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ABSTRACT 

The two component factorization of the Klein-Gordon operator, pro-

posed by Biedenharn, Han and van Dam, as an alternate to the Dirac equation 

for spin one-half massive leptons i s investigated for i t s Poincare' invari-

ance. I t i s found that the BHvD equation i s not Poincare" invariant—and 

thus must be rejected. The approach i s to search for the existence of 

ten independent inf in i tes imal generators H, P, J and K that s a t i s f y the 

Lie bracket re la t ions , characterist ic of the Poincare" group. We f ind that 

the algebra does not c lose except for mass zero leptons, the case of the 

Weyl equation. 
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I . Introduction 

In a recent set of papers, ^ Biedenharn e t . a l . have proposed an 
p 

alternative to the Dirac equation for spin one-half , f i n i t e mass part ic les , 

the so cal led Stigma equation. The Stigma equation i s a f i r s t order, two 

component equation and involves factorizing space-time-dependent matrices, 

even in the case of no interaction. In I (footnote 6) one finds an 

insuf f i c i ent ly cautious statement, "by the authors about the Lorentz invari-

ance of their work. I t i s the object of t h i s paper to examine systemati-

cal ly the Lorentz invariance of their equation. We achieve th i s by expl i -

c i t l y constructing the inf ini tes imal generators of the Poincare" group and o 
we find that the Poincare" algebra closes only for the case of zero mass. 

Hence, the Stigma equation i s not Poincare* invariant except when the 

leptonic mass i s zero. The equation, therefore, does not offer a viable 

alternative to the Dirac equation. Now, the invariance of the theory under 

the operations of the inhomogeneous Lorentz group i s merely a re f l ec t ion of 

the principle of special r e l a t i v i t y , which s tates that the laws of physics 

should be invariant under transformations of iner t ia l reference frames. 

This symmetry i s guaranteed by postulating the existence of the ten independent 2. 
inf ini tes imal generators H, P, J , and K sat i s fy ing the Lie bracket relat ions 

characteristic of the inhomogeneous Lorentz group. These relat ions read: 

• V 
= 0 (1) 

£pi , H ] = 0 (2) 

' V = 1 e i j k pk (3) 

, H ] = 0 W 

• V 
= i e i j k Jk (5) 

• V 
= - i 5 i j H (6) 
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(7 ) 

(8) 

(9) 

In Section I I , we give the expl ic i t form of the Poincare'' group 

generators for the Dirac equation, in the standard frame and also in Bose-

In Section I I I , we search for the real ization of the Poincare" group 

generators for the Stigma equation and check the commutation relations of 

the corresponding Lie algebra. In the f i n a l sect ion, we - iscuss the conse-

quences of our finding. Some useful commutators are l i s t e d in the Appendix. 

II The Dirac Equation. 

For the Dirac equation the real izat ion of the Poincare'group (up to 

unitary equivalence) generators are: 

The forms of P, H^, and J are elementary." The form of Kp follows 

immediately by observing that 

and making use of the exgressipn for the time derivative in terms of the 

Hamiltonian. Furthermore, f Y^ ^transforms as a vector with th i s choice 

of generators. 

Gamba-Sudarahan-Cini-Touschek frame 5 

P = P, •w »« 

Hp = a • p + * m 

J « r x p + 

Kp. = (0 m +.o • p) + (.6 m + a • p) r ] - tp 

(10) 
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One v e r i f i e s "by direct calculation that the ident i f icat ions (10) do 

sa t i s fy the Poincare'' group requirements ( l ) - (9) .^ 

I t i s also known that the Dirac equation admits other representations 

in which the Hamiltonian i s free of either "odd" or "even" operators 

respectively. The former case arises as a resul t of performing the Foldy-

Wouthuysen-Tani transformation on the Dirac Hamiltonian. The la t t er case, 

which proves to be of interest here, i s obtained by performing the Bose-
5 

Gamba-Sudarshan-Cini-Touschek transformation. In th i s case ^ «U 0E • 
+ 1 —1 UO_U with U as exp[- • f tan (m/p)]. The subscript D refers to the JJ cL ~ 

Dirac representation and the subscript E to the so called extreme r e l a t i v i s t i c 

representation. The real izat ions of the Poincare^ generators in the rEf 

» 

representation are seen to take the form: 

P = p 
•v *** 

Hp = ot • $ (p2 + m2)3* E - (11) 
J » r x p + -r- a K e « I [a • $ (p2 + m2)h r + r a • $(p2 + m2)h] + - tp , 

2 
where p = p . p. The form of K_ has been obtained by e x p l i c i t l y perfonaing 

the unitary transformation U on K̂  . I t may be pointed out here that the second 

term in the expression for Kg arises due to the fact that UrU+ f r , though UpU+ = p. 

I l l The Biedenharn-Han-Van Dam Equation.^ 

We now turn to the main purpose of th i s paper, namely, the proposed 

alternative to the Dirac equation. 



h 

In I , Biedenharn and h i s associates have advocated a d i f ferent factorizat ion 
2 2 2 

of the Klein-Gordon operator E = p * m . These authors define a set of 

three anticommuting operators with unit squares 

r)1 = 
n 2 = V 3 

and 

and introduce the Hamiltonian: 

HI = ? # 5 + n3m» (12 ) 

where a are the usual the Pauli spin matrices and ru introduced above i s a ~ j 
2 

space-time dependent operator with n ̂  = 1 and s a t i s f i e s the commutation rela-

t ions : 

[rig, <J±3_ = o , h y v±}+ = o and fog, r±}+ = o. (13) 

At t h i s point , one observes a basic difference between the Dirac equation 

and Eq. (12): in the la t ter case , p , the generator of spat ial displace-

ments does not commute with H_, thus v io lat ing (2) . Hence p cannot be —— i ~ 
rr i J _ 

ident i f i ed with P. Furthermore, as pointed out by Streatfir , 4 ~ the gener-

ator of f i n i t e translations also does not commute with TÎ , contrary to the 

assertion of I , s ince under rarity p -p so d.p -d.p(d does not a l t er as i t <y <v 

i s not the posi t ion operator but real numbers). This means that already at 

t h i s stage Poincare"" invariance i s l o s t ! This i s indeed the case and we e x p l i c i t l y 

demonstrate in the following that Poincare' invariance can be restored only 

in the case of m = 0. 



In analogy with the Dirac case, one can consider the two other repre-

sentations of equation (12). One, in which the Hamiltonian is free of 

CT . p, that is: 

EZ1 =n3(p2+m2);§ (lh) 

This presents the same difficulty as (12), that is, p does not again commute 

with the Hamiltonian H^. Instead one considers the other representation 

in which the Hamiltonian is free of rî . For this representation, the 

operator of unitary transformation is 

S = exp[- n, cr.p tan"1®] (15) d 2 ~ P 

and the transformed Hamiltonian turns out to be 

H m - a . p (p2 + m2)h (16) 

One notes that p does commute with and hence is a suitable candidate 

for the generator of translations in space. The realization of this operator 

in the untransformed representation of I has the unnatural form: 

I t i s e a s i l y v e r i f i e d that P i n Eq. (17) s a t i s f i e s ( l ) and ( 2 ) , but i t i s 

rather unwieldy t o check the r e s t of the algebra i n equations (3) - ( 9 ) . 

I t i s more convenient to work in the extreme r e l a t i v i s t i c representation of 

Eq. (16) , thereby a l so bypassing any questions about the physical interpretat ion 
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of 3, that may arise . The only role which n^ plays in this demonstration 

of non-invariance i s through i t s algebraic property Eq. (13). I t i s to be 

emphasized, however, that i f so desired, one could carry out the analysis 

in the original representation of Eq. (12). 

In the extreme r e l a t i v i s t i c representation P = p and J = r x p + h o 9 

and i t i s easi ly ver i f ied that relations (3)-(5) are sa t i s f i ed . This i s 

not surprising since [J, S] = o and Eq. (12) i s rotationally invariant. 
•V 

Now the crucial step in establishing Poincare' invariance l i e s in 

constructing the generator K of pure Lorentz transformations and showing 

that i t obeys the bracket relations (6) - (9) of the Poincare' group. This 

we now set out to do by f i r s t securing a link between the transformed 

representation ( i l l ) Eq. ( l6) and the extreme r e l a t i v i s t i c representation 

Eq. ( l l ) . Define: 

= 2 ( 1 ~ W 

Since a = -v a , i t follows that 
•V J »v 

H m = <S .p(p2 + m2)^ (18) 

Thus we may ident i fy the wave function in the transformed representation 

( i l l ) with the chiral projection ^ of the Dirac wave function in the 

'Extreme relat ivist ic" representation. The corresponding relation between 

the operators in these representations i s simply 

° m = i ( 1 - V 
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From equation ( l l ) for K_, we thus obtain 

KIII = 2 {2 - £ ( p 2 + m 2 ) i' I + £ ? , :p ( p 2 + ( J } 0 ) 

s ince ( l - Y ^ 8(l-Y5) = o , [y^, a]_ = 0 and 

By straightforward algebra, we find that KJ-JJ s a t i s f i e s the Poincare"-

re lat ions (6) - (8) . As a typica l example, l e t us consider the commutator 

(7): 

EH, K ^ . 

= \ fe.p E . g j E ri + ri 0 E L 

• I g -p E b .p E, r j ^ + E, r ± g . p E 

- | g . p E {fo .p, r i ]_E + 0 [E, r ± ] _ | 

+ | { f o . p , E2 + g . £ [E, r^]^ g .p eJ 

• ^ .E 2 i A t E2 
= -ip1+i-2 P. ja.p, g. -

= -ip^^ , Q. E. D. 

Final ly , for the crucial commutator [K. , K ] . After a tedious algebra, 

one discovers 

£j] = -i EiJ k f + ^ * V (21) 
P 

c l ear ly , the algebra does not c lose for the case of f i n i t e mass. We are* ; , 
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therefore, forced to the conclusion that the stigma equation of I i s 

Poincare' -invariant only for the case of' zero mass leptons. In this 

l imi t , Eq. (12) collapses into the Weyl equation, in both the original 

and the transformed representations. The Weyl equation, of course, i s 

known to be Poincare' invariant and i t can be derived from the Dirac 
9 equation for zero mass. 

IV Discussion. 

Some remarks are in order. 

(a) The fai lure of Poincare' invariance of the stigma equation i s clearly 

due to the presence of the space-time dependent operator ri ^ in the Hamiltonian. 

I t i s worth recal l ing here the original powerful argument of Dirac^ that 

in the case of no external f i e l d , a l l points in space-time must be equivalent 

and hence the operator in the wave equation must not depend on the r^'s. This 

simple and fundamental argument of Dirac has been subtly violated in I . 

(b) The elegance and power of the unitary transformation employed 5 i s worth 

emphasizing. We have been able to bypass completely a l l questions about 

the physical interpretation given to (or to be given to) the space-time depen-

dent operator The lat ter can be "transformed away" v ia the unitary trans-

formation and our analysis depends only on the algebraic property of commu-

tat ion relations s a t i s f i e d byTi^« 

(c) We must perforce conclude that Poincare' invariance which provides a 

precise mathematical expression to the principle of special r e l a t i v i t y 

of fers an additional proof of the uniqueness of the description of a f i n i t e 

mass, spin part ic le by means of the Dirac equation. 
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We are indebted to Professors R. F. Streater and E. C. G. Sudarshan 

for critical comments. We are grateful to Professor Sudarshan for the oppor 

tunity to visit the Center for Particle Theory, University of Texas. 
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Appendix 

In this, "we tabulate some commutators that were employed in the 

text. 

tn3'ai^- = o ; { T V Pi}+ = {n3' ri>+ = ° 

[a.p,a ] « 2.(a x p). ~ ~ X ~ 1 ~ -Z X 

[ri< E]- • 1 1B 
pi 

i' p ] = V 
1 ipi 

[ r r I]- - " 

tr.,i] -L\/i~ " 2 s?^2 
• -ip.VE + P 1 1 - ± 

1 ' V 2 E ( E + p ) 2 V f E 5 ' 2 p 

1 i' > a _ 2\T p e5/ 2 

[r , a.p] = -i- <p a± - (o.p) p 
P ' 

[ri5 
P 

|p a. - (a.p) p^ 


