CPT 152
OR0-3992-98
July 1972

On the Poincare” Non-invarianc~ of a Recent Alternative to the Dirac Equation.

Raghunath A.cha.rya.+ and

Rabinder N. Madan*‘

Center for Perticle Theory
University of Texas at Austin;
Austin, Texas 78712

June, 1972

NMOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their emplcyees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe privately owned rights,

¢ Permanent Address: Physics Department, North Caroline A and T State University

* Research supported in part by NASA.

+ Supported in Part by the USAEC under contract AT(L0-1)3992

BASTRIGUTION OF THIS DGCUMERT IS UNLIMNTED



ABSTRACT

The two component factorization of the Klein-~Gordon operator, pro-
posed by Biedenharn, Han and van Dam, as an alternate to the Dirac equation
for spin one-half massive leptons is investigated for its Poincare” invari-

ance. It is found that the BHvVD equation is not Poincare” invariant--and

thus must be rejected. The approach is to search fbr the“existence of

ten independent infinitesimal generators H, g, g and If that satisfy the
Lie bracket relations, characteristic of the Poincare” group. We find that
the algebra does not close except for mass zero leptons, the cése of the

Weyl equation.



I. Introduction

In a recent set of papers, 1 Biedenharn et. al. have proposed an
alternative to the Dirac equation2 for spin one-half, finite mass particles,
the so called Stigma equation. The Stigma equation is a first order, two
camponent equation and involves factorizing space~time-dependent matrices,
even in the case of no interaction. In I (footnote 6) one finds an
insufficiently cautious statement,by the autkors about the Lorentz invari-
ance of their work. It is the object of this paper to examine systemati-
cally the Lorentz invariance of their equation. We achieve this by expli-
citly constructing the infinitesimal generators of the Poincare” group and
we find that the Poincare” algebra closes only for the case of zero mass.3
Hence, the Stigma equation is not Poincare” invariant except when the
leptonic mass is zero. The equation, therefore, does not offer a viable
alternative to the Dirac equation. Now, the invariance of the theory under
the operations of the inhomogeneous Lorentz group is merely a reflection of
the principle of special relativity, which states that the laws of physics
should be invariant under transformations of inertial reference frames.

This symmetry is guaranteed by postulating the existence of the ten independent

infinitesimal generators H, P, J, and K satisfying the Lie bracket relationsh

characteristic of the inhomogeneous Lorentz group. These relations read:

Py » P} =0 (1)
[P, ,H] =0 (2)
[3; s Pyl =1e, P (3)
J; »H] =0 (4)
(35 » 3,1 =1e, I (5)
[P K,] = -16,, H (6)
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5, K] =-ip, (7)
[Ji , Kj] =i €1 3k K, (8)
[k, KJ] = -i €51k Iy (9)

In Section II, we give the explicit form of the Poincare” group
generators for the Dirac equation, in the standard frame and also in Bose-

5 frame.

Gamba-Suda.rahan-Cini-Touschek
In Section III, we search for the realization of the Poincare” group
generators for the Stigma equation and check the commutation relations of

the corresponding Lie algebra. In the final section, we . iscuss the conse-

quences of our finding. Some useful commutators are iisted in the Appendix.

II The Dirac Equation.

For the Dirac equation the realization of the Poincare’group (up to

unitary equivalence) generators are:

P =p,
Hy =a*p+m
J =rxp+ %o

Mr (Bom+o-p)+ (Bn+a-p)rl-tp

The forms of P, Hy, and J are elementary. The form of K, follows

immediately by observing that

5 5 1
K = M . where M = i(x —— . X —)
J Jo Hv HoaxV Voo

and making use of the expressipn for the time derivative in terms of the

Hemiltonian. Furthermore, ¥ 'Yﬁ' Y transforms as a vector with this choice

of renerators.



One verifies by direct calculation that the identifications (10) do
4

satisfy the Poincare” group requirements (1) - (9).
It is also known that the Dirac equation admits other representations
in which the Hamiltonian is free of either "odd" or "even" operators
respectively. The former case arises as a result of performing the Foldy-
Wouthuysen-'rani6 transformetion on the Diiac Hamiltonian. The latter case,
which proves to be of interest here, is obtained by performing the Bose-
Gamba—Sudarshan—Cini—Touscheks transformation. In this case \pE =U |pD, O =
UODU"' withU = exp[~ -:!‘2- Ba- P tan'l(m/p)]. The subscript D refers to the
Dirac representation and the subscript E to the so called extreme relativistic

representation. The realizations of the Poincare” generators in the 'E'

representation are seen to take the form:

P =97
H, =a P (p? + n?)? '
~ . (11)
J =rxp+-2-g
g =3lec 8P +nd)irrra- 8e? + 02 + B8l0,008] - tp,

where p2 =p.p. The form of ]..(.E has been obtained by explicitly performing

~

the unitary transformationUon ISD . It may be pointed ocut here that the second

+
term in the expression for K, arises due to the fact that- Uru” # r, though UpU = p.

IIT The Biedenharn-Han-van Dem Equation.l
We now turn to the main purpose of this paper, namely, the proposed

alternative to the Dirac equation.



In T, Biedenharn and his associates have advocated a different factorization

of the Klein-~-Gordon operator E2 = p2 + m2. These authors define a set of

three anticommut.ng operators with unit square:

2 Gup
ny £
n, = Iyng
and
_ oy ol
N, (-1)

g-Ir1]

and introduce the Hamiltonian:

HI=9 -g+n3m, (12)

where 0 are the usual the Pauli spin matrices andmn3 introduced above is a

space-~time dependent operator with.n32 = 1 and satisfies the commutation rela-

tions:

[n3,cfi]_ = 0 ,'ﬁ13, pi}+ =0 and'ﬁl3, ri}+ = o. (13)

At this point, one observes a basic difference between the Dirac equation

and Eq. (12): in the latter case, P, the generator of spatial displace-

ments does not commute with Hy, thus violating (2). Hence p cannot be

identified with P. Furthermore, as pointed out by Streatnr7, éig'g, the gener-
ator of finite translations also does not commute with n3, contrery to the
assertion of I, since under rarity P + -p so g.g -+ -g.g(g doez not alter as it

is not the position operator but real numberss. This means that already at

this stage Poincare” invariance is lost! This is indeed the case and we explicitly

demonstrate in the following that Poincare” invariance can be restored only

in the case of m = 0.



In analogy with the Dirac case, one can consider the two other repre-
sentations of equation (12). One, in which the Hamiltonian is free of

g .p, that is:
o (o2 4 m2YE ,

This presents the same difficulty as (12), that is, p does not again commute
with the Hamiltonian HII' Instead one considers the other representation
in which the Hamiltonian is free of n3. For this representation, the

operator of unitary transformation is

S = exp[- -é- n, o P tan ~ %)] (15)

and the transformed Hamiltonian turns out to be
Ho=0. 8 (07 + m?)? (16)

One notes that p does commute with HIII and hence is a suitable candidate

~

for the generator of translations in space. Thez realization of this operator

in the untransformed representation of I has the unnatural form:

a b A - m
< [(p2 . mz);é] LA [(p2 . m2);5] = o

It is easily verified that P in Eq. (17) satisfies (1) and (2), but it is
rather unwieldy to check the rest of the algebra in equations (3) - (9).
It is more convenient to work in the extreme relativistic representation of

Eq. (16), thereby also bypassing any questions sbout the physical interpretation




of31§1>that may arise. The only role which713 plays in this demonstration
of non-invariance is through its algebraic property Eq. (13). It is to be
emphasized, however, that if so desired, one could carry out the analysis
in the original representation of Eq. (12).

In the extreme relativistic representation g =P and f =rxp + %Ez,
and it 1s easily verified that relations (3)-(5) are satisfied. This is
not surprising since [g, S] = o ard Eq. (12) is rotationally invariant.

Now the crucial step in establishing Poincare” invariance lies in
constructing the generator § of pure Lorentz transformations and showing
that it obeys the bracket relations (6) - (9) of the Poincare” group. This
we now st out to do by first securing a link betwezn the transformed

representation (III) Eq. (16) and the extreme relativistic representation

Eq. (11). Define:
V=5 (v Ny

Since o = -\/5 g, it follows that

Hppr Y= .8(° + 1%)7 9. (18)
Thus we may identify the wave function in the transformed representation
(ITII) with the chiral projection w_ of the Dirac wave function in the
'extreme relativistic' representation. The corresponding relation between
the operators in these representations is simply

_ 1 1o
Orpr = 3{1-Y5) Op 5{1-v5). (19)

L



7
. . 8
From equation (11) for Ky, We thus obtain

1 2 2. L .
K111 © 2 {‘Z'ﬁ(P +m) r+ra.Be” +nT)Y -tp, (20)

since (1—753 8(1-75) = o, [Yb" g]_ = o and

1 =
5 1-Y5 ¥ =Y_.

By straightforwerd algebra, we find that KIII satisfies the Poincare”

relations (€6) - (8). As a typical example, let us consider the commutator

SOF

[H, Ki] .
=%E§.§E,g.pE r. +r,g.p E]
=lc.1’iE[g.pE r]+-l—[q~.’§E r.] .0 B
o = > Ty LA ’ .
_l-_ o T A A
1 A N 2 A
+ 5 {L‘g..p, ri]_g.p E +¢g.P [E, r1] g.p E}
2 2
B i A E
= -ip, +i=, p. - = {g.p, g } -
i p2 i 2 iy, »p
= -ipi Y Qo Eo Do

Finally, for the crucial commutator [Ki, 5]_. After s tedious algebra,

one discovers

K2 Kyl = -1 ey )° 7 G or (e R)k£ o (e

clearly, the algebra dces not close for the case of finite mass. We are;. "



therefore, forced to the conclusion that the stigme equation of I is
Poincare” -invariant only for the case of zero mass leptons. In this
limit, Eq. (12) collapses into the Weyl equation, in both the original
and the transformed representations. The Weyl equation, of course, is
known to be Poincare” invariant and it can be derived from the Dirac

9

equation for zero mass.

IV Discussion.
Some remarks are in order.
(2) The failure of Poincare” invariance of the stigma equation is clearly
due to the presence of the space-time dependent operatorr13 in the Hamiltonian.
It is worth recalling here the original powerful argument of Dirac10 that
in the case of no external field, all points in space-time must be equivalent

and hence the operator in the wave equation must not depend on the ri's. This

simpie and fundamental argument of Dirac has been subtly violated in I.

(b) The elegance and power of the unitary transformation employed’ is worth
emphasizing. We have been able to bypass completely all questions about
the physical interpretation given to (or to be given to) the space-time depen-~

dent operator N The latter can be "transformed away" via the unitary trans-

3.
formation and our analysis depends only on the algebraic property of commu-

tation relations satisfied by1]3.

(¢) We must perforce conclude that Poincare” invariance which provides a
precise mathematical expression to the principle of special relativity
offers an additional proof of the uniqueness of the description of a finite

mass, spin %—particle by means of the Dirac equation.




We are indebted to Professors R. F. Streater and E. C. G. Sudarshan
for critical comments. We are grateful to Professor Sudarshan for the oppor-

tunity to visit the Center for Particle Theory, University of Texas.
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Appendix

In this, we tabulate some commutators that were employed in the

text.

[0.p,0.] =2.(0 x B)i

l~
P

=
2l

1, _ By
T E-T S
[r.’ L ] = _;i.P_}_é.
NE - 2w
-=ip. VE + p
ey s — - — 57
YVeE(E+p) . 2Ve /%
[ E+tp 1 = P TVEP
1 2E _ 2\é_P E5/2
[ri’ g-ﬁ]_ = 'P_:;' {P Gi - (C:.ﬁ) Pi}

v, a.B]_ = ;ié— {p oy - (a.5) pi}



