A PHONON CRANKING MODEL[†]

Torunn Fogel, P. Haapakoski and P.O. Lipas University of Helsinki, Finland

According to the cranking description [1], $H_{\omega} = H - \omega J_{\chi}$ is the Hamiltonian in the nuclear rest frame. Its eigenstates ϕ_{ω} give the total laboratory energy as

$$E = \frac{(\phi_{\omega}, H\phi_{\omega})}{(\phi_{\omega}, \phi_{\omega})}$$

with ω determined from $(\phi_{\omega}, J_{\chi}\phi_{\omega}) = \hbar \sqrt{J(J+1)}$.

We use this formalism to calculate the ground band rotation energies from the phonon Hamiltonian

$$\hbar\omega_{2}\left[\sum_{m} b_{m}^{\dagger}b_{m} + \frac{5}{2} - d(b_{0}^{\dagger}+b_{0}) + d^{2}\right]$$

which describes harmonic quadrupole vibrations in an axially deformed body $(d \alpha \beta_0)$. We have used it previously as the intrinsic Hamiltonian in projection calculations [2].

To solve the H_w problem we express J_x in terms of the phonon operators and seek a ground state solution of the form $\exp \Sigma_m W_m b_m^{\dagger} | 0 \rangle$ as an extension of the w=0 case [2]. The solution is exact, and the rotational energies are given by

$$E_{\rm rot} = \frac{1}{2}\omega^2 \frac{6d^2\hbar\omega_{\perp}(4\omega^2 + \omega_2^2)}{(4\omega^2 - \omega_2^2)^2} , \frac{6d^2\omega_2^3\omega}{(4\omega^2 - \omega_2^2)^2} = \sqrt{J(J+1)}$$

in terms of two parameters, ω_2 and d.

The moment of inertia in the limit $\omega \rightarrow 0$, $6d^2\hbar/\omega_2$, agrees with the result given by the Inglis formula. Further, taken to order ω^4 , our E_{rot} agrees with Harris' (and Mariscotti's) two-parameter rotational description. Fits to data are similar. Our upper and lower limits on E_{μ}/E_2 are 10/3 = 3.33 and $\sqrt{10/3}$ = 1.83, in agreement with the Goldhabers [3].

In contrast to most rotational phenomenology, ours also provides wave functions upon projection from $\exp \sum_{m} W_{m} b_{m}^{\dagger} | 0 \rangle$. The resultant B(E2) values and quadrupole moments resemble those from the projection model [2].

- † Supported by National Research Council for Sciences in Finland.
- [1] W.A. Friedman and L. Wilets, Phys. Rev. C 2 (1970) 892.
- [2] P. Haapakoski, T. Honkaranta and P.O. Lipas, Phys. Lett. 31B (1970) 493.
- [3] G. Scharff-Goldhaber and A.S. Goldhaber, Phys. Rev. Lett. 24 (1970) 1349.

15