

 $1N15 - m^{-2}270/15$

III Interamerican Conference on Materials Technology

III Conferencia Inter-Americana en Tecnologia de

III Conferência de Tecnologia de

Presented at the

III Interamerican Conference on Materials Technology August 14-17, 1972 Hotel Gloria Rio de Janeiro, Brasil

Organized by

Southwest Research Institute San Antonio.Texas

General Manager, R. D. Wylie Symposium Coordinator, David L. Black

Published on behalf of Southwest Research Institute by CENTRO REGIONAL DE AYUDA TECNICA AGENCIA PARA EL DÍ.SARROLLO INTERNACIONAL (A.I.D.)

Mexico / Buenos Airas

 \mathbf{I}

DESARROLLO DE ALEACIONES DE TITANIO A ALTAS TEMPERATURAS

H. L. Gegel v. M. Hoch

Los problemas que se han encontrado en la industria del fitanio son debidos a su desarrollo histórico.

Históricamente, el desarrollo del fitamo se ha dividido en partes representadas por la industria y el gobierno. La industria asume la responsabilidad para el desarrollo, la manufactura y los aspectos de procesamiento de la tecnología del titanio, y el gobierno asume la responsabihdad de la metalurgia física del titanio. Es por estas dos partes que la industria del titanio no ha prograsado más rápidamente en su desarrollo. hacia una gran variedad de alcaciones de las que el discñador pueda. eseritter.

Recientes progresos en el entendígmento de los factores electrónicos. que controlan la estabilidad de las fases alfa y lo ta del titanio provoca abora una base fundamental para la selección de el mentos de alcación. El incremento del conocimiento del defecto y transformación de estructuras y sus efectos sobre las propiedades de resistencia del titanio ofrecen una posibilidad para perfeccionar las alcaciones existentes.

El artículo también discutirá las posibilidades de mejorar las propiedades de creep a altas temperaturas. Importante número de puntos están en la preparación de una matriz β y α verdaderamente estable.

Será descrita la modificación del sistema Ti-M, por adición ternaria para prever la formación del compuesto frágil T₁₃ X. Esta matriz tiene mejor resistencia a la oxidación que mialquiera de las alcaciones of v 6. Aumento de la resistencia por endurreimiento de la solución sólida, esta matriz puede ser fortalecida por dispersión de partículas duras de la segunda fase.

DESENVOLVIMENTO DE LIGA DE TELANIO PARA ALTAS TEMPERATURAS

P. L. Gegel e M. Hoch

Os problemas que for un encontrados na milii-tria do titamo são prineipalmente devidos ao seu desenvolvimento historico.

Històricamente, o desenvolvimento do fitamo foi dividido entre ospapeis desempenbados pela industria e o Governo. A industria assumiua responsabilidade do desenvolver os aspectos de manufatura e processamento da tecnologia do titanio, e o Governo assumiu a responsabilidade da metalurgia lisu a do fitânio. E por causa desses dois papéis distintos que a milustria do titanjo não prosseguiu mais repaiamente. na direção de desenvolver uma veriedade maior de ligas que o projetista pudesse escolher.

Proceso recento no entendimento dos falores eletrônicos que controlam a estabilidade das fases α e β do fitamo estão agora promovendouma hase fundamental para a seleção de elementos de liga. O aumentode conhecine, ito dos deteitos e estruturas de transformação e seus ciertos sobre as propriedades de rigidez do titanio oferece a possibilidade de aperteiçoamento das ligas existentes.

O artigo também ira discutir as possibilidades de aperfejçoamento das propriedades de ercep a alta temperatura. Pontos mais importantes. são a preparação de uma fase 8 verdadeiramente estável e uma matrizα verdadeiramente estável. Sera deserita a modificação do sistema titânio-aluminio pela adição ternária para prevenir a formação dos compostos frageis Ti3 X. Essa matriz α tem melhor resistencia à oxidação do que qualquer das ligas o $\beta \in \beta$. Em adição a resistência pela solução sólida endurecida, essa matriz poderia ser reforçada pela dispersão de particulas duras da segunda fase.

÷,

HIGH TEMPERATURE TITANIUM ALLOY DEVELOPMENT

H. L. Gegel Air Force Materials Laboratory Wright-Patterson Air Force Base, Ohio

M. Hoch Department of Materials Science and Metallurgical Engineering University of Cincinnati Cincinnati, Ohio

ABSTRACT

The future needs for titanium alloys are reviewed briefly. Then, against a theoretical background, utilizing presently available data, a now supcr-a alloy is proposed and developed. The properties (up to SOO'C), both mechanical and physical of these alloys are then measured and reported. Development of titanium-baao, supor-a and super-B alloys for the temperature range 600-10Q0°C is considered and the difficulties discussed.

INTRODUCTION

Titanium alloys are needed in three general categories:

(1) High strength alloys at temperatures up to 300°C. One potential application is as sheet material for light transportation vehicles. The primary competitor in any application would be the stainless steels.

(2) High strength alloys are also needed for temperatures up *o 600"C, but the material must have creep resistance, hot salt stress corrosion cracking resistance, and oxidation • resistance as well. These alloys could be used in various engine parts, and would be competing with the stainless steels, copperbane alloys, and possibly the nickel-base materials.

(3) Finally, alloys are needed **which** havo good creep resistance, hot salt stress corrosion cracking resistance, and oxidation resistance at temperatures **above 600"C. These** alloys would be competitors **for** the **nickel**base alloys, and they **could-** be **used in the low** temperature section **of turbines with** significant **weight savings.**

Alloys in category (1) are already commercially available, and improvements are coming, but alloys for use above 450°C reguire further development. Some progress has also been made on a 600°C alloy, but titanium alloys which can meet the requirements of category (3) are not yet in sight.

THERMODYNAMIC CONSIDERATIONS

Theoretical Behavior. The alloying behavior of titanium can be adequately described by the regular solution model with an interaction parameter, Ω . The free energy difference between pure β and pure a titanium can then be expressed as

$$
\Delta F^{\circ} = (E^{\circ}{}_{B} - E^{\circ}{}_{\alpha}) - T(S^{\circ}{}_{B} - S^{\circ}{}_{\alpha}) \qquad \qquad 1)
$$

The free energy for an alloy containing X mole fraction of an addition element is $F = E^{\circ}(1-X) - TS^{\circ}(1-X) + nx(1-X) + (E_{Me} - TS_{Me})X$ 2) The free energy difference between β titanium and α titanium, each containing X amount of

alloying eltjent, is thus

$$
\Delta F = \Delta F^{\circ} (1 - X) + X (1 - X) [\Omega_{\alpha} - \Omega_{\alpha}]
$$
 (3)

if we neglect the term representing the energy difference between the alloying metal in the a and β phases on the assumption it is small.

At the transition temperature of pure titanium $\Delta F^{\circ} = 0$. If, on alloying, the transition temperature decreases, AF° becomes positive and therefore the term in the brackets must be negative. If, on the contrary, the transition temperature increases with addition elements, then AF° becomes negative and the term in the brackets becomes positive. Thus for a β stabilizing element where the Thus for **a** 8 stabilizing element where the **transition temperature** decreases, no-n <0,

whereas for an a stabilizing element where the transition temperature increases, R_o-A₂20.

In the gas phase the systems are ideal, but as the temperature is lowered into the condensed phase region, the deviation from ideality increases with decreasing temperature. It is therefore safe to assume that in a system which can occur in two structures, a and β , with β being the high temperature form,

$$
a^2 \frac{a^2}{a^2} a^2 \frac{a^2}{b^2} = 0.
$$

Thus, for an a stabilizing alloying element,

$$
R_{\alpha} < R_{\beta} < 0
$$

and for a ß stabilizing element

$$
a_{\alpha} > a_{\beta} > 0. \tag{6}
$$

This conclusion was discussed earlier.⁽¹⁾

Experimental Data. The interaction parameter, 2, in various binary Ti-X systems has been obtained by thermodynamic activity measurements using a Bendix Time of Flight Mass Spectrometer. Two vapor pressures techniques were used. The first utilized a conventional Knudsen cell configuration where the sample was placed in the cell and the ratio of the titanium signal to the alloying elements signal was determined as a function of composition. The data obtained were then analyzed with the aid of a solution model, and yielded a.

If the alloying element was much more volatile, or much less volatile, than titanium the "triple Knudsen cell" technique was used. The triple Knudsen cell consists of two cells within a third cell. One inner cell contains the alloy of interest, and the second contains isotopically enriched pure titanium or a similar sample of the alloying element. Both effuse into the outer cell which is fed into the Time of Flight Mass Spectrometer. The instantaneous ratios measured by the Mass Spectrometer are converted directly into activity values. Details of these experimental methods and calculations have been described earlier⁽²⁻⁷⁾, and the data are summarized in Table 1.

TABLE 1, PATHETS INTERNATION CARANCE. **SUBJECT SAL** THE THEORETANT ALLOCT ~ 0.1 \sim

System		Temperature Pange, Interacts a concerted Ask of	10 ²
$Ti - Ho$	$1844 - 1900$	$+12 + -22$	٠
$T_A = C_I$	$1713 - 1998$	and the second	\blacksquare
$T_1 - V$	$1773 - 1798$	1.1.1.1.1	٠
$T1 - Cu$	$1423 - .571$	Fig. 1. Section	Δ
$T1 - Cu[11q01d]$	$1700 - 100$	$+ 4 + 6 + 6.4$	ż
$71 - 11$	1780		J
$T_4 - 6a$	$1623 - 1773$	$-14.6 + 2.1$	٠
$T1 - 55$	$1573 - 1273$	SHOCK AT THE	7

As expected according to equations 5 and 6 , for β stabilizing elements values of $0 > 0$ were obtained and for a stabilizing elements. values of Q<0. It should be noted that indium and lead are also α stabilizers. The latter, however, are heavy and would increase the density of alloys too much for practical applications.

n>0 indicates a tendency for phase separation, whereas Q<0 shows a tendency for short range order and compound formation. In the latter case, as the interaction parameter increases from aluminum to gallium to tin, the highest melting point compound (and thus the most stable compound) moves toward the titanium rich compositions, i.e. from TiAl to Ti₂Ga to Ti₃Sn. In fact, because of the great stability of Ti₃Sn, only a very small amount of tin can be added to titanium base alloys (such as Ti-5Al-2.5Sn) before embrittlement will occur. In an attempt to produce high temperature α -titanium alloys (super-a alloys), titanium alloyed with aluminum and gallium was investigated. The advantages of aluminum and gallium (in equal atomic amounts) as alloying elements are that the densicy of the alloy is the same as that for pure titanium, (4.5 g/cc) and that they repel each other. (With $\theta = 3kJ/mole^{(8)}$ their binary system indicates immiscibility.) This repulsion is an advantage because it impedes the formation of the Ti₂Al type ordered structure. If the Ti₃Al structure is to form, then, in addition to ordering batween titanium and aluminum-gallium atoms. ordering on the aluminum sublattice between Al and Ga atoms must occur, but it cannot

because the two elements repel each other. It may be, that separate Ti₃Al and Ti₃Ga phases will be formed preferentially.

ALLOY DEVELOPMENT

Preparation. Alloy samples of the desired compositions were prepared by non-consummable arc melting under an argon atmosphere. Buttons weighing from 10 grams to 500 grams were melted and remelted up to 5 times to obtain homogenity. The melting process was relatively simple, and the gallium loss was neglible, so the nominal composition remain very close to the chemical composition as analyzed. The processing of the materials was done⁽⁹⁾ 30°C below the a transus temperature and their processing characteristics (rolling or swaging) were compared to a commercial a alloy, Ti-5Al2.5-Sn, and found comparable as shown in Figure ...

a Transus Measurements. The alloys were observed through a hot stage microscope to determine the a transus temperature. This temperature, as a function of the Al and Ga content is shown in Figure 2 which also

a Transus Temperature vs. Composition contains one data point each for Ti, Ga and Ti₂Al. In addition, a value for Ti-5Al-2.5Sn (a) is plotted. Finally, the lowest temperature at which the 8 phase in Ti-8Al-1Mo-1V will not transform is plotted. These results indicate that the a transus temperature increases linearly with a stabilizing content.

The disordering temperature for the DO₁₉ structure was also determined, using magnetic susceptibility measurements⁽¹⁰⁾, to be at 640°C for Ti-12.5Al-12.5Ga and 840°C for Ti_rit

Mechanical Testing. All mechanical properties were determined on an Instron machine using a head speed of .001 mm/s. Figure 3 shows the

ultimate tensile strength at room temperature of the titanium-aluminum, titanium-gallium and titanium-aluminum-gallium alloys. The strength of titanium-gallium alloys is greater than that of the titanium-aluminum alloys because of their more negative interaction coefficient. The even greater strength of the ternary alloys is thought to be created by the aluminum-gallium positive interaction.

Selected alloys were tested at elevated temperatures and the experimental data are shown in Table 2. The results are somewhat

taken as base, and different selected elements were added in an attempt to improve the properties. The renults are given in Tables 3 and 4. ⁽¹⁴⁾ Comparison of those results with

Tensile specimens were mechined, and then a subsequent heat treatment at 800°C fot 140 hours.
Web qiven, Precimens were encapeulated

data on commercial alloys is done in Figure 4. -5

alud in argos 000°C, 24 aro.. furnaco .
L at 330°C. 26 houra. furnaco cool.

Figure 4

 ϵ

surprising. The Ti-6Al-6Ga alloy behaves normally, but the Ti-8Al-8Ga and Ti-10Al-10Ga alloys have very small elongation, and in the former the elongation actually decreases as the temperature is increased. Similarly unexpected behavior in a Ti 12.5Al-12.5Ga alloy has been noted earlier by us⁽¹¹⁾ and also by Goddin et al (12) .

In explanation, Fujishiro and Gegel⁽¹³⁾ showed that the Ti-6Al-6Ga alloy still shows 3 slip systems whereas the Ti-8Al-8Ga and Ti-10Al-10Ga alloys probably show only 1 slip system. Decreasing elongation with increasing temperature is caused by a₂ precipitation under strain at the higher temperatures. (13)

Given these results, the Ti-6Al-6Ga alloy (3.4 wt. % aluminum and 8.7 wt. % gallium) was

TnaL comparison reveals that our material is significantly better than the commercially available products.

and a state

FUTURE DEVELOPMENTS

Our intent is to raise the **utilization** temperature above 600°C by improving **our** understanding of the mechanisms occuring in the a alloys Ti-8Al-8Ga and Ti-10Al-10Ga, then introducing small amounts of Si, etc, to improve their properties.

The development of super B-alloys for use above úOO°C would also be important, **but** a number of problems have to be overcome. **One** is the phase **separation tendency indicated by** the positive value of **the interaction parameter, it: experimental evidence of decomposition' has been found lately. '1!>' 1 6' in a thermodynamic analysis the positive interaction parameter decreases the vibrutional f>D, increases the vibrational entropy, and lowers high temperature strength. For example looking at Figuro 4 it is obvious** that above 450°C the strength of Ti-6Al-4V, **and Bill decreases very rapidly. This effect, which is a result of the positivo interaction parameter of the alloying element, also appears in alloy K, our basic Ti-6Al-6Ga alloy when it includes a fairly largo amount (12.5 wt. %) of molybdenum. It is not certain yet how this problem can be overcome.' Certain physical property changes (10) suggest that two additional factors, inherent lattice instability (rapidly changing elastic constants) and the formation of omega phase have to be considered. These problems can perhaps be solved by alloying to high concentration of beta stabilizing elements! this type of alloying with Mo, would produce an alloy with a density of 6.S g/cc. This density is rather high when compared to pure titanium but it is still less than nickel base alloys. Future research should concentrate on developing a new class of stable super-B titanium alloys.**

REFERENCES

1) Hoch, M., Hackworth, J.V., Usell, R.J., and Gcgel, H.L., "Thermodynamic Properties of the Body-Centered-Cubio

 $\mathbf{1}$.

Beta-Phase in the Titanium-Copper and The Titanium-Aluminum Systems", The Science Technology and Application of Titanium, Jaffee., Dr, R. and Promisel, N., Ed., Pergamon Press, New York, 1970, **pp.** 359-360.

- 2) Hackworth, J.V., Hoch, M., and Gegel, H.L., "Thermodynamics of Titanium Alloys: I, Development of a Triple Knudsen Cell and Its Use to Study the Activity of Copper in the Ti-Cu System", Met. Trans. v 2, 1799-1805, 1971.
- 3) Usell, Jr., R.J., and Hoch, M., "Thermo-dynamics of Titanium Alloys il. Titanium and Aluminum Activities in the **BCC** B Phase of the Ti-Al System", Met. **Trans,** v. **2, 2627-2632, 1971.**
- **4) Viswanathan, R. and Hoch, M., "Thermo-dynamics of Titanium Alloys: III.** The **Ti-Mo System", Met. Trans., v. 2, 2765- 2767, 1971.**
- **5) Rolinski, Edmund J.,- Hoch, M., and Obiinger, Charles J., "Determination of Thermodynamic Interaction Parameters in Solid V-Ti Alloys Using the Mass Spectrometer", Met. Trans., v. 2, 2613-2618, 1971.**
- **6) Rolinski, E.J,, Hoch, K., and Oblingor, C.J., "Determination of Thormodynamic Interaction Paramotors in Solid Vanadium-Titanium-Chromium Alloys** using the Mass **Spectrometer", Mot. Trann., accopted for publication.**
- **7) Oblinger, C.J., and Gegel, H.L. Unpublished results.**
- **8) Hultgre't> Ralph, Orr, Raymond L., Anderson, Philip D., and Kalley, Kenneth K., "Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys", John Wiley & Son, Inc., New York.**
- 9) Chalk, David L., Armco Steel Co., **private communication.**
- **10) Collings, E.W., Gegel, H.L., and Ho, J.C. "Fundamental Design of Ti-Alloys", Met. Trans., Submitted.**
- **11) Gegel, H.L., and Hoch, M., "Strengthening the Ti-Al-Ga System", AIME Meeting, May 12-15, 1969, Pittsburgh, Penna.**
- **12) Godden, M.J., Milliken, K.S., and Roberts, W.N., "Ti-Al-Ga Alloys", TMS Meeting, May 16-18, 1971, Atlanta, Georgia.**
- **13) Fujishiro, S., and Gegel,. H.L., "The Ordered Phase Formation in Ti-Al-Ga Alloys", Proceedings of the Electron Microscope Society of America, C.J. Arceneaux, Edtr, Claitor's Publ. Div., Baton Rouge, La., 1970, p. 440.**
- **14) Hoch, M., Sakai, T., Krupowicz, J.J., and Delahanty, M., "The Ti-Al-Ga System", Second International Conference on Ti, Boston, May 2-S, 1972.**

369

- 15) li. A. wilcox, Battelle Inst., **Columbus,** Ohio, private communication.
- 16) Narayaman, G.H., and Archibold, T.F., "Decomposition of the Metastable **Beta** Phase in the All-Beta **Alloy Ti-13V-llCr-**

 \cdot

3A1", Met. Trans, v. 1, 2281 (1970).

17) Williams, J.C., llickman, D.S., and Leslie, D.H., "The Effect of Ternary Additions on the Decomposition of Metastable Beta-Phase Titanium Alloys" Met. Trans, v. 2, **477** (1971).