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I. INTRODUCTION

Since the description by Montroll and Potts (1955) of the basic
features of the interaction of the defects in a crystal, the Green's function
formalism introduced the many-body concepts and techniques into common

prectice. Thus, the response function of a lattice with randomly distributed

substitutional impurities was analysed in terms of diagrams accounting for

the alterations by defects of the phonon propagation throughout the lattice
(Langer 1961, Davies and Langer 1963, Ludwig 1967). A complementary |
approach concentrated on the one-defect response function. In this way the
localized modes on a single interstitial impurity perturbed by its host lattice
was investigated by Blaesser, Peretti and Toth (1968). The first aim of

the present paper is to extend the pértition technigue as used by these

authors to the case of a crystal with essentially many interstitial

impurities.

The one-defect response function is found to be given ﬁy & [reen's
function of an Einstein harmonic oscillator along with a host lattice and
many-defect contributions. Appropriate disgrams are designed to describe
within an infinite-order perturbation theory the interaction of the: defects
through their host lattice. The interaction of each defect with the hoet
lattice "dresses" the defect. The dynamic coupling of the "dressed"
defects by host lattice vibrations is also affected by the alterations in
the host lattice due to impurities. As a consequeﬁce both defects and

their intersaction areée renormalized.

In the last section the "dressed" defects approximation is tested
in searching for localized modes of vibration of impurities in a one-

dimensional lattice.

II. RESPONSE FUNCTIONS OF INTERSTITIAL DEFECTS

Given a crystal with N lattice atoms and n .interstitial impurities

per cyclicity volume, the response function is defined (see, e.g. Ludwig
1967) as the 3{N + n) x 3(N + n)-sized matrix

R = (0-all)t, ' (1)

where ¢ is the tensor of the coupling constants and b is the diagonal'

tensor of the atomic masses.
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The matrix (1) can be subject to the Ffollowing natural partition:

R, BLDl' RLD2 'RI-Dk"'RU?n
fp.r Fop, Fopp, vt fppp t Foip

1 171

N R1)21. R13213l R1)2132 "'P"DaDk"'RDEDn‘ (2)

Bt Bop. Foop '“Rnknk'“anl;ﬁn

k k'l k"2

e
*
.
-

%y Fop Fop  Rop tt Fpo d

n nl n2 nk nn

The 3N x 3N block matrix RLL

in the top left corner refers to all the atoms

of the host lattice but to them only. It stands as the response function of

the host lattice perturbed by the intrusion of interstitial impurities. The

of
3 x 3 matrices Ry p. k=1,2,...,n along the diagonalA'R stands as the
kK'k
respense function of the individual interstitial impurities .Dl, D2""'Dn

perturbed by the surrounding lattice (the other interstitial impurities in-
cluded).

The inverted response function can also be sublect to a similar

L4

pertition. Assuming that the density of defects and the range of the inter-

atomic forces fit each other such that there is no straight coupling hetween

any two interstitials, this matrix reads

B =0 -uwM =
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with obvious notations for the lattice atoms and impurity masses, and for

the unit matrices of appropriate sizes.

The 3 x 3 block matrices along the diagonal are, by constriuction,
the inverted Green's functions of some interstitiel harmonic oscillators

embedded in a "frozen" lattice, which will read as follows:
o2 a . o
ka 3 ,

Dy

According to the requirement of invariance of the forces to bulk translations,

the auto-~force constants are given by
) = - 8 ’ . (5)
Dka E : DkE

vhere, following the previous assumption, the sum extends only on host lattice
atoms within the effective range of the coupling.

“As for the 3N x 3N host lattice part in the top left corner of (3),
it can be set in the form

°
-mLm2I3N=.¢LL B - om0 Ly = O - B - (6)
0

Here the force tensor ¢LL is split so as to exhibit a part .GLL vhich
would correspond to the ideal host lattice and a part HLL which is supposed
to collect together all the alterations induced in the coupling scheme of
the host lattice by the intrusion of ihterstitial impurities. The straightest
of these alterations appear in the auto-force constants of the host lattice
atoms falling within the co-ordinstion sphere of the interstitials§ thus,

T e e -
X 'k k

L # %
Even apart from the changes in ¢£2, by leakage of some of the point~group

one has

symmetries of the ideal host lattice when the interstitial impurities come
intc it, there is always the additional term E QRD bringing the defects
into play. By pointing out the ideal lattice tensor it became possible to
identify in Eq.{6) the inverted Green's function of the ideal host lattice as

ljm




o 2 |
b, m B, W Igy F G - (8)

In many problems the quantity of interest is the response function

RD D of a given defect in the lattice. To get it here, one multiplies the
¥k

k-th column of R (Eq.(2)) by all the lines of its inverse (Eg.(3)). After

gome manipulation one finds RD D in the form

-1

}
-1
=G - @ (R ) - E .. G % ¢ (9)-
'Oy Dka DkL LL HLL - LDJ DJDJ DJL LDk ’

vhere the sum in the right-hand side extends over all the n defects except

for Dk itself,

Eq.(9) gives the response function of an arbitrary interstitial
defect by an "unperturbed" part coming from the oscillating interstitial in
a fictitiously "frozen" host lattice, & host lattice contribution, and a many-
defect contribution. All the contributions are adduced to the defect under

consideration by appropriate coupling tensors.
:

When dropping out from Eq.{9): 1) the many-defect part E ¢LD

J

: - . J
GDJDJ QDJL and ii) the host lattice alterations H 1, the result
of Blaesser et al. (1968) is refined. The response function Ry of the

host lattice can also be obtained from the multiplication table of R by

its-inverse. The case of vacancies and substitutional impurities csan be

derived straightforwardly following the concept of Blaesser et al. {1968).

III. THE IRTERACTING DEFECTS

Using Eq.(9) in its raw form is difficult in general, because one has
to invert a 3N x 3N matrix in the right-hand side. One may obtain some

advantage by an iterative expansion of this matrix, which makes Eq.(9) read:

. | ’
-1 -1 -1 =1 -1 -1

= - & (G, - - ) +{(c o - ) ¢ G ¢ X
RDka GDka p.L ) 1L i A EJ :LDJ D,D, ‘DL

' —bl
~1 .
X (GI7 - ) ~ o G o ¢ =
[: A 29 EJ : LD, "D,Dy "D,L LD,



-1 -1 -l
DD~ *p 1%L o 1D
’ |
. ol (6. = ) oG = & {(G.- - ) d -
E , D, L .LL 0y D, °p,0," "o,L “1n B ‘"

' ! 1 1 1 1
2 ,§ :QDL(GLL-HLL) ®%p,* G p, %, g (Op - M) ey o
G AR PR ) H

-1 1
" p, "%, 1 Opp - Hy) Oy - .. (20)
Jg Jy 3 k. _

The terms in Eq.(10) are assigned to describe the dynamical interaction of
the defects through the host lattice. Thus, one sees that the defect Dk
interacts with the defect D, through a lattice "propagator"

J
[N = ¢ ¢ ) (11)
DD, D, L AL I,
where ‘
= rm=1 -1 _ -1 :

Ay = (GLL Ho) 1-6, HLL) Gy o (12)
and a defect D, contributes to the response function of Dk' by its freen's
matrix G (Eq.(4)). These elements of the defect interaction can be

J7d

denoted graphically as
k II
J DD
\*—/ ' . k J
| (13)
GD b .
J3J

This convention provides & diagrammatic representation of all the terms in the
;terative Beries (lb). The technique is introduced in Fig.l. The first graph
denotes a self-interaction of the defect bk through the host lattice. It
corresponds to a single propagator. Since no passing of the propagator line
through any but the k-th defect is involved, this may be termed as a gero-

th order contribution to the response function. - The second diagram in the
figure involves passing through an additional D‘j defect, and therefore

stands as a first-order contribution. When using this,a sum over J has
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to gather all the first-order contributions. A second-order diagram can be
drawn in two topologically non-equivalent ways , a&s shown by the following
two graphs. The first depicts a double self-interaction of a single defect
through the lattice, while the other denotes & "chain" interaction of two
different defects. The remaining four graphs in Fig.l are third-order
topologically non~equivalent diagrams. Among them one notices the triple

self-interaction through the lattice of a single defect.,

Higher-order diagrams can be devised along these lines to depict many-
defect contributions to the response function of a given defect. It is
already clear that in any order the self-interaction of a single defect is
always met among the topologically non-equivalent diagrams. The order of a
diagram is given by the total number of passings through the Green's "nuclei"
of the defects involved. A reading convention can be assigned to higher-

order diagrams, i.e. to read the inner lines first.

The diasgrammatic language facilitates renormalization of the inter-

action of the defects within the infinite series (10). This is particularly
desirable when the coupling of the interstitial impurities to the host lattice
is comparable or even stronger than the mutual coupling of the host ldttice
atoms, in which case no straight cut-off in the iterative series (10) would
be a dependable approach. The renormalization requires summing up to fhe
infinite ofder of all graphs denoting self-interaction of the interatitials
through the host lattice. It starts as

D - K
kk
Dka "o,p,” - J DkDJ JJ JJ 04D, JJ
+ 6 LS TTDD Gy + e TTDD-... (1h)
iP5 PPy PPy PsPy Py Pk |

Thus each defect "dressed" by its multiple self-interaction through the host

lattice provides a renormalized Green's nucleus

R T
jDD = (6 ~ ) . (15)

T



Graphicelly the renormalization can be fixed in all diagrams by the
substitution | ‘

o — [, | 16)

which-implies elimination of all diagrams involving self-interaction parte.
The "dressed defects" series starts now as shown in Fig.2, and the responsr

function series reads

!
-J- = -1 - 'n‘ -n- -
RDka Dk k z : kad §DJDJ DJDk

J .
Sy, g g
1T .. . I - .
/ DD D, D D.D D, D D, D ..
3y 15 K T3 Tdda Tl Tk
(17)
ot 3 .

Further improvements of the convergence of the response function
series are hardiy expected in a general frame. That is, answering the
‘quegtions: i) hbw many defects surrounding a given one are to be taken into
account? and ii} to what order is the series to be cut off? requires
inspection of the physical problem under consideration. However, thére are
at least two advantageous circumstances to be pointed out. Thus it can be
seen by inspection that the series can be restricted to only low-order
diagrams if the coupling of the interstitials to the host lattice surrounding
is much weaker than the mutuasl ccupling of the host lattice atoms. On the
other hand, one can limit oneself to only é small number of defects, if only

frequencies exceeding the top freguency of the lattice are considéred
(localized modes); it comes from the fact that for w > w?i:tice the ideal
lattice. Green's function GLL involved in the propagators TTDD' " induces an
exponential decay of the interaction with increasing distance between the

defects D, D' .

A circumstance which may eventually restrict the versatility of the
"dressed defects" approach is that the matrix ALL (12} can hardly be ob-
tained in general in a closed form. The matrix ALL may he considergd to
describe the phonon propagation through the host lattice from defect to
defect. Had the host lattice remained 1dentical to the ideal one, the phonon
"prqpagation would be described by the Green's function G of the ideal

LL
lattice, as usual. But, since the host lattice "feels" the defects by the
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metrix HLL the phonon propagation oceurs renormalized in the form ALL .
For a low density of defects and short-ranged forces it may be posaible to
handle ALL in elosed form, as shown in the final section. To handle the
problem in general one may use the fact that HLL can always be written-as
a superposition of one-defect contributions, in the form - HLL = j{:'HEL .

where Hgi comes from only the defect D Consequently an iterative

k L
expansion of ALL can be set up

-
D D
et 3 _ 3
Ap, = O - E : ot =Cw? E Cpp HBpp G *

' J J

' § § 23 Dy o

1 J2
+ Grp Bop Gpp Hpp Gpp *oee- (18)

9y

It can be treated in terms of Langer-like diagrams, as shown in Fig.3. All
Langer's techniques can now he used analogously for the present purppse. A
comprehensive account in this respect was given by Ludwig (1967). The zeroth

order approximation of the phonon propagator ALL = » Which is mpst con-

GLL

venient in practice,stands only if the alterations HLL induced by the
interstitial defects in the host lattice are negligibly small. Accoyding to
Eq.(7) it would imply at least that the interstitisl-lattice coupling is

much weaker than the lattice-lattice coupling.

Iv. APPLYING THE DRESSED-DEFECTS APPROACH

In & gingle-defect approach of a lathice with defects the response

function RDD is found in a closed form as

=[] - fDD ’ | (9)

where the right-hand side is given by Eq.(15). One may hopefully try to get
the phonon propagator ALL in its closed form (12). TFor a single defect the

result (19) is therefore exact.

A cleosed result for the response function is also found in the tweo-

defect approach of the defect interaction. One gets




- - . 20)
DDy ByDy DD, DDy
From two defects onwﬁrd,,approaching ALL in & closed form requires
considersble effort. The approximation (18) can be used as far ag the
problem suggests it. ' '

Any many-defect approach of a lattice with defects requireg a careful
inspection of the physical problem. Such elements as the density and the
distribution of the defects, the strength and range of.diffefentjtxpes of
coupling, the nature of the investigated modes (résongnce modes, lgcalized
modes) now become essential in deciding upon the type and order of diagrams
to be taken into account. Let us take as an example a three-defect approach

in two characteristic cases.

i) Suppose one éearches for the localized vibrations of the central
defect in the configuration of Fig.ha of three identical defects {identical
defects have a renormalized Green's nucleus DDV independent of the defect
site in the lattice). In this case a dependable enough approach of the

response funciion should Be

o /A\ | /\ .

R = (1] -le 2| -1 [3
o \>/ \./

A

= -2 x ‘ . | - (21)
DD IID1D2 “§D232 nnznl .

2
=

The exponential decay of the propagators with the inereasing distance between

defects has been used twice in this equationg to get rid of higher~order
diagrams implying interactions of the exceedingly distant extreme defects,
end to take as equal the contributions of the extreme defects (see 8lso the

previous section).

ii) Suppoée now one looks for localized vibrations of the defect
Dl in the configuration of Fig.4b of three identical defects. The response
function series now starts as
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(22)

By similar arguments the following approximation seems realistid:

-1 -1 | _
R-Dfo')f.-—- Z:} - 2 X 7 2| -

-2 X 4 [3] -
-2 x 1 [Ers=(E]-
-2 C;‘ . =

= > - 2 "HDD (gnn ?DD DD, ?DD

* ? Iy oDs gnn HDD IZlffm: T “")IID oDy

D. .
-l 3 -
= - IT j( IT {IT = II,, )
§DD . D1D2 D2 DEDJ. ’ DD' . D

(23)

The notation Kgs was assigned to the expression within the brackets, which
2

is thought to denote a "clustering interaction” of the ;pa:Lr D D In

2 ?
L] j{ o] -..1
closed form the "renormalized" pair interaction reads ED
Tts graphical equivalent should be
«ll-
T TRRR L ETERT EI‘;W& Wh-w S eag e e e §



8o that one hes

-1 _ -1

~ -1 . (25)
Rnlnl DD | |

These examples are intended to hint the way the dressed-defecté

approach can be used. Specific ways are yet tc be devised for any particular
problem. '

It can readily be shown that the problem of the localized vibrations
! t
of an interatitial D c¢an be solved in terms oﬁi?%sponse funetion RﬁD .
Suppose the equation of motion

@ -w?M) u = o (26)

is expanded according to the partition (2). It implies partition of u as
a column vector of components (u. ) s {u. ) y K =1,2,,..,0 , After
“n'awma * b, '3kl |

some manipulation one finds that the 3 x 1 part Uy -assigned to the defect
‘ i _ Dy

D, is ruled by the 3 x 3 homogeneous system qQf equations

-1

. = { Ty (27)
Rkak D, : o

vhich has non-trivial solutions only for & vanishing determinant. Therefore,

for Dk 8 necessary condition for localized medes to exist is

-1 - o
det ( ) =0
oDy : (28)
The one-dimensional problem is discussed in the next seetion.

V. LOCALIZED VIBRATIONS OF DRESSED INTERSTITIALS. ONE-DIMENSiOﬂAL
LATTICE

The way of coupling the atoms stands in the following for the only

mark of the interstitial character of the impurities in & one-dimensional

lattice, their positions being irrelevant in this respect. One assumes one
sort of impurities of mass m, spread over the "interstitials" of a linear
chain of atoms of mass m . ' The coupling of the nearest host lattice atoms
is given the coupling constant Y (Y £ 0) whereas the interstitial~lattice
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coupling is denoted by & (8 < 0) (Fig.5). A lattice constant a = 1 is

taken as reference length.

The unperturbed Green's function of a single interstitial is obviously
the same for all the identical interstitials:

Cpp = (2 l§] - m uF)-i . (29)

The Green's function of the ideal lattice can be set in a closed form (e.g.
Ludwig 196L4):

-p . o
6y gof2) = =/IvD) 3 e - 1) (30)
whefe, for localized modes, one has 2z = -e-tT and
2
w” = 2|yj/m (1 + ¢h o) . (31)

Let D, be a single defect in the lattice (Fig.5a). Then the eigen-

frequency of the localized mode comes from Egs.(28), (19) which noy read

"l _
¥ = 0 . (32)
This should give the exact eigenfrequency provided the phonon propagator (12)
is calculated exactly. Since the perturbation in the host lattice by the

intrusion of the interstitial is confined to the atoms -1 and O one has

Hope = = 18128y g0 " (B0 5+ 80 o) (33)
(A , 1s the Krénecker symbol),which indeed allows an exact calculation of
LR ,
ALL » After some algebra one gets to the following exact expression of the
self-propagator TTD D (see Bq.(11)):
00
M, = =2 E@r1-0" . @
070

Here O is the momentum of the localized mode (Eq.(31)) and K = |§|/|Y] -

Combining now Egs.(15), (29), (34 ), the renormalized Green's nucleus

representing the "dressed" defect is found to be

Co) = (2lyD™ [k + B+ 1 - 07 - 2w enPlo/21 ™, (35)
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vhere M= mD/mL + Accordingly, phe momentum equation is

2 M F,1-x

2 (o) kK. _ K 1 ' |
It can be subject to a graphical solution for different values of the para-

meters K and M involved.

Eq.{36) can now be compared with the momentum equation emerging from
the straightforward solution of the equationsof motion of the chain. This
is found by fitting a gymmetric locelized wave of the form

. -o|2 + 1/2]

= a(-1)% e (3m)

Y
in the "boundary" equations for the atoms 2 = -1 and D

» One gets the
same equation {36),as is expected. '

0

Suppose one takes now for the phonon propagator ALL the zgroth-order
approach, i.e. HLL = 0 , and then ALL== GLL .« In the present cage it
would come from a wesk coupling of the impurity to its surrounding (K << 1),
which allows one to neglect in the auto-force constants '¢-l,~l and ?0’0 '
the constant § a&s compared with vy . The only cansequence of thig
approximation concerns the propagator (3L4), which now reads

Moo, = -2l K (7 + 1) (38)

Accordingly, the momentum equation (36) turns into

ch? [9] -£ - £ 2 ; (39)

2 2M e +1

vhich is indeed the weak coupling limit of Eq.(36).

It can be shown graphically (Fig.6) that both Egs.(36) and (39) yield

one localized mode of momentum Uloc which, according to Eq.{37), corresponds
to a symmetric wave localized on the impurity. The amplitude of the impurity
is given Dby
K/(2M) |
W, = u, - (ko)

°. K/{(2M) - cha(cloc/2)

i The case of two impurities can be handled similarly, starting with
Eq.(20). Suppose the impurities are distributed as in Fig.5b. One must
compare the exact momentum equation

=1k



2 2:x(1-e)e®

M

(L1)

=

2 \o K _
ch [2] - M-

which is found either by using the correct phonon propagator Aﬁr in the

(1 + ec)'— X(1 + e-Gh)

dressed-defects approach or by straightforwardly solving the equations of

motion, with the approximate momentum equation

ch

g, =
2 [g] _K 2 2t(l-e)e
ch [-2-} -5y T W .0 ’ | (L2)

found in the weak coupling limit (ALL== GLL) of the phonon propagator. Both
Fgs.(41) and (42) provide essentially the same physical information, which

consists in revealing the bresking of the degeneracy of the eigenfrequencies

by defects interaction. A graphicel solution of Eqs.{Ll) and (42) in the cases
of closest possible and infinitely far apart defects is shown in Fig.6. In
the 1limit h — oo Fgs.(41) and (42) turn into Eqs.(36) and (39), as expected,
and the degeneracy reappears. It turns out from the equations of mption that
the low-energy mode (lower momentum mode in Fig.6) corresponds to a pymmetric
localized wave, whereas the high-energy mode (higher momentum in Fig.p) is

antisymmetric and reads:

s 8

-o®a+1/2 ~6%| 4~n+1/2
u, = A (-1)2 e | | * (-l)(l-h) e | | ’
_ K/ (2M) S ,
uD0 K/(2M) - ch® (oioclz) 2
- K/ (2M) Yoy Y Yy
“Dh = %/ (2) 2 & T 2 (43)
- ch (cloc/2)

In the cases (39), (42) discussed above, localized modes exist only 1f the
condition M < K/2 - K2/h for the atomic masses is fulfilled.

VI. CONCLUSION

The partition technigue has been used to express the response function
of an interstitial impurity in a crystal in terms of host lattice and many-
defect contributions. Both the phonon propagation throughout the lattice and
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the defects oontributions to the response function were renormalized, which
turned the picture of the interacting defects into a picture of interacting
"dressed" defects, according to the standard many-body cuncepts.

~ As usual the convergence of the procedure and the way of using its
Tacilities depend essentially on the physical problem approached. Hints
were given on how the procedure works in the problem of localized vidrations

of interstitial impurities. The one-dimensional lattice served as an
example, '

The dressed-defects approach may turn out to be useful in ajl
problems involving correlation properties in the phonon fleld of the crystals,
such as X-ray and neutron diffraction, and Mdssbauer effect.
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Fig.3

Fig.h

Fig.5

FIGURE CAPTIONS

Interacting defects. Diagrammatic representation of the

starting terms in the expansion of the response function.

Interacting "dressed" defects. Diagrammatic representation -
of the starting terms in the renormalized expansion of the

response function. No self-interaction parts.

Langer's-like diagrams to approach the phonon propagatar ALL
(Eq.(12)).

Two peculiar configurations of three interacting defepts:

a)} The extreme defects are very far apart from each opther and
almost equally distant from the defect in hetween.

b) The two defects in the right wing feature a "cluster" far
apart from the defect on the left,

"Interstitial" impurities in a one-dimensional lattice:
a) Single interstitital.
b) Two interacting interstitials.

Graphical solution for the momentum equations (36), (39), (41)
and (42}, for the localized modes on interstitisals in‘a one-
dimensional lattice. The cases h =1 and h-—oo. The
characteristic parameters are K = 0.5 , M = 0.05 . In heavy
lines - the right-hend side of the exact Egs.(36) and (b41).

In broken lines ~ the right<hand side of the sapproximate Egs.
(39) and (k2).
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