институт теоретической и экспериментальной физики гос. комитета по использованию атомной энергии ссср

А.М.Благородов, В.Н.Лузин, И.А.Редневич, Т.Г.Смоляннима, В.В.Соколовский, Ю.Ф.Томацук

ИЗМЕРЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЯ СІТИМ. В РЕАКЦИИ Л-Р->РХ- ПРИ 3,2 ГЭВ/С в 3,7 ЭВ/С.

Moctain 1971r.

985

АННОТАЦИЯ

В работе приводятся результаты измерения относительных дифферевциальных сечений $\frac{d^2 G}{\partial t \, o / M_X}$ в реакцим $\mathcal{I}^- \rho \rightarrow \rho^{\times -}$ для двух значений первичного импульса 3,2 Гэв/с и 3,7 Гэв/с. Работа выполнена на магнитном спектрометре недостающих масс. Определено, что зависимость сечений от t хорошо описывается выражением вида $\mathcal{B}e^{-M_H}$. Получена зависимость константы A от t для обоих значений первичного импульса.

2

Abstract

Results are given of measurement of the relative $\sqrt{\frac{46}{5}}$ in reactions $\pi P \rightarrow p^{\chi}$ differential cross sections $\frac{46}{4t_{c}M_{\chi}}$ in reactions $\pi P \rightarrow p^{\chi}$ for two values of initial momentum 3/2 and 3,7 GeV/c. The missing mass magnetic spectrometer was used. It is determined that the t-dependence of cross sections is $\frac{4}{6}$, reasonably described by the expression of the type Be^{-2} . The t-dependence of the constant A is obtained for both values of initial momentum.

УДК 539. 121.72

Измерения выполнены на магнитном спектрометре недостающих масс, предназначенном для исследования произвольных квазидвухчастичных реакций [I]. Спектрометр регистрирует протоны отдачи в сравнительно широком интервале импульсов и углов [2] что позволяет исследовать зависимость сечений от переданного четырехмерного импульса \dot{c} .

Схема спектрометра показана на рис.І. Первичные \mathcal{J}_{1} - мезоны регистрируются сцинтилляционными счетчиками C_{1} , C_{2} и C_{3} . Протоны отдачи проходят счетчик C_{4} и после пролета через магнит регистрируются счетчиком C_{5} включенным в схему задержанных совпадений, которая позволяет выделять протоны по времени пролета вплоть до импульсов I,5 Гэв/с. ^мастерным сигналом запуска искровых камер служит срабатывание счетчиков C_{1} C_{2} C_{3} C_{4} C_{5} $\overline{C_{6}}$. Координаты траектории пучковых частиц и частицы отдачи определяются оптическими искровыми камерами ИK_{1} , ИK_{3} , ИК_{5} и ИК_{6} . На спектрометре уётановлена также автономная система акустических искровых камер АK_{1} - AK_{6} , которая в данном эксперименте не использовалась.

На входе снектрометра помещена жидководородная мишень, изготовленная из натянутой на карвас фольги нержавеющей стали толщиной 0,08 мм [3]. Дина мишени 250 мм, диаметр - 60 мм. Суммарная толщина стали на пути частиц отдачи составляет 0,2÷0,25 мм.

Спектрометр регистрирует частицу отдачи в интервале углов от 23 до 69°. В интервале импульсов протона отдачи С,27 – 0,8 Гэв/с схема задержанных совпадений пропускает все протоны, а в интервале 0,8*1,5 Гэв/с протоны регистрируются с меньшей эффективностью, поправка на которую вводится расчетным путем [2]. Фотографий событий, нарегистрированных спектрометром, после отбраковки обмерялись на полуавтоматическом цифровальном столе (ПЦС-I). Данные обмера вводились на перфокартах в ЭЕМ М-20 и по соответствующим программам проводилась обработка событая.

Эффективность спектрометра для регистрации протона отдачи из реакции Лрэрх была рассчинана по методу Монте-Карло. В результате

> 1. 1 1

П- незонов расчета [2] была получена двухпараметричная функция $\phi = \phi(\mathcal{M}_s, \mathcal{P}_3)$ где \mathcal{M}_X - недостающая к протону отдачи масса, а \mathcal{P}_3 - импульс протона отдачи. На рис.2 изображены линии равной эфективности при импульсе пучковых 😤 мезонов 3,2 Гэв/с. Точками накесень скопериментальные результаты. Коррекция экспериментального материала осуществлялась отдельной программой. Области значений недостающей массы 0,6 $\leq M \leq$ 1,65 Гэв и значений импульса протона отдачи 0,25 💰 $ho_3 \leqslant$ 0,85 Гэв/с были разбиты на интервалы. равные 0,0025 Гэв для Mx и 0,05 Гэв/с для По величинам Мх и Ра для каждого события методом интерполяции опре- $\Phi_i(M_x, P_3)$ делялась величина эффективности рассчитанная [2] . Затем событие записывалось в соответствующий интервал ΔM_X В . Таким образом, в каждом интервале AP3 C BECOM И вычислялось скорректированное число событий $\mathcal{N} = \sum_{i=1}^{n}$ Одновременно записывалось некорректированное число событий в тех же интервалах. Один из блоков программы вычислял статические ошибки для каждого интервала по формулам $\Delta N' = V N'''$ (для некорректированной гистограммы) и $\Delta N = \sqrt{\frac{2}{2}} \frac{4}{\phi^2}$ (для корректированной). Программа позволяла также получать результаты при разбиении на любые другие, кратные 0,0025 Гэв и 0,005 Гэв/с, интервалы. Для получения дифференциальных се-Мx выбирались интервалы по чений 1/1 ρ_3 , равные О.І Гэв и 0,05 Гэв/с, соответственно, а также 0,2 и 0,05 Гэв/с. Если изобразить один из таких двумерных интервалов в осях $M_{\mu} \sim P_3$ (см. рис. 3), он будет представлять собой прямоугольник со сторонами 0,1 Гэв и 0.05 Гэв/с или 0,2 Гэв и 0,05 Гэв/с. При вычислении сечений использовались только те прямоугольники, которые целиком оказывались внутри кривой (3) B. ONG Сечения вычислялись по формуле $\frac{d^2 6}{d P_3 d M_x} = \left(\frac{c}{N_{\pi} \Delta P_3 \Delta M_x}\right) N$ (1)

(П, где N - скорректированное число событий в данном интервале $\Delta^{M_X} = \Delta^{N_3}$; N_I - число Л = мезонов, прошедших через водородную мишень; С - количество вкулонов на см² водородной мишени; / - 2/ - иножитель учитывающий ограничение по азумутальному углу при

расчете эффективности спектрометра. Пом перходе к сечению необходимо умножить выражение (I) на якобиан перехода Аля вычисления относительных дифференциальных сечений в выражении (1) достаточно положить множитель, заключенный в скобки, равным І (соответственно для $\Delta M=0, I$ Гэв и $\Delta M = 0, 2$ Гэв). Вычисленные относительные сечения приведены в таблицах I и 2. Для имиульса 3,7 Гэв/с оценено с точностью ~ 30% абсолютное сечение, которое 27 Мбн/Гэв³/с² на одну стносительную единицу таблицы. оказалось На рис.4 и 5 в полулогарифмическом масштабе изображена зависимость сечений от t для тех интервалов по массе, в которых сечения определены не менее чем при трех значениях τ (см. таблицы I и 2). Из приведенных графиков видно, что зависимость сечения от 🕇 для каждого интервала по Be-Alt! массе хоропо описывается выражением вида Значения - констант А для каждой из прямых рассчитывались методом наименьших квадратов. На рис.6 и 7 приведена зависимость константы А от массы для импульса пер-Л - мезонов 3,2 и 3,7 Гэв/с, соответственно. Прямые проведены вичных через экспериментальные точки методом наименьших квадратов. В пределах овибок наклоны обеих прямых совпадают.

В заключение авторы считают приятным долгом зыразыть благодарность Ан СССР члену-корреспонденту В.В.Владимирскому за постоянный интерес и помощь в работе. Работа поступила

Работа поступила - в печать 30.XII-71 г.

Po = 3,2 [36/c										
Интервал РЗ, Гев/с	Среднее значение А.Гэв/с	Среднее эначение с (Гэв/с) ²	ого онских , относительные единицы							
			0,9 ± M+ ±1,0	10 ≤ Mx ≤ 111	1,1 = M + = 1,2	12 = Mr = 113	1,3 5 MX 544	1.1 = Mx = 1.3	125 Mx 51.4	
0,35-0,4	0,375	0,135	131 <u>+</u> 10,5	191 <u>+</u> 17,9	-	-	· _	-	-	
0,4-0,45	0,425	0,172		146 <u>+</u> 14,1	220 <u>+</u> 17,9	266 <u>+</u> 25,I	-	244 <u>+</u> 35,3	-	
0,45-0,5	0,475	0,213	-	122 <u>+</u> 16,9	169 <u>+</u> 14,6	181 <u>±</u> 16	-	175 <u>+</u> II,5		
0,5-0,55	0,525	0,257	-	-	125 <u>+</u> 12,4	162 <u>+</u> 14,7	135 <u>1</u> 18,9	143 <u>+</u> 9,6	148 <u>+</u> 12	
0,55-0,6	0,575	0,304	-	-	75 <u>+</u> I3,8	138 <u>+</u> 12,9	94 <u>+</u> I8,I	106±9,5	II6 ±9,3	
0,6 -0,65	0,625	0,355	-	-	-	114 <u>+</u> 11,4	78 <u>‡</u> 10,6	-	96±7,7	
0,65-0,7	0,675	0,408	-	-	-	79 <u>+</u> 9,3	79 <u>+</u> 10,0		79 <u>⊁</u>7,I	
0,7-0,75	0,725	0,464	-	-	-	70 <u>+</u> 10,5	84 <u>+</u> 10,7	-	77 <u>+</u> ?,6	
0,75-0,8	0,775	Ů,523	C 29	· _	-	-	6I <u>+</u> 9,5		-	
0,8-0,85	0,825	0,584	-	-	-	~	41 <u>+</u> 8,4	-	-	
							• •			

-

•

Теблица Т

 \mathcal{D}^{-}

۶

•

ંજ

Интервал АВ, Све	Среднее значение Рз, Гэр/с	Средное значение сгэв/с) ²	оно , относительные единицы								
			0,96 M = 64,0	105 Mr 541	1 € Mx €1,2	1,2 £ M) £1,3	1,3≤Mx≤1,4	1,45 Mx \$1,5	1,2 \$ M2 \$1,4	1,35/4, 51,5	
0,35-0,4	0, 375	0,135	0,54±18,4	121 <u>1</u> 8,9	180 <u>+</u> 16,5	236 <u>+</u> 22,I	-	-	-	-	
0,4-0,45	0,425	0,172	-	143 <u>+</u> 15,4	I49 <u>+</u> I4,3	191 <u>+</u> 16 , 7	209 <u>+</u> 22,5	-	198±14,0	5 -	
0,45-0,5	0,475	0,213		***	II9 <u>+</u> I4,9	I37 <u>+</u> I3,I	196 <u>+</u> 17 , 8	00 0 0	167 <u>+</u> 11,0) -	
0,5-9,55	0,525	0,257	-	-	-	132 <u>+</u> 12,7	129 _± 13,0	- ·	191 <u>+</u> 9,2	-	
0,55-0,6	0,575	0,304		-	-	-	III _± II,5	89 <u>+</u> 12,2	-	101 <u>+</u> 8,4	
0,6-0,65	0,625	0,355	-	-	-		97 <u>+</u> 10,4	57 <u>+</u> 8,6		77 <u>+</u> 6,8	
0,65-0,7	0,675	0,408	-	ج ر	-	÷	79 <u>±</u> 10,2	67 <u>±</u> 9 , 0	-	75 <u>+</u> 6,8	
0,7-0,75	0,725	0,464	-	-	-	-	-	53 <u>+</u> 8,0	~		
0,75-0,8	0,775	0,523	1	~	-	-		45 <u>+</u> 7,7	~		
0,8-0,85	0,825	0,584	- much	-	-	-	-	32 <u>+</u> 7,I			

.

ŧ. Tannua 2

-1

.

IOAIINCN E PNUYŘRAH

PEC.I	Схематическое изображение снентрометра						
Puc.2	Линии разной эффективности D для Po =3,2 Гэв/с.						
	$I - \phi = 0,5 \phi_{max}; 2 - \phi = 0,3 \phi_{max}; 3 - \phi = 0, I \phi_{max};$						
	4 - ϕ = 0. То ками изображены случаи, полученные из						
	эксперимента.						
PMC.3	Гостограмма распределения событий по импульсу протона от-						
	дачи Рз для двух значений первичного импульса						
	$\rho_0 = 3,2 \ \Gamma_{3B}/c \ H$ $\rho_0 = 3,7 \ \Gamma_{3B}/c.$						
Рис.4	Зависимость дифференциальных сечений остамх						
	(в относительных единицах) от t при $P_o = 3,2$ Гэв/с						
	для разных интервалов по массе. Зависимость drad						
	от 🕇 для калдого интервала по нассе аппроксирована выра-						
	жениен вида Ве , которое в полулогарифмическом						
	масытабе дает прямую						
	I,О Гэв ≤ Мх ≤ I,I Гэв (У , прямая (I));						
	I,IГэв ≤ Мх ≤ I,2Гэв (Д , прямая (2));						
	I,2 Гэв ≤ Мх ≤ I,3 Гэв (↓ , прямая (3));						
	I,ЗГЭВ ≤ Ми ≤ I,4ГЭВ (I , прямая (4));						
	I,I Гэв ≤ Мк ≤ I,З Гэв (ф , прямая (5));						
	$I_{*}2 \Gamma_{3B} \leq M_{*} \leq I_{*}4 \Gamma_{3B} (\frac{1}{4}, \Pi_{BMAR} (6)):$						
Рис.5	Зависимость дидференциальных сечений ditolm. в относитель-						
	ных единицах от Γ при $\rho_o = 3,7$ Гэв/с для разных натервалов						
	по нассе. Зависимость аппроксимирована выражением вида Ве						
	I,I Гэв ≤ Мх ≤ I,2 Гэв (9 , прямая (I));						
1. Ali	I,2 Гэв ≤ М× ≤ I,3 Гэв (4 , прямая (2));						
·. ·	I,ЗГэв ≤ Мк ≤ I,4 Гэв (Д , прямая (3));						
	I,4 Гэв ≤ Мх ≤ I,5 Гэв (I , прямая (4));						
	I,2 Гэв 5 Ми 5 I,4 Гэв (• , прямая (5));						
ъ.	I,ЗГав ≤ М× ≤ I,5Гав (↓ , прямая (6)).						

- Рис.6 Зависимость величины A от M× для P₃ = 3,7 Гэв/с Горизонтальный интервал ← O обозначает интервал по массе M× , для которого определено данное значение A. Прямая проведена методом наименьших квадратов (по четырем независимым точнам).
- Рис.7 Зависимость величины константы A от Mx для Po=3,2 Гэв/с. Горизонтальный интервал обозначает интервал по массе M_x, для которого определено данное значение A. Сплошная прямая прож ведена по четырем независимым точкам методом наименящих квадратов. Пунктирная линия относится к случаю Po=3,7 Гэв/с и взята из рис. 6

ЛИТЕРАТУРА

- I. А.М.Благородов, В.Н.Лузин, Л.И.Мурза, А.А.Панов и др. Препринт ИТЭФ № 808, 1970.
- 2. А.М.Благородов, И.Н.Бородина, В.Н.Лузин, И.А.Радкевич и др. Препринт ИТЭФ № 843, 1970.

9

З. Т.Г.Сиолянкина, И.А.Радкевич, В.В.Свколовский ПТЭ, # 3, 35 (1966).

I-TH

I/I-72 r.

.

51

..

A, THE A = 57 7 5 4 3 ند 2 .4 -Mx, [36. د البيد موالي 12 11 (J <u>i</u>i---\$5 - میں ' بند**ک** Puc. 6

