use the fact that IL can always be written as

a superposition of one-defect contributions, in the form H-, = Y_* *vt ,

where HIT comes from only the defect D. <• Consequently an iterative

expansion of A^. can be set up

T - > H J = GTT + ) GTT HTT
L / LL Jjij / , LL LI

LL LGTT HTT GTT

LL LL LL

HE
It can be treated in terms of Langer-like diagrams, as shown in Fig.3« All

Langer's techniques can now be used analogously for the present purppse. A

comprehensive account in this respect was given by Ludwig (1967). The zeroth

order approximation of the phonon propagator Â _ ~ G , which is mpst con-

venient in practice, stands only if the alterations H-T induced by the

interstitial defects in the host lattice are negligibly small. According to

Eq.. (7) it would imply at least that the interstitial-lattice coupling is

much weaker than the lattice-lattice coupling.

IV. APPLYING THE DRESSED-DEFECTS APPROACH

In a single-defect approach of a lattice with defects the response

function R̂ _ is found in a closed form as

RDD - 0 = im
where the right-hand side is given by Eq.(l5). One may hopefully try to get

the phonon propagator ATT in its closed form (12). For a single defect the

result (19) is therefore exact.

A closed result for the response function is also found in the two-

defect approach of the defect interaction. One gets
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-i

4"1- - n tf
iDi 1 2

'ID
2 2

D
2 1

(20)

From tvo defects onward, approaching A-^ in a closed form requires

considerable effort. The approximation (18) can be used as far as the

problem suggests it.

Any many-defect approach of a lattice with defects requires a careful

inspection of the physical problem. Such elements as the density and the

distribution of the defects, the strength and range of different; types of

coupling, the nature of the investigated modes (resonance modes, localized

modes) now become essential in deciding upon the type and order of diagrams

to be taken into account. Let us take as an example a three-defect approach

in tvo characteristic cases.

i) Suppose one searches for the localized vibrations of tb̂ e central

defect in the configuration of Fig.Ua of three identical defects (identical

defects have a renormalized Green's nucleus y ^ independent of the defect

site in the lattice). In this case a dependable enough approach of the

response function should be

--I .
Vl'

-1
-1 - 1 - 2 x

- 2
1 2 2 2 2D1

(21)

The exponential decay of the propagators with the increasing distance between

defects has been used twice in this equation: to get rid of higher«rorder

diagrams implying interactions of the exceedingly distant extreme defects,

and to take as equal the contributions of the extreme defects (see also the

previous section).

ii) Suppose now one looks for localized vibrations of the defect

D, in the configuration of Fig.Ub of three identical defects. The response

function series now starts as

-10-



(22)

By similar arguments the following approximation seems realistic:

- £ X

x 1

- £ * /

UD

(23)

The notation IK, * was assigned to the expression within the "brackets, which
2

is thought to denote a "clustering interaction" of the pair D- , D_ . In

closed form the "renormalized" pair interaction reads yv = 2 x vjZz - TT )
2 2 ̂

Its graphical equivalent should "be

+ +2 x —>— + 2 1—*—
—^— + . . . = , (2k)
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so that one has

- « £ - i i r r n . (25)

These examples are intended to hint the way the dressed-defects

approach can be used. Specific vays are yet to "be devised for any particular

problem.

It can readily "be shown that the problem of the localized vibrations
! ' the

of an interstitial D can "be solved in terms of^response function

Suppose the equation of motion

($ - </c/%) u = 0 (26)

is expanded according to the partition (2). It implies partition of u as

a column vector of components ('Oowvi » ̂  'ri » k ~ l»2,...,n t After

some manipulation one finds that the 3 x 1 part u_ assigned to th,e defect
• ' 1c

D. is ruled by the 3 x 3 homogeneous system of equations

*vv • X " ° • (27)

k k k

vhich has non-trivial solutions only for a vanishing determinant. IDherefore,

for D, a necessary condition for localized modes to exist is

The one-dimensional problem is discussed in the next section.

V. LOCALIZED VIBRATIONS OF DRESSED BJTERSTITIALS. OHE-DIMENSIONAL
LATTICE

The way of coupling the atoms stands in the following for the only

mark of the interstitial character of the impurities in a one-dimensional

lattice, their positions being irrelevant in this respect. One assumes one

sort of impurities of mass m_ spread over the "interstitials" of a linear

chain of atoms of mass m, . The coupling Of the nearest host lattice atoms
ii

is given the coupling constant Y (Y ̂  6) whereas the interstitial-lattice
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coupling is denoted by 6 (6 < 0) (Fig.?). A lattice constant a * 1 is

taken as reference length.

The unperturbed Green's function of a single interstitial is obviously

the same for all the identical interstitials:

The Green's function of the ideal lattice can be set in a closed form (e.g.

Ludvig 196U):

l**'l/(z - l/z) , ' (30)

—0
where, for localized modes, one has z - -e and

u)2 = 2|y|/m (l + eh. a) . (31)

Let D. be a single defect in the lattice (Fig.5a)• Then the eigen

frequency of the localized mode comes from Eqs.(28), (19) vhich noy read

This should give the exact eigenfrequency provided the phonon propagator ("12)

is calculated exactly. Since the perturbation in the host lattice by the

intrusion of the interstitial is confined to the atoms -1 and 0 one has

H = - |6| • A • (A{1 + A , ) , (33)

(Ao Ol is the KrSnecker symbol)>vhich indeed allows an exact calculation of
Xr ) Xr

A__ . After some algebra one gets to the following exact expression of the
self-propagator TT D (see Eq..(ll)):

"1TT^ ̂  = -2|YI K2 (e° + 1 - K)" 1 . . (3U)

Here a is the momentum of the localized mode (Eq..(3l)) and K = |<5|/|y| •

Combining now Eqs.(l5)» (29). (3̂ +)» the renormalized Green's nucleus

representing the "dressed" defect is found to be

"1 [K + Y?(e° + 1 K)" 1(2JYI)"1 [K + Y?(e° + 1 - K)" 1 - 2M c^Ca^)]"1 , (35)
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vhere M = nv/nv • Accordingly, the momentum equation is

a] K
S]S] - a " Si 77771

It can be subject to a graphical solution for different values of the para-

meters K and M involved.

Eg.{36) can nov be compared with the momentum equation emerging from

the straightforward solution of the equations of motion of the chain. This

is found by fitting a symmetric localized wave of the form

, (37)

in the "boundary" equations for the atoms % = -1 and DQ . One g$ts the

same equation (36), as is expected.

Suppose one takes now for the phonon propagator A__ the ze.roth-order

approach, i.e. IL- ~ 0 , and then JL, ~ G . In the present caqe it

would come from a weak coupling of the impurity to its surrounding (fc << l),

which allows one to neglect in the auto-force constants .* . and $.

the constant 6 as compared with Y . The only consequence of thie

approximation concerns the propagator (3^), which now reads

TL = -2.|Y| K2 (e° + I)" 1 . (38)
0 0

Accordingly, the momentum equation (36) turns into

K2

sV2 fff] K K2 1
ch [2J - sr = si 777

which is_ indeed the veak coupling limit of Eq.(36).

It can be shown graphically (Fig.6) that both Eqs.(36) and (39) yield

one localized mode of momentum o*. which, according to Eq.(37), corresponds

to a symmetric wave localized on the impurity. The amplitude of the impurity

i s given by
K/C2M)

°K/(2M) - ch2(a. 72)
loc

The case of two impurities can be handled similarly, starting with

Eq.{20). Suppose the impurities are distributed as in Fig.5b. One must

compare the exact momentum equation
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ch hr
2 ± (1 - •*)

2M
(Ul)

which is found either by using the correct phonon propagator JLJ. in the

dressed-defects approach or by straightforwardly solving the equations of

motion, with the approximate momentum equation

ch [2j 2M
2 ±

(1*2)
1 + e

found in the weak coupling limit (A_T ~ G__) of the phonon propagator. Both

Eqs.(Ul) and (U2) provide essentially the same physical information, which

consists in revealing the "breaking of the, degeneracy of the eigenfrequencies

"by defects interaction. A graphical solution of Eq.s.(l*l) and (U2) in the cases

of closest possible and infinitely far apart defects is shown in Fig.6. In

the limit h-*o© Eqs.(Ul) and (1*2) turn into Eqs.(36) and (39)» as expected,

and the degeneracy reappears. It turns out from the equations of motion that

the lov-energy mode (lower momentum mode in Fig.6) corresponds to a symmetric

localized wave, whereas the high-energy mode (higher momentum in Fig.(5) is

antisymmetric and reads:

(-DJ ± (-

\

K/(2M)

K/(2M) - ch2

K/(2M) - cli (O* /2)
loc

Vi +

In the cases (39), (1*2) discussed above, localized modes exist only if the

condition M ^ K/2 — YT/k for the atomic masses is fulfilled.

VI. CONCLUSION

The partition technique has been used to express the response function

of an interstitial impurity in a crystal in terms of host lattice and many-

defect contributions. Both the phonon propagation throughout the lattice and
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the defects contributions to the response function were renonnalized, which

turned the picture of the interacting defects into a picture of interacting

"dressed" defects, according to the standard many-tody concepts.

As usual the convergence of the procedure and the way of using its

facilities depend essentially on the physical problem approached. Hints

were given on how the procedure works in the problem of localized vibrations

of interstitial impurities. The one-dimensional lattice served as an

example.

The dressed-defects approach may turn out to be useful in

problems involving correlation properties in the phonon field of the crystals,

such as X-ray and neutron diffraction, and Mdssbauer effect.
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FIGURE CAPTIOUS

Interacting defects. Diagrammatic representation of the

starting terms in the expansion of the response function.

Fig.2 Interacting "dressed" defects. Diagrammatic representation

of the starting terms in the renormalized expansion of the

response function. Ho self-interaction parts.

Fig.3 Langer's-like diagrams to approach the phonon propagator ATT

Fig.U Two peculiar configurations of three interacting defects:

a) The extreme defects are very far apart from each other and

almost equally distant from the defect in between.

b) The two defects in the right wing feature a "cluster" far

apart from the defect on the left,

Fig.5 "Interstitial" impurities in a one-dimensional lattice:

a) Single interstitital.

b) Two interacting interstitials.

Fig.6 Graphical solution for the momentum equations (36), (39)» (**l)

and (k2) t for the localized modes on interstitials in a one-

dimensional lattice. The cases h = 1 and h -*oo . The

characteristic parameters are K=0.5 * M=0.05 • In heavy

lines - the right-hand side of the exact Eqs.(36) and (kl).

In broken lines - the right-hand side of the approximate Eqs.

(39) and (U2).
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