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The following discussion is motivated by recent work on higher spin equa
tions, in particular by that of Velo and Zwanziger . The subject of their investiga
tion are relativistic wave equations which can be brought into the general form 

.(/Ŝ r--* VK + e^*0^><.x-> =o (i) 

The A?" s (ft-<\ i, "2., S ) are nxn-matrices and B(x) a matrix-valued function of 
y. 6 R . The operator L _ = / 3 >'*'3|x + fn -v Q> l>0) is constructed so that for 

B = 0 the family of solutions V of (1) carries a Hilbert space structure with an 
irreducible representation of the inhomogeneous Lorentz group -or rather its universal 
covering group i SL(2,C)- characterized by a positive mass ID and a spin s • It 

2) has been known since the earliest studies of relativistic wave equations, that this 
3) property together with a stability condition makes the Cauchy problem with data on 

x = 0 for L particularly nasty from a mathematical point of view. One aspect of B 
the trouble with L comes from the possible singularity of the matrix fS 

det y3,° 0 . (2) 

This gives rise to slogans as "the plane x = 0 is characteristic" or "L. is sin
gular". 

The difficulty with the Cauchy problem originating in (2) has been cir
cumvented by Velc and Zwanziger for several wave equations with the help of the follow
ing trick : Instead of the original equation (1), they consider a new set of equations 
of the form 

{V<*<^ t « v Cw') H»Ort = 0 (3) 
with proper t ies 

^ O t ^ are matrix valued functions of x 6 R . (4a) 

det Y w f o , V x 6 R 4 . (4b) 

Each solution of (1) is a solution of (3) . (4c) 
Each solution (3) , if a solution of (1) for x = 0, is a 
solution of (1) . (4d) 

This method avoids the difficulty with the original equations mentioned earlier (2) 
because of (4b) . However theye remain some unsatisfactory aspects even on this 
formal level : 
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The Cofîtruction of the ̂  s seem quite arbitrary. (5a) 

The consistency relation (4d) is in general hard to prove . (5b) 

Yet another difficulty with this method arises if we leave the for

mal level and look at the Cauchy problem for the partial differential opera

tors L„ and M = ^(j^t)^ -V w, -v Cc*\ in a function space. We 

are going to show that H„ does not belong in general to eigher one of 

tne classes of partial differential operators -they will be specified latter-

for which strong results are known about existence and uniqueness of the 

Cauchy problem. To be more specific we consider the Fierz-Pauli equation 

for s = 3/2 with minimal electromagnetic interaction. For convenience 

ie f 

6) 

we use the formalism of Rarita and Schwinger . The wave equation is 

given by 

Velo and Zwanziger proposed two possible M's for this particular case* 

(Mi* V = ^ ' ^ V - «J IT* * W i - H e * • & 'P • 

V O Y V - (¥ *«^HV 'I C3V- * i * ^ ̂  V ? V -

The partial differential operators of the first class have strictly 

hyperbolic determinants . In our case tl.e determinants can both be 

calculated : 

detWL = f (.p̂ -vW-S1 + $£ ^pFfl^-u^f (8) 

detM2 = [^-wM^ ^(.pF^lV-- 1^ ( 9 ) 

2 2 

Both determinants contain several times the factor (? - ra ) and are there

fore not strictly hyperbolic* The operators of the second class are of 

the general form T CM "Du •+• ̂  cx̂ ) where the »*^*^s are matrix valued 

8) 
functions hermitian with respect to a positive definite scalar product-- • 
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(3) 

The positive definitness is essential for derivation and application of an 

energy inequality which is at the heart of existence and uniqueness proof 

for the Cauchy probJ.em within this class, Of the two operators M 1 and 

M~ the second comes near to belonging this class because it is hermitian 

(for ireal external field) with respect to tha sc n I at product 

< * , * > - «*> r ^ V v 
(10) 

4 4 
in the 16-dimensional vector space C ® C * However this scalar product 

9) 

is not positive definite « This indicates that the Cauchy problem for 

M. and M might not always have a solution -respectively a unique solu

tion- in a space of functions with a finite number of derivatives, as is 
typically the case for strictly hyperbolic operators and symmetric 

ion t 

ID 

systems „ However there is a unique solution to the problem in a more 

complicated space of quasi-analytic functions 

Now we show how' the knowledge of a fundamental solution E for 

"Î / , . 
(,M|I1\=

 l.(}>t»)fv-'3^-'ïVi^*+UY^ (il) 

allows the construction of a fundamental solution E' for L(D) by a 

purely algebraic procedure. Such a solution is most important for a 

12) 
quantized theory with external fields A (x) as well as for the dis-

13) cussion of the classical Cauchy problem « A fundamental solution of 

18) 19) + 
M, could be used the same way , M 1 is related to 

M ^ A ) = T ^ M ^ ^ t S C M as follows ; 

where the star denotes hermitian conjugation with respect to (10) e The 

method to be deployed is a variant of the one used previously in 

the analysis of the Proca equation, 

A part of the construction is based on a result valid for arbi

trary relativistic wave equations of type (1) c We denote bydLl."') the 
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corresponding Klein-Gordon divisor 

Aaw»yv + i

m t , , l - ^ )V»»- ' < 1 2 ) 

V. (13) 
+ t~^ i-> ̂ -/^V^/^V-X 

LadO'» =(^Q-vw>M ,R>=-o, 

Looking for a generalization of (13) for the case of minimal coupling one 

gets the following partial result ! 

LEMMA 

t; 

The order of L.«f:d(cL+tĴ ) does not exceed n-1 if n> 2 , respective

ly 2 if n = 2*"* " . / 

lï°îî ' L.„ <i 13>) ., T> = V +C kf c a n b e written in the form 

I «L-Ï* +%«*\* ^ ^ ^ ^ - V V , ( 1 4 ) • 

where we used the notation , , 

^=ln, nv_\ **»•* ~^- a n <* t b e *̂  ' s denote tensor valued functions 

of xc R . The totally symmetric part of CX^ -in the (J-J ' s- is 

zero due to (13) . Since the commutator t^W, ̂ m,. J * s o n^y °^ 

zeroth order in ~à the first term in (14) contains Cî ly contributions 

of order n-1 . Thij is enough to demonstrate the lemma in the case n = 2. 

If n> 2 , we know again from (13) that the symmetric part of ̂  va

nishes. Hence the second term contains again only terms of order r.-2 

in "3 . 1 

Frc.n the lemma one draws readily the following conclusion. If 

n = 2s -this occurs in many cases - the order of L.w"d(D) is inde-

pendent of the external field provided s < 3/2 . £ '•' 

Turning back to the Fiera-Pauli equation for s = 3/2 we recall 

the explicit form of the Klein Gordon divisor, 

dO) = dt'(5i}(iu-9f) ~ (w-7i«*Jc3) 

d»rO)r-v = «fcK, + ̂  ̂ , - t^V">» ' ^ ^ ^ h , ^ ^ ( 1 5 ) 

i l 
A straightforward computation yields the following relations between 
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S) 

L(D) defined by (6) , the Klein Gordon divisor and the Velo Zwanziger 
18) 

operator M , 
L(D) d'r(D) = M* 

(16) 

d< (D) L(D) = M, . e I 

Due to (16) E' = d' (D) E is a fundamental solution of L(D) if 

E is one for M 1 • 

L(D)(d'r(D)E) = M+E = S . (17) 

The simple relations between L(D) , d(D) and M 1 , as they 

are expressed by (16), are remarkable for two reasons t 

i) They yield a canonical way of constructing M. „ 

ii) The construction of a fundamental solution for L(D) can be 

achieved without even touching upon the problem of inconsistencies 

mentioned at the beginning (5) « 

\ 
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