A PHONON CRANKING MODEL^T

Torunn Fogel, P. Haapakoski and P.O. Lipas University of Helsinki, Finland

According to the cranking description $[1]$, $H_{\omega} = H - \omega J_{\chi}$ is the Hamiltonian in the nuclear rest frame. Its eigenstates ϕ_{μ} give the total laboratory energy as

$$
E = \frac{(\phi_{\omega}, H\phi_{\omega})}{(\phi_{\omega}, \phi_{\omega})}
$$

with w determined from $(\phi_{\omega}, J_x \phi_{\omega}) = \hslash \sqrt{J(J+1)}$.

We use this formalism to calculate the ground band rotation energies from the phonon Hamiltonian

$$
\hbar\omega_2 \left[\sum_m b_m^{\dagger} b_m + \frac{5}{2} - d(b_0^{\dagger} + b_0) + d^2 \right] ,
$$

which describes harmonic quadrupole vibrations in an axially deformed body $(d \alpha \beta_n)$. We have used it previously as the intrinsic Hamiltonian in projection calculations [2].

To solve the H₀ problem we express J_{r} in terms of the phonon operators and seek a ground state solution of the form $\exp \sum_{m} w_{m} b_{m}^{\dagger} |0\rangle$ as an extension of the $\omega=0$ case $\lceil 2 \rceil$. The solution is exact, and the rotational energies are given by

$$
E_{\text{rot}} = \frac{1}{2}\omega^2 \frac{6d^2 \hbar \omega (4\omega^2 + \omega_2^2)}{(4\omega^2 - \omega_2^2)^2} , \frac{6d^2 \omega_2^3 \omega}{(4\omega^2 - \omega_2^2)^2} = \sqrt{J(J+1)}
$$

in terms of two parameters, ω_2 and d.

The moment of inertia in the limit ω +0, $6d^2\hbar/\omega_2$, agrees with the result given by the Inglis formula. Further, taken to order ω^4 , our E_{not} agrees with Harris' (and Mariscotti's) two-parameter rotational description. Fits to data are similar. Our upper and lower limits on E_{11}/E_{2} are 10/3 = 3.33 and $\sqrt{10/3}$ = 1.83, in agreement with the Goldhabers $\lceil 3 \rceil$.

In contrast to most rotational phenomenology, ours also provides wave functions upon projection from $\exp\Sigma_m w_m b_m^{\dagger} |0\rangle$. The resultant B(E2) values and quadrupole moments resemble those from the projection model [2].

- Supported by National Research Council for Sciences in Finland. $+$
- **ELT** W.A. Friedman and L. Wilets, Phys. Rev. C 2 (1970) 892.
- P. Haapakoski, T. Honkaranta and P.O. Lipas, Phys. Lett. 31B $\lceil 2 \rceil$ (1970) 493.
- G. Scharff-Goldhaber and A.S. Goldhaber, Phys. Rev. Lett. 24 $\lceil 3 \rceil$ (1970) 1349.