
NOTICE 
Thii report was prepared as an account of work 
sponsored by the United State* Government. Neither 
the United State* nor the United State* Atomic Energy 
Commission, nor any of their employee*, nor any of 
their contractors, subcontractors, or their employees, 
make* any warranty, express or Implied, or aisumea any 
legal liability or responsibility for the accuracy, com-
pletenei* or usefulnets of any information, apparatut, 
product or process disclosed, or represents that It* use 
would not infringe privately owned rights. 

ORO-3992-106 
CPT-160 
August, 1972 

S Matrix Elements in the Presence of Standing Wave States 
the Bjorken Limit, and Shadow-quarks* 

C. A. Nelson 1-

The Department of Physics and Astronomy, Louisiana 
State University, Baton Rouge, Louisiana 7080*3 and the 

Center for Particle Theory, University of Texas, Austin, Texas 78712 

(August, 1972) 

ABSTRACT 
When a scattering reaction occurs, it is usually assumed that the com-

plete set of collision states is entirely composed of traveling waves, hence 
any constituent, in principle, is observable. Should, however, either quarks 
regulator photons or lepton satellites be standing wave states, i.e. only 
shadow states, we would not expect to have observed them. In this paper we 
discuss the new terms which modify the usual dispersion relations and Low 
equation and argue that present two-body experiments do not provide strong 
tests for their presence. In the Bjorken limit these piecewise analytic 
terms vanish. Yet, in a shadow indefinite-metric theory, the logarithmic 
terms bresaking this limit are still absent. The triangle annomalies, there-
fore, should only be taken seriously in low energy reactions. A stronger 
constraint on the presence of shadow states can be provided by verification 
of the Callen-Gross sum rule. By means of a simple version of the Kuti-
Weisskopf model, containing valence quarks and quark-antiquark pairs, we 
demonstrate explicitly how quarks can be shadow states. In an appendix, in 
formal scattering theory with shadow states, the correct formal solutions 
for the exact asymptotic states, both physical and and shadow, are obtained. 
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I. Introduction 

When a scattering reaction occurs in high energy physics, the assumption 

is usually made that all the asymptotic collision states are entirely com-

posed of traveling waves. These asymptotic collision states, together 

with the vacuum, are supposed to be capable of giving a complete and 
1 2 

correct framework ' upon which to base measurements, analyze the data, 

and to phenomenologically describe the actual scattering process as it 

occurs in nature. Hence, any particle no matter how heavy, say regulator 

photons or lepton satellites, intermediate bosons, or fundamental consti-

tuents, say quarks, should be produced if a target is only struck by a 

sufficiently energetic projectile consistent with the selection rules. 

Systems in atomic and nuclear physics, and results from exploration at ever 

increasing energies of the high energy resonance spectrum have given support 

to this assumption. 

However, searches for quarks, which appear light and free objects 

in hadrons, have remained fruitless.^ Also if the regulator particles, 4 
introduced to make the theory finite and meaningful, were produced, they 

would contradict unitarity. For these reasons then, we wish to consider 

from the viewpoint of properties of the scattering matrix the consequences 

of asymptotic states, containing more than one particle, which are of the stand-

ing wave type. 5 Such states have been introduced elsewhere with the motivation of 

solving the problem of insuring the conservation of probability in the 
4-10 

framework of indefinite metric theories. Because these states do not 

contribute to the physical unitarity relation, even though like quarks 

they are essential to the dynamics, they are called "shadow states." To 

demonstrate the manner in which shadow states influence the dynamics, to 

study analytic properties, and to settle questions of interpretation, a 
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a number of quantum field theory models have been studied without recourse 
11 11 to perturbation theory. It has been shown thoro, in low-order pertur-

12 13 14 bation graphs, ' and by a simple general argument that such states 

always lead to a scattering theory which is unitary and Lorentz invariant. 

As stressed in the first paragraph, when the possibility of shadow 

states is allowed in the dynamics of the scattering process, one has a 

more inclusive framework than is usually assumed. Thus, the natural topic 

for an initial investigation is to discover the necessary modifications 

of the standard S matrix formalism - preferably in the form of correction 

terms. This is useful qualitatively in showing where the corrections 

would be expected to be large and in showing what constraints present 

experiments in the explored energy regions put on the presence of shadow 

states. In Sections III and IV respectively, we derive the new terms 

which modify the usual dispersion relations and the Low equation. These 

terms are a consequence of the piecewise analyticity of the shadow theory's 

scattering amplitude. Each time a shadow pseudo threshold is crossed, the 

amplitude changes continuously from one analytic function to a new analytic 

function. 

We find that present two-body experiments do not provide strong tests 

for the presence of shadow states. Consequently, the conclusion of Gundzik 
15 

and Sudarshan is not surprising: From an analysis of the data from pion-

nucleon scattering, they find that a piecewise analytic structure cannot 

yet be distinguished experimentally from that predicted by Mandelstam ana-

lyticity. 

By means of an ansatz, the analogue of Low's relation for replacing a 

(physical) particle in an asymptotic state by the (physical) current it is 

coupled to, we are able to rewrite the modified Low equation as the usual 
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reduction formula (with contributions only from physical asymptotic states) 

plus the piecewise analytic terms. These piecewise analytic terms, how-
16 

ever, vanish in the scaling region of deep-inelastic electron-nucleon 

scattering, so this kinematic region is of special interest as to effects 

originating from possible standing wave structures in hadrons. 

Secondly, shadow states are of special importance in the Bjorken limit 17 
since in positive metric field theory, logarithmic terms violate scaling 

18 

sum rules. In a shadow indefinite metric theory, the shadow states can 

be regarded as providing a unitary cutoff to the phenomenologically success-

ful parton models. With shadow states present, the triangle annomalits will 

not cause trouble in this "high energy" limit (i.e. break down the scaling 

behavior). Arguments in the literature, based on perturbation theory, 

have studied the behavior of only leading order terms in the regulator 

mass when the Bjorken limit is taken. These terms, however, are not expec-

ted to dominate when the regulator mass is finite because of the kinematic 

dependence in the Bjorken limit of the non-leading terms? in the finite 19 
regulator mass. At the same time, the annomalies will contribute in 

the low energy region, say for IT0 2Y, since they can be derived as the 

contribution which survives to leading order in the regulator mass. 
In Section V, therefore, we study the derivation of the Callen-Gross 

20 

sum rule in the presence of shadow states. Despite the vanishing of the 

piecewise analytic terms, because of presence of the shadow states in the 

asymptotic completeness relation, we find that experimental verification 

of this sum rule provides a stronger constraint on the presence of shadow 

states than tests of dispersion relations by experiment. Of course, if the 

thresholds of quarks or negative metric regulators is at higher energies 

than are accessible to present accelerators, whether producing time-like 



4 

or space-like projectiles, the difference between the constraints in these 

two regions is at present only of academic interest. 

In Section VI, we construct a simple version of the Kuti-Weisskopf mo-

del, containing valence quarks and quark-antiquark pairs, and explicitly 

demonstrate how quarks can be standing wave structures in hadrons. 

As theoretical background, so as to keep this paper self-contained, 

we briefly review in Section I the in and out formalism of the scattering 

matrix when shadow states are present. To clarify some technical aspects, 

in an appendix we obtain the correct formal solutions in formal scattering 

theory for the exact asymptotic states, both physical and shadow. These 

states, orthonormal and complete, are necessary for a complete framework 

in which to describe the time evolution of the scattering process. In ma-

trix elements between physical states involving some operators different 

from transition operators, the shadow stat<?«9in general«wi11 contribute as 

intermediate states. 



II. Review 
5/11-15 

The reader already familar with the basic concepts and ideas of 

shadow states should go directly to Section III. 

It is probably helpful to review briefly the relation between the 

"physical" scattering operator, S, in a theory with standing wave states 

and the closely associated, "conventional" scattering operator, which 

would result if the +i/E prescription were assumed for all the asymptotic 

states. This review will serve to introduce our notations, to define the 

"physical" scattering amplitude, and to set the stage for our investigation 

of the effects of the shadow states. 

In a theory with standing wave states, the essential difference is that 

in specifying tne boundary condition for the shadow channels, there are 

no traveling waves, but only standing waves. This is achieved by the 

choice of a time-symmetric, half-retarded and half-advanced propagation 

function for the shadow states. A consequence is that from such a state 

there is no radiated flux of shadow particles, for example in a quark 

model no shadow-quarks will be observed by experiment as mass-shell particles. 

It is important to note that the standing wave prescription applies to 

the entii shadow state, not only to the shadow particle in that state. 

Since regulator photons or lepton satellites may be standing wave 

states, we will work in the framework of a Lorentz invariant, indefinite-
4-10 metric quantum field theory. We begin by considering the Hamiltonian 

21 
operator, H, for convenience in the conventional in-state representation. 

It is only pseudo-Hermitian (n is the metric operator) 

H * - Hr> = 1 , 7*" ) 

but nbt Hermitian, with respect to the inner product < n j tf J ri |m;[}> for two 

in-states ln;0> and |m;{J> which are eigenstates of a (mass renormalized) free 



Hamiltonian EL^ . The "conventional" saattering operator, assuming the + it: 

prescription for all the asymptotic states can be calculated, for instance 

by covariant perturbation theory in terms of the in-fields 

A> ~ i + i s r 

= Lzif T [ H ' H 

" " (2.2) 
where the script letters, euid, remind us of the dependence of these 

objects on the purely in and out boundary conditions. They are not in a 

theory with shadow states the "physical" operators. In fact,M is not 

unitary, but only pseudo-unitary 

Ji* rj Jt = V (2.3) 

and therefore, is an unacceptable candidate to associate with the scattering 

process as observed by experiment. If instead of Eq. (2.2), we employ 

time-dependent perturbation theory to calculate^, this pseudo-unitarity 

can be made visible at every step (H a H. + H_ ) in x 

I rj 4> I > •,<!> - <*> 9 I v 1 "Jy - Z v i 

+ " " A (2.4) 
This expansion more closely parallels the actual, time-dependent scattering 

reaction as it evolves in experiment. Notice that now the choice of boundary 

conditions for the asymptotic states is manifest. Hence * to arrive at the 

"physical", unitary scattering operator, S, in a theory with standing wave 

states, we merely change the boundary condition for the shadow states to that 



of the standing wave type: Change 

I I T - ]J 
+ (P £ , - H , + ' f- E ; - Hi,, - 6 , - H , „ 

« 7 + » - HijTT 
(2.5) 

P S 
where the projection operators II and II define, respectively, the ortho-
gonal physiceil and shadow Hilbert spaces, = //(physical) © ̂ (shadow) , and 

TT p + TTS r: 1 

Of course, all the negative metric asymptotic states are assumed to be a 

subset of the standing wave states. 

Notice, first, that after this change, Eg. (2.4) or equivalently 

Eq. (2.3) give immediately the perturbation solution for the scattering 

amplitude in the presence of the standing wave states. Second, these ex-
14 JT^ 

pansions can be resummed in terms of ,-f , the associated indefinite metric 

theory's transition operator, to obtain 
T = X + T' 

T' = -IRSTL'I + i T f ' i r ^ T «.«> 

where only the shadow intermediate states contribute to T'. Observe that 
T' represents the "modification" to the pseudo-unitaryy(. The physical 
transition operator T is manifestly Lorentz invariant when yf'is written 
as in Eq. (2.2). This equation can be used as a framework to study the 
dynamical effects of standing wave states. The inverse operator in Eq. (2.7) 



can be written as an iterative series in the shadow states 

T ' - - i f K i r 5 ^ / T 

K « 1 - -n ^ r K 
' (2.7) 

The summation proceedure which led to Eq. (2.6) can also be exploited 

for many other physical objects in the shadow theory in order to relate 

them to quantities, often more easily calculated, in the associated theory 

based on purely in and out boundary conditions. .i 
14 

It is easy to show from Eq. (2.5), for example via Eq. (2.6), that 

Twill be unitary 

i ( T * ~ T ) - T ' t ' T < 2 > 8 ) 

arid therefore an acceptable scattering amplitude, if % is only pseudo-uni-

tary. If Eq. (2.8) is sandwiched between two "physical" in-states, say 

|*»$0>and|hj0>of the 5T^theory, and if a complete set of intermediate states 

both physical and shadow, is inserted on the right-hand side, then the 
p 

projection operator & in Eq. (2.8) is superfulous as T does not connect the phy-

sical in-states to the shadow states! This occurs because the shadow states are 

standing wave states which cannot radiate or absorb. In the formalism transitions from 

| p | s ; { / > or |s;9> |s'?3> vanish, when explicitly calculated, since 

the boundary condition results in a purely real wave function for the 22 ZB 

shadcw states; therefore by orthonormality there are no transitions. 9 

Hence, Eq. (2.7) gives the optical theorem 

(2.9) 



III. Piecewise Analyticity and the Bjorken Limit 

We want to study the consequences of the shadow states' standing wave 

boundary condition for deep inelastic electron-nucleon scattering, in particu-

lar for the Callen-Gross sum rule. To do this, we shall need to use a few 

technical results which are derived in this and the following sections. These 

results consist essentially of the modifications of well-known expressions 

for scattering matrix elements in order to accomodate for the presence of the 

shadow states. 

We begin by giving our notation for the kinematics. 

Kinematics 

The inclusive reaction is e (E) + N(P) e (E*,0) + p(P') where p 

denotes any possible final physical state of four-momentum P' produced from 

the target nucleon , N, of four-momentum P. Experimentally the initial 

electron energy, E, is known and only the final electron is observed so 

as to measure the final electron energy, E', and scattering angle * 9. Vfe 

will assume the reaction proceeds by a single vector exchange and ignore 

any effects from a heavy photon exchange, so the matrix element for this 

process is proportional to the "vertex function" V (yN p). Equivalently 

then, see Fig. 1, the process consists of the fragmentation of the target 

nucleon of rest mass M by a virtual photon of energy v = E - E' = q-P/M 
2 2 2 0 and (mass) = q = -4EE' sin (—) . It will be useful to introduce their 

2 ^ 
ratio to = - My 

To describe this process as measured by experiment, we take the matrix 

element V^ (yN -»• p), square it, average over nucleon spins, and sum over the 

physical final states. Experiment, therefore, determines 

A^v (v, <f) m z ( K N f) Vv ( > N r) (air)* %*(.£' - F 

(3.1) ' 
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where T. implies the average over nucleon spins. By Lorentz and gauge in-

variancer this has the simple representation 

which defines the two structure functions I n t e r m s these, 

the differential cross section for inelastic electron-nucleon scattering is 

given by 

(3.3) 

Since the optical theorem is unmodified by the presence of shadow 
2 

states, A^v(v,q ), e.g. as given by Eq. (3.1), is the imaginary part of 

the amplitude for forward Compton scattering of virtual photons on the 

target nucleon. Hence we consider the Lorentz invariant, gauge invariant 

amplitude for virtual elastic Compton scattering on nucleons. 

i / v M \ / ̂  v \ 
+ - T ^ ^ ~ T " 

2 (3.4) 
which defines the invariant amplitudes T ). 11 * 

Consequences of the Standing Wave Boundary Condition 

for Dispersion Relations 

Because of the standing wave boundary condition for the shadow state, the 

scattering amplitude for the physical states is no longer a single analytic function. 

Instead, it is piecewise analytic. Below the first shadow threshold, say, it is one 



analytic function and just above i t i s another analytic function. For 

a dispersion relation analysis it is convenient, therefore, to write the 

unitary physical amplitude as the sum of the analytic function below the 

first shadow threshold plus the non-analytic pieces which occur each 

time a shadow pseudo threshold is crossed. So we write15'24 for an invariant 
2 

an amplitude T(v,q ), which could be either of the above T^ or T^ for 

virtual Compton scattering, 

T ( v , <£*) - ?T(v,f~) + f ) 
(3.5) 

where 

z r + e(-s-5j]jA(v,f) 
A 

(3.6) 
2 2 2 with i running over the shadow pseudo thresholds at s^ = w^ = 2My^ + M ' + q . 

2 For fixed q , Eq. (3.6) can be rewritten in terms of the v variable as 

(3.7) 

9 2 2 where vi(qz) = (ŝ  - M - q )/2m. 
2 

Notice that T(v,q ) is unitary but only piecewise analytic, whereas 
) and the t.(v,q ) are analytic as a consequence of the principal value 

boundary conditions. Note also if some of the shadow states have negative 
metric, ) (the corresponding indefinite metric theory's invariant amplitude) is not unitary but only pseudo unitary and thus unacceptable unless 

2 
modified by contributions from T'(v,q ). 

Our procedure now will be to employ the analytic!ty of and to con-
strain the piecewise analytic T. To write dispersion relations for and the ^ 



IZ 

need to know their asymptotic behavior. We will make the natural assumption 

that the asymptotic behavior of^T(v,q2) is the same as in the usual theory. 
M f i 

Then according to the usual Regge phenomenology, see Haran, concerning 

thcj asymptotic behavior for this process, (v,q2) requires no subtractions 

andy^(v/q2) requires one subtraction. Therefore, for 5C (V,q ) we have 

<Tr O - - L - A n frO 

and using first Eq. (3.5) and then Eq. (3.7), we obtain 

(3.8) 

- + r j / v ^ K T ^ t z t t -

JL C J J Z L J I I I ± 3 * L 

+ ) - - 5 [ * ( J J 
" (3.9) 

If the term in the bracket were to vanish, this would be of the form of a 
2 dispersion relation for the physical amplitude T2(V,q )l We choose to re-

2 
express Eq. (3.9) in terms of the variables q andcu. Note that (because of 

the optical theorem) 

•4r <&< tf) = o . i o ) 

2 and (q fixed) 

^ ( f ) - e / c i - ( 
(3.11) 

Therefore, 



and 

V w * „ v T T T ^ ~ ~ ^ 
(3.12) 

2 For the t0 .(v,q ) we assume the same asymptotic behavior as for 

% V , q 2 ) , S O 2 5 " 

n d . 
ir 

- V * -
( < f ) 

a 

(3.13) - 2 where (q ) is the threshold for the physical particle which is the part-
« 2 2 2 ner of the "heavy" ̂ shadow particle^ v. (q ) « (s\ - M - q )/2M and 

2 s - M A l 

^ ( q ) = 2/ [l - ( - >] • Therefore, we finally have from Eq. (2.9) 
q 

r f , 2 W g ( W , f 2 ) 

^ / > r ^ ( % ^ i 

r r - r ^ ^ cfu I 
0 (3.14) 

2 

From this expression we see that for q finite, because of the presence 
of the shadow states, the usual dispersion relation for T^ (a>,q2) is modified 
by terms of two types: for the k's such that co. > u) ( i.e. v.< v so this « Ic 

is the contribution from a shadow pseudo threshold which lies below the 
projectile energy v) 

- 2. f j * f ^ j ^ j 
(3.15) 

k * ' 

and for the kfs such that (i.e. v^ > v so this is from a shadow pseudo 



threshold lying above the projectile energy) 

K co>* («,'*- (3.16) 

In both Eq. (3.15) and Eq. (3.16) no +ifc is needed in the denominator of 

the integrand as w lies outside the ranges of integration so the denomina-

tors cannot vanish. From these expressions, then, it would not be sur-

prising if in general the phenomenological effects of shadow states in 
15 

the sense of modifying dispersion relations were relatively mild. The 

strongest effects, 

Eq.s (3.15) and (3.16) indicate, should occur' when m 

(or v) is near a shadow pseudo threshold, i.e. when 6J pinches the end 

point of one of the above integrals. We now consider what happens in the deep inelastic region where v and 2 2 -q tend to infinity witn w fixed. Since q for any k both u). and 
<*>k approach 2 so the two summations in Eq. (2.14) cancel to yield 

T A - . , ..,« V . > p ' J° (to* - UJ>* + 
(3.17) 

2 I which has the same form as a dispersion relation for T2(u>,q )J 

Similarly from the once subracted 3^(v,q2) we find 

+ f T , ' ( v > f ) - Z J , J 
/ yj<pA) 1 

(3.18) 
and as before 

y ! ft = _ f W l 

~¥~ So v<* ( y ' z - v * - h (u>>* - u>* i-

V ' \ \ > ' z - v 2 - ) * ( - OS* + i€r) 

(3.19) 
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also 

A,, A,,*1 *'>%') V'- f a z i'1 J J L 

(3.20) 
Therefore, we have 

- z f — - 1 ) + + I 

"J 

+ 2_ L r J„ <*»>' J 1 ' 

where 

= T ; - f3.22> 
J 

has been used. 

As in the subtracted case, the integrals in the two summations can be 

combined and the preceeding discussion applies as to the probable magnitude 

of their modification of the dispersion relation. The subtraction constant, 
2 2 T̂ (°°,q ) , is also modified by a contribution from t^ ĵ 00'*! ) from each k 

such that iok < cu (i.e. v^ > v so this is the contribution from a shadow pseudo 

threshold which lies above the projectile energy v). The net result is 
_ 2 that for w & 2 (vajO) the subtraction constant is one v a l u e , J T ^ ^ ^ 

2 for u) az 0 (v the subtraction constant is another, T (»,q ). From the 

point of view of the present analysis, the size of this difference is a 
26,27 dynamical matter. 

2 Again in the deep inelastic region with q -», the integrals in the 



two summations cancel to give 

(3 

which has the same form as that of a subtracted dispersion relation for 

T^w-.q ) . 

The onset of a shadow channel is a point of join of two different 

analytic functions. Along the real energy axis the scattering amplitude 

is continuous, but only piecewise analytic, and at the shadow pseudo 

threshold there will be a cusp behavior in physical quantities, such as 
28 29 

the physical total cross sections. Evidence ' indicates that such 

cusps would also be difficult to observe. 



IV. Modified Low Equation 

The derivation of Callen and Gross of their sum rule employs the Bjorken-

Johnson-Low theorem which follows formally from, for example, the Low 

equation. Therefore, we now attempt to generalize the arguments of the 

preceeding section^concerning the modification of dispersion relations by 

the presence of the shadow states?to the level of the Low equation for the 

Compton scattering amplitude. To reduce out the currents in the matrix ele-

ments of the shadow theory, we will find it necessary to make an ansatz, 

analogous to Low's relation in the normal quantum field theory framework « 

This ansatz is consistent with the piecewise analytic properties of a shadow 

theory (and hence with Section III) and with the physically expected contri-

butions from the shadow intermediate states to the spectral function of 

the Low equation. The shadow intermediate states will contribute to the 

real part, but not to the imaginary part. The ansatz will be proven to 

be correct in the static limit. 

As in the preceeding section (Eq. (3.5)) we decompose the Lorentz 

invariant amplitude of the shadow theory by 

T " * — c r * + j * ** 
(4.1) 

where is the amplitude in the associated indefinite metric theory in 

which all of the boundary conditions are of the traveling wave type. 
Then for the well-studied Lorentz invariant A * we write ' yv 

V v ' ' V (4.2) 

whereA is the time-ordered product uv 
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where |f> is the physical proton STATJ^f the ST.. theory and single particle 
states are normalized <fi'l->jlf> = ̂  363 ( f i ' - f i ) . The polynomials in q are 

possible Schwinger terms. The usual argument of positive metric quantum 

field theory that there must be Schwinger terms breaks down because of 

the indefinite metric. For the sake of generality, though, we will include 

them. Defining the absorbtive parts 

(4.4) 
where the | n a r e a complete set of traveling wave (physical and shadow) 

"out-states" of t h e t h e o r y , the Low equation follows from Eq. (3.3) 

V L « r ) L ' 7 . - j j + ,V J 

(4.5) 
Notice thai: by the kinematics for the physical regions, for the first term 

the integral is only for q ' >0 and for the second term, only for q '-̂ 0. By o o 

the decomposition T - + T ^ the absorptive parts are related accord-

ing to 

(4.6) 

' (4.7) 



with 
Z A n T f . y = ^ ( v ^ O - I \ r ( t N ~ > r ) V v l t » - > r ( Z v ^ % 

and similarly for 2 Im T , so yv 

+ R ^ v 

-

(4.8) 

with 

= V + * L - p q j r m 
(4.9) 

where in the second integral for the is in the unphysical region. 

Therefore we change it to +ie so as to have the dispersion relation choice. 

Writing a dispersion relation for Ty,vwe find, in the same manner as 

in Section II, that R ^ 0 in the Bjorken limit because of the special 

kinematics. To obtain a "modified Low equation" from Eq. (4.7) we must 

re-introduce the currents in the "vertex function" V^(yN p). 
Consistent with the above piecewise analyticity, we now make the ansatz 

(J^(0) is in momentum space). 

< a ; f 17 T I I V i 7 > - < CI ; O | y J*v (o) I 1 ; T > (4.10) 

where | a; f>,... are physical in-states of the shadow theory and J^, the 

physical current coupled to the renormalized vector potential A ,. Although, 

as discussed in Section II, > =» 0, notice that with this 

ansatz we do not assume <;bs$o Jv |b$i > = 0. In the static limit,< bg*OMt 

I^Jv|b;i»> = 0 is equivalent to < b^ou&I^Hj. |b25free> = 0 which implies 

Im T1 = 0 above the shadow pseudo threshold which is unsatisfactory. Since 

in the static limi^,'< a5freeJr^T|bv*free> = < a-outj^Hj. |bv$free> for ̂ ^con-

taining a follows that < a|freelyT|bv;free> = < a;out|^ J^ |b;free> 



Zo 

and the above ansatz is valid. In the ordinary positive metric quantum 

field theory, the analogous reduction relation of Low can be proven from, 

for instance, the LSZ scattering formalism. Unfortunately, here we have 

to appeal to the static limit since the proper set of asymptotic assumptions 

when shadow states are present is not clear. We conjecture that is possi-

ble to prove the ansatz from perturbation theory but have only verified 

it for a few low order diagrams. Because Eq. (4.10) makes no explicit 

statement regarding the action of J^ on |b,i > with regard to the shadow 

states, the presence of the shadow states in the asymptotic Completeness 

statement retains its significance. This is particularly relevant in the 

Bjorken limit (see Section V). 

Using the ansatz, we find from Eq. (4.8) that 

V f f r )
 - - L f c « > [ " F i r — 

+ R u v (4.11) 
r 

with 

/ ^ v ( ^ P ) = z + * " f r ) < f l y J v M l F > 

. (4.12) 
where the |p?©> are the set of physical "out-states" which sure complete in 

£3 

the physical subspace of the shadow These are all traveling wave 

states and therefore do not constitute a complete set in the total Hilbert 

space % = M(physical) © ^/(shadow). If we introduce a projection operator 
P 7Fq onto this physical out subspace, then the absorptive parts can be written 



as 

e ' ' r < f l 7 p * ) * : T v <CO If > 

f ^ * V , ) T r * 7 v ^ ) | P > (4.13) 

and the modified time-ordered product as 

T = i T f ^ M i r : J V M ) J f > 

+ ^ V ( 4 . 1 4 ) 

where 

T f / W * ) TT e E ^ o ) ) - A W TT I 6(0) + &(--*<,) 3 M VFa flfa) 
(4.15) 

with the usual sign prescription for Fermion fields. 



V. Consequences for the Scaling Region 

With the results of the preceeding two sections on the modifications 

to well-known formal expressions for scattering matrix elements by the 

presence of shadow states, we now explore the consequences for the scaling 

region. We begin by following the argument of Callen and Gross for their 

sum rule. 

We set q = (qQ/0) and use Eq.s (3.14) and (2.21), so Eq. (3.4) becomes 

vo j 

e . P . r , r it w ^ f ? , U i ! ? ( % A , 

clw - ^ n r r - ' * - «>') { < 5 - 1 ) 

Jj < L,J 1 ^ 

J,,? 
\ ciw 

^
 Jo 

Taking q0-^ 100, P° and P (unit vector in P, direction) temporarily fixed, 
2 i I ~ 

a w w - *• • -xofi f we find 
0 

M 

since uk and uk 2. Therefore, this expression is unmodified by the pre-
2 sence of shadow states. Hence, for C.. (P) - lim q T* • , as shown by 

XJ q2->-co 
Callen and Gross for $ fixed 

P ° I ' 

1 Ju>>* 

- [ F, ( < * ' ) - i ( 5 . 3 ) 



£ 3 

2 2 where F. (w) = lim M W_ (oj,q ) , MF_(oj) = lim \>W„(w,q ) . 1 o 2 * oo q ->—oo 

From Eq. (4.11), by the Bjorken- Johnson-Low Theorem we also have for 

k 0 l large 

+ * ( f j V * P| 7 [ I t } > » * > , I f > 

+- . . . J <5-4> 
p where theTĴ  subscripts imply this projection operator acts on the intermedi-

2 ate states. Thus, for q = 0 and q - oo , since R ^ —>0, the object 
2 

C.. (P) lim (q T*.) will diverge unless the shadow states give a vanishing 
q ^ - o o J

 1 contribution to the coefficient of the — term in Eq. (5.4). In order for 
32 0 the limit to be finite, we must have 

fa1 ^ T V ( 1 > 1 ) = ° 

1 2 which provides a constraint on the shadow states. The ( — ) term gives 
q° 

U - t x e i i r f t . I f > 
' o 

If, as for the ( ) term, the shadow states do not contribute when 

inserted and integrated over, the Callen-Gross reiauit is obtained: 

C1/ •f- p o 11 n o »••»» 

- B( P.P, " +" B ' (5.7) 

20 where B, B1 are Lorentz scalars and the last line follows in the "fluon 



model", i . e . the quark model bound by neutral vector meson exchange. Then 

using Eq. (5.3) and the p o s i t i v i t y of 

7' (5.8) 

where a^ i s the t o t a l photoabsorption cross sec t ion for longi tudinal vir-

tua l photons, Eq. (5.7) y i e l d s 

J ^ 01 Lu>) 0 
- oo 

(5.9) 

33 Experimentally cr is 20% or less of o_. I f Eq. (5.9) is exactly true,then L T 

== O 

(5.10) 

forcing the vanishing of a higher moment of the absorbtive part, 

Im T* (q' ) . Notice that the positivity of Im T* = Im(T -3T) provides Ay 0 I 

some net measure of the amount of the negative-metric' s violation of 

unitarity which is corrected by the shadow boundary condition. Notice 
1 2 + e also that this says Im T' -W -jd ) as q_-*» which is the limit rele-A1 q 0 

vant for making the divergences finite. This Should be compared, with 

the weaker conclusions which can be drawn from the leading order piecewise 

analytic modifications to the dispersion relations which are 
i*1 

r 
( f ) J ~ T A ; t t l ) ( 5 1 1 ) 

which follows as q^ —>0 from the modified Low equation associated with 



Eq. (3.16) and 

where the range of integration is finite^which follows for qQ »y' from the 

modified Low equation associated with Eq. (3.15). 



VI. A Shadow Quark Model 

The symmetric quark model has led to many successes in particle physics: 

in classification of mesons and baryons into supermultiplets, in mass 

formulas for these multiplets, in magnetic moment ratios for baryons, in 
<% jk 

description of decay processes, and in relations for high energy scattering. 

Despite these results, the mysteries associated with the bound state pic-

ture in the quark model have remained. In particular, phenomenological 

applications of the model to magnetic moments?5the mass spectrum?6and high 37 
energy scattering indicate that quarks sure "light" objects in hadrons 

(the effective mass of the bound quark is the order of a few hundred MeV) 

which move about independently of one another, as if "free" particles 

(this is indicated, for instance, by the success of the "additivity 

hypothesis"). Hence, the suggestion, experimentally motivated, that physi-

cal unbound quarks are very massive (greater than 5 GeV) is inconsistent: 

For if quarks were strongly bound, how could they move freely and non-

relativistically, without large corrections to quark-antiquark pairs? 

How could they be relevant for low lying hadronic structure when both 

dispersion theory and bootstrap theory suggest that low mass states should 14 
dominate? However, should the quarks be shadow particles, i.e. standing 

wave structures in hadrons, then they could never be produced and^yet^they 

could move as free, light objects in hadrons. 

In this section, we demonstrate this possibility by means of a simple 

soluble model and study the qualitative consequences of the boundary con-

ditions which would be expected to generalize to more realistic descriptions. 

To make our model moderately realistic we.first.recall that the symmetric 

quark model, which has been so remarkably successful phenomenologically, 

assumes that baryons are made out of three quarks and mesons out of a 

quark-antiquark pair* However, in the deep inelastic region of e-p 



scattering, when partons are directly identified with quarks, this leads 
38 to a violation of the mean squared charge sum rule. In general the evidence 

from this process is that the partons here which carry most of the nucleon's 

momentum have Q - Y = I = 0. To resolve this, some time ago Paschos 

suggested that quark-antiquark pairs might also be present inside the pro-
31 

ton. Recently, Kuti and Weisskopf have studied the quantitative aspects 

of this idea that baryons, N, are approximately structures with three 

valence quarks, Q, having a symmetric SU(3) quark-antiquark pair distribu-

tion as a core. Since such a model resembles systems in atomic and nuclear 

physics, one would expect the valence quarks would be ionized by a sufficiently 

excited incoming hadron and therefore be observable. 

The model that we consider is a familiar one but re-interpreted so as 

to simulate baryons as composite structures of three valence quarks, re-

presented by the creation operator and quark-antiquark pairs, each 

represented by TT+(<|). The lightest baryon with mass M has the simple, com-

posite, single particle state 

i n » - ( ^ r . ) (6.D 

where 13Q> = l 0 > * |o> is the vacuum, and f̂ u)) describes the relativistic 

energy distribution of the quark-antiquark pair of mass y and energy o»(q) = 
2 2 h + (y + q ) . To construct the model, we first introduce a field rb„ for this <v N 

lightest baryon but later, at the end of our calculation, remove it by 

taking the wave-function renormalization constant, to zero. When this 
i + is done, |N>> is entirely composite and the properties of ip̂  are completely 

determined by the "fundamental" and ir+(q). 

The Hamiltonian, defining the system, is H = Hq + H^ 



(6.2) 

with 
1 - ( t r ^ f M - * ) 2 , . 

This is a static system which may not be a bad approximation since the 

quark-antiquark pairs, like pion pairs, may be essentailly massless. The 

single particle state, Eq. (6.1) then follows as a stable discrete eigen-

three free valence quarks plus a free quark-antiquark pair, described in 

Fig. 2(a), leads to no scattering because the denominator function 

has no right-hand cut as a consequence of the principal value prescription 

for the shadow state. 

Let us now consider what happens when a quark-antiquark pair, like 

a pion, is incident upon the baryon |N>>. In this case the second diagram 

Fig. 2(b), contributes. If the shadow boundary condition were not imposed 

then rrN -*• 3Qxir and the scattering matrix for JTN-*- JTN would be 

state when f̂ fto) leads to M < 3m + p. The continuum shadow state of 

(6.3) 

(6.4) 
(*> + M+ tc ) 

with the denominator function 

t£r Cim i M ) - W « * M > + 2 

(6.5) 



having both a right-hand Nip cut,^< from 

r j n 
> 3 x ( u j ± i e ) ~ ( U J - M ) [ l - ^ f ^ ^ t ' O J 

(6.6) 
and a 3Qtrifcut, 2y + 3m < u> + M < because Q 

( t j J I V ' f ) l& 1 1 r ( f ± I 

- U>(f ± ^ l 

where gVr(q) = :8TTGO) . But when the quarks are only dfi&Iiw-

quarks, we have f 40instead , the transition amplitude 

T = - — 1 — V — 
p £L ( UJ T ri + I €r) 

(u> V i - i * ) ^ o8t (<ju +- i e ) (<*>+ M ) -h 2 

where now 
\ <6.8) 

s i C C j J l l r ' j p O J " ! * ^ ) ! 
.fie ("> + W) = - • •• 

(6.9) 

as a consequence of the standing wave boundary condition. Notice that the 

summation equation of Section XI, Eq. (2.7), is now an expansion of the 

scattering process in terms of possible intermediate shadow-quark states. 

For the piecewise analytic D^tw + M) there is only the physical Ntf right-

hand cut for m < co < » and T̂ (o>) can easily be shown to satisfy 

i [T (w>* - V « . > ] - T f M * T f f w ) 

by using Eq. (6.6). 

Some comments are appropriate: In Eq. (6.8) for D ^ , we observe *±at 

if the 2 is neglected then the p„ (to + M) factors would cancel in T let? yielding q 



the well-known result for the scattering of two non-composite particles 

in the static limit. Thus,the presence of the composite shadow-quarks 

may not be easily gleaned^and the consequences of piecewise analyticity 

may be very slight. Also if quarks have fractional quantum numbers, as 

in the simplest model, the production of a single quark would even be 

forbidden by selection rules, hence the tell-tale shadow pole, which 

normally would appear "as a dip" without corresponding physical thresholds 

at high energies, would be absent. 

Notice that in Fig. 2(b) there are actually two kinds of standing 

wave states - the discrete, ordinary |N>> "bound" state and the continuum 

13Q, rr(q)>> shadow state. The shadow state under interacton always 

remains a standing wave structure as a direct consequence of the choice 

of boundary condition. On the other hand, the standing wave property 

for |N» was a consequence of the form factor *T(a>) being such that r 

M< 3m^ + u where(M) =0. In general jN>> under interaction with another 

TR(q') , as in Fig. 2(b), will dissociate into a free 3QTT system for AJ(ql) 

sufficiently large. But when the quarks were shadow objects, this did 

not: happen. 

If we push this comparison further, though, we will see that these 

two types of standing waves lead to essentially the same system. For 

example, the shadow state of Fig. 2(a), consisting of 3Q and a IT, can be 

achieved by first"confininglfthe valence quarks and the quark-antiquark 

pair to a spherical box of radius R in coordinate space and then taking 

R to infinity. Notice that if we did not take the limit, we would have an 

infinite set of discrete shadow state energy levels, say, as in the harmonic 

singular as |r| the ordinary |N>> "bound" state would be so tightly 

sufficiently 



bound as not to be dissociated no matter how energetic a TT was incident. 
r 41 Such an T^u) would lead to an infinite number of standing wave levels. 

With the inclusion of the proper dynamics this infinite set of dis-
crete standing wave levels, whether the consequence of a "box" of radius R 
or a singular -f (r), might be a good framework to approximate the experi-R A. 

mental hadronic resonance spectrum. That it is phenomenologically appro-
priate is clear from it's strong similarity with the nuclear physics 
framework used in phenomenological applications of the symmetric quark 
model. The results of the other sections of this paper would apply in 
this case, but also would be well-known: The basic change is that an 
infinite^discrete continuum from the shadow states replaces the previously 
considered continuous one. These composite bound states and resonances 
would, as usual, contribute to the completeness statement in momentum 
space and replace the piecewise analytic modifications to the dispersion 
relations. 

It should be emphasized, though, that neither the "box" of radius A» 
R nor the singular fyr) explains how hadronic systems saturate as 3Q, 3Q, 

- -42 or QQ valence quark structures. Especially in the case of the T (r) r 
mechanism, which acts as an infinite well over an infinite range, it 
is difficult to understand why quarks in one hadron would not be strongly 
effected by those in another hadron, even when hadrons are far apart. Also 
quarks "bound" by (r) may tend not to move as free, independent objects 
ii:side the hadron, though quarks should if kept in a "box" of radius R. 

From a fundamental framework such as relativistic quantum field theory, 
it is not at all clear how such a singular "f (r) or a "box" of radius R 

can be ibtained. 



VII. Conclusions 

When the possibility of standing wave objects, i.e. shadow states, is 

allowed in the dynamics of a scattering process, there is a more inclusive 

framework. In this paper we have derive! the new terms which modify the 

usual dispersion relations and the Low equation. From the structure of these 
15 

terms, we have concluded that the verification of analytic results by pre-

sent two-body scattering experiments does not put strong constraints on the 

presence of shadow states, even if they are quite light. The piecewise ana-

lytic terms also vanish in the Bjorken limit of deep—inelastic elec-

tron-nucleon scattering while the shadow states can still provide the 

unitary cutoff of the parton models. Thus, the triangle graph annomalies 

should only be taken seriously in the low energy region. A stronger con-

straint on the presence of shadow states, in principle, is provided by 

verification of the Callen-Gross sum rule. 

Finally, by means of a simple model, we have demonstrated how this 

standing wave mechanism can "bind" quarks in hadrons as standing wave, 

shadow-quarks. In this case, if the boundary condition only applies over 

a separation distance R, the spectrum of the shadow-quarks would not be 

continuous5but only a series of discrete, countably infinite levels such 

as in the harmonic oscillator potential. 



Appendix A: Formal Scattering Theory 

The simplest framework for the purpose of studying the effects of mixed 

boundary conditions in high energy physics, i.e. both standing wave and 

in-going (or out-going) traveling wave states in continuum channels, is 

in formal scattering theory. In this appendix we will exploit'this simplicity 

to derive some results on this level, to show how to properly othonormalize 

both the shadow and physical eigenstates of the full Hamiltonian, and 

to point out which approaches, because of consequences of the mixed 

boundary conditions, should be the most promising in a quantum field-

theoretic framework. 

Because shadow states are assumed present, it should be stressed 

that a correct generalization of the standard formulation of formal scat-

tering theory is essential to showing that the concepts and definitions 

of objects, such as the scattering matrix, in the presence of mixed boun-

dary conditions are in agreement with scattering phenomena as presently 

observed in particle physics. That the scattering matrix is indeed pro-

perly defined has been shown elsewhere11 in the context of exactly soluble 

quantum field theory models. 

We begin by investigating the matter of the correct orthonormalization 

of the shadow and physical eigenstates of the full Hamiltonian. As is 
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well-known, when all the boundary conditions are standing wave, even 

when there are no degeneracies in the system, the eigenstates 

i v : > = i « f . > + e H r i v r > 

(A:D 

satisfying H I - E J with H - H 0 + H r 



are not orthonormal. The unperturbed eigenstate \<? > satisfies H irf > = E M a o a a 
and is normalized < (Eb') (E&) > = 5 . For the sake of clairity we will 

suppress the continuous delta function <5 (E__' - E ). The free state } r> a 1 • a 
is also the eigenstate of some operator A which commutes with Hq with 

eigenvalue''a'1. While the full state is labeled by the same quantum 

numbers, "a", as | <f> ^ these are not, in general, the eigenvalues of opera-d — — » 
tors which commute with H. Their significance for resides in the a 

P integral equation for i.e. Eq. (A.l), including the boundary pondi-d. 
tions! 

As stated, is not orthonormal, in fact, in terms of it the a 
completeness statement is (since bound states enter in the usual way, we 

will omit their consideration) 

1 = 1 1 > : > ci + K ^ 1 < K 1 
u * b b a . 2) 

where K. = -^^^LN-r s o the usual choice for the orthonormalized Dd D X s 
P 

) 
a. 

standing wave state vcctor is 

s i [ a + K*r*jh1t iv[> 

An alternative choice, however, is more convenient when there are 

mixed boundary conditions: It has the advantage of being easily generalized 

to multichannel scattering^ to yield directly the physical states asso-

ciated with the scattering matrix as defined in Section II We only treat 
this choice in this paper. It consists of introducing for erch standing 

P i wave component, | , a non-interacting (free) standing wave component, |Xa>' 

of opposite metric so as to effect the orthonormalization of the interacting 

standing wave states by subtraction, instead of by division! Specifically, 



p with given as above by Eq. (A.l) , we take 

I ? p > S I + T T S ' L l * . > d C (A. 4) 

SO = ya t H 0 I 2 e > - £ e l * e > 

S' and n projects onto the non-interacting standing w&vq subspace normalized 
b y < xb' xa> ~ "^ba* T*ie completeness statement now reads 

1 - z \?:><*:i - i i f e
r ' > c i + K - j 

4 C «/ 
(A. 5) 

with the "shadow-ghost" state 

I K e t I V e
p > + 7T S' £ f i + K ' l |5(f> 

e e. e 

. » . (A»6) 
By construction | ip >is orthogonal to > and it obviously satisfies C d, 
HI u»p > = E I i>P >. Notice that in the no-interaction limit |iP> + \<P > ' c c1 c 1 c 1 u? 

i"P' S' i and U > II |x >• C w 
It is straight forward to generalize this proceedure to scattering with 

both physical and shadow states: Using the projection operators of Section 11, 

we have the orthonormal physical states > • E xa a la 

Kw < l - - 1T < C ^ I H r | where with 

! ? , „ > = 7 r T + i ^ T T e H r I V 4 . > ] 

+ 7TS<? ( e ^ j j - ) H r | ? „ > (A. 8) 

Eq. (A. 7) should be compared with Eq. (A.4). The second term in Eq. (A.7) is 



clearly required since 

< I - W . + Z < \ I I t > < t H, j 

- + I < K e <* 

which in general is not even A diagonal matrix in nh* *a*b* indices. Proa* 
the argument in Section IV, the transition matrix element for the physical 
states is givan by 

T u = - < A i H r I V 

which is the same as the singular part of Eq. ih*7) since 

< £ l c I I H» I O 

The state vector* Eq. {A.7), also gives the same transition matrix when it 
is Fourier transformed into coordinate space and the limits t • • • are 
taken. Because of both the shadow and shadow ghost terms in Bq. (A. 1) there 
is no shadow contribution to the state in either of the limits t • «». 
Obviously there will be no net shadow flux. Xf the second term in Kq. (A.?> 
were omitted there would still be sero net shadow flux but the physical 
states would not be orthonormal and the shadow contributions would not van-
ish in the limits t * •». Bacause of the lack of orthonormality » this is 
not acceptable. 

©le shadow states and "shadow-ghost* states are also easy to construct? 
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(In this appendix, to simplify the formalism we take all shadow states to 
have positive metric.) While the solution 

(A. 11) 

is not real nor orthogonal to *>y Schaid orthogonaliz*t ion we construct 

> - - I ( N « ) ( £ )mt l%t> 
12) 

which i s purely real where 

-f 
t 3 K%< L c a 

with 

Since unlike I*^** not dmpmnd explicitly on the shadow-ghost 
component* |xc> sine* < ijjJ*^* " * " îa*fca* **** ^̂ Mtdoit-̂ host 

— — - - i v « — ' - - - i v -
* 

| . Constructing them orthogonal to we have the purely real 

I %.«> m * + w ' Z Ci +•«+«),,!*.> 

(A.13) 
to be compared with Bq. (A.6). 

The completeness statement is finally 



1 - z ! * . . > < f j - i : < £ ) . , < * , ! 

where the normalization factors are given by 

< V , I %.,> » - ( = - \ m - Z K k t K t „ 
c 

< » - ( k 

< < V - ( k 

Again Eq. (A.14} should be compared with Eq. (A.S). 
Knowing the state vectors, ^a^' and ^j*^* and altto the com-

pleteness statement, w« can derive explicit expressions for modifications 
to scattering matrix elements when there are shadow states. For example, 
consider the matrix element 

* < Hj i 4u> 

3* 

Notice that the similar transition matrix element • -



occurs in Eq. (A.15) as the singular part of ^ see Ea (A.10). 
X C £1 

From the other state vectors, we have 

I <?«> = < i Hr i t t t f J 

+ H r i ^ > - Z ( O ^ 3 

+ ^ [ 1 •+ *T< -£l +lHrl <&>]} 

so we easily obtain 

A * 

e Ee. - E m -

& v L - J 

_ ^ r < H x > y e > ( t : L < ^ ' H » 1 7 

+ X < i « t i ( [ > c < l u t > - 1 I ] 

- r I Ht I Kj, [ + i r < v ; J H, I * > ] 
(A. 16) 

as the modified Low equation. The second term- conies only from the physical 
states and is all that survives (except for the potential matrix element) when 
there are no shadow states. Using the analytic results of section III, 



N O 

Eq. (A. 14) can be rewritten in the simpler form 

^ < < ? l \ H. | & > < v l j H , 
T u . I - — f ^ * 

where (A.17) 

i v^>< V2; i Ha i<fa>] 

. ̂ , _. / I \%» (A. 18) 

1 ̂  > = I i i j j l the properly 
orthonormalized statevectors. The weight function, S (E,E*), determined c 
by the previous analytic arguments, has the values S (E,B*> for 

€ 

E< E® < E - 1 , for E?u < E' < E® < Zf and is zero otherwise.where tn^c tn}c tn,c * 
E ^ c is the c physical channel threshold and E ^ c the c shadow channel 
threshold. The important point to notice in Eqs. (A. 17) and (A. 18) is 
that H^ acting on the unperturbed eiqeinstate > connects with the 
shadow state |i' > and the shadow-ghost state j$* >. Hence, when gener-4.C 2 C 

alized to a static field-theoretic framework having interaction terms of 
the common source type 

where the (x) (*)) field creates and annihilates physical (shadow) 

quanta, the currents J ^ (*) also couple to shadow states l*^* IfJ'e** 



Therefore, the presence of the mixed boundary conditions is easily 
incorporated into the formal perturbative expansions involving the pro-
pagation functions for eigenstates of the unperturbed Hamiltonian. This 
is the case in Section II, in Eq. (2*4)̂  by the change Eq. (2.5) giving 
the perturbative solution for T,and in this appendix, in Eqs. (A.7) and 
<A.8)9giving the perturbative solution for the physical states 
However, in the presence of mixed boundary conditions the usual relation 

f « G» + G« H x G* (A. 19) 

between the full propagation function and the free one, given by Eq. (2.S), 
no longer holds. If all the boundary conditions were standing wave, the 

P 1 + 

analogous equation is found simply by taking G « y (G + G~) and has 
the simple form 

G p = G l + G * P H r G r 4 G) H t G * (A. 20) 

£ 1 • 

where G « — (G ~ G ) • • • • When the boundary conditions are mixed, though, 
the above trick does not work so we have used the approach of this appendix 
and the piecewise analytic proceedure of Section 211 to obtain tha Modified 
Low equation* 

Because of the mixed boundary conditions, other equations involving 
full propagation functions in formal scattering thsory * and their analogues 
in quantum fi.W th.ory no lon,.r hold. Mo .Xfl^le. .r. (i) T / Hj + Hj G+ 
with 

- e ^ r + 7 « * * T ^ r 

and (ii) j*la> 11fP| a> + G"*'|*la> which should ba compared with Bq. (A.4). 



Notice, however, that (i) will hold if the SC(E,E') weight function of 
Eq. (A.18) is "included" in thefT® of second term of Eq. (A.21). The 
effect of SC(E«E'} is to restrict the spectral support of the shadow term 
in the full propagation function. He conjecture that this restriction on 
the shadow support generalizes to, for example, the renormalised in-fields 
of quantum field theories with shadow states. 
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Figure Captions 

1. Kinematics for single photon exchange for deep inelastic electron* 
neutron scattering, e~(E) + N(P) e~(E*,6) + anything (P*), where with 
M the nacleon rest mass, v * q*i»/M and w « -q2/fcv. 

2. S matrix diagrams in a shadow-quark model for the forbidden transi-
tions (a) N / 3Qrr and (b) ttn f 3Q nn. The shadow-quarks remain always 
bound because they are standing wave structures in the baryon, N. 
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