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N prlmarily of experlenced health physicists, radiation’ physicists nuclssr eng'lneers,

"~ will be useful to the health physicist and radiation physicist. = - \
The material In thls mono‘raph was drswn prims.rlly trom the followlng refer- ‘._.‘
ences: e S /
- 1L FiH. Attix, W C. Roesch and E Tochﬂi.n ﬂon Do imetry. Second Edi-,

aBsTRACT U o U
This monograph compr!.ses a set of notes which was developed to- necompany a' e,

: sem!nar series on the Concepts of Radiation Dosl.metry given by’ tbe authors at Stan— o

ford Universlty dnring the Sprlng Quarter 1970. It discusses the baslc lnformatlon
required to understsnd the principles of photon and clnrged ps.rticle dose meuure- : *
ment from basic particle i.ntera.ctions to cavity chsmber thoory As health phystclsts

at the Stanford Linear Accelerator Center we are. interested in tho doslmetry of high

" energy photons and clnrged particles, Thus, throughout the text we have’ emphasized \\

the utension of doslmetry principles\to ths high energy sltuauon We hope that. the ' \ i i |
reader will .gain some lnslght to the doslmetry of partlcles such u pions and muons T ‘
‘a8 well as high ensrgy slectrons and photons Becwse the sudisnce wss composed - L l

and medical doctors. mnyofwhomhold advanceddegrees ‘the material is presenbod ' .
at a level requtrln[ sdvanced understanding of mathemntics and physlcs. S

A detailed dswlopment of all the theories lnvolved is not included because - - * } R
t.bese have been sdsqushsly oovered in several texts - We have’ stﬁsmptsd to discuss ’ o < ‘
- the pertine:ﬂ; theories and their relationship to dosimetry ~What we have tried to do ' -
is ather togsther In one plsce the information necessary for charpd particle and
‘photon dosimetry, citing spproprlsts references ‘the reader may oonsult tor further e
background or a more complete theoretical treatment. We hope thil monozrsph

. tom, Volume I, F‘undamentals (Academic Press, New York; 1968)’ .
2. 31U Fitzgerald G. L. Brownell,»and F.J. Mahoney, Msthsmstl.csl Theor_v of .

““Radiation Dosimetry (Gordon a.nd Breach, New York, I
3. K.Z. Morgan and J, E. Turrier; Prjg:iples of Radiation protecuon/ (John Wlley

k*nd Sons New York, 1967).
I the text, direct reference to these books will Jbe made us!ng the notstion

(ART) (FBM) and (MT). Additiona/l references are cited at the end of each chspter
and wm be lndicated in the text by number, /!

il S _,\%,V,. R . e
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Bofore embtu,-king ona atudy of radiation doslmetry it il necelury to underltnnd o
'the bcllc conceptl a.nd terminology involved "The hlstory of rldla;ion donlmetry il x ' \/‘ /'j.,f
Irn;ht with many,; somettmes confuslng, concepta and deﬁnltlona We will dllculs | a
doclmetry u-lng the conce:;ga qua.ntltles and units deﬂnod by. the Intemtlom.l Com-

miulon on Radlologlcal Units and. Meaauremenu (!CRU) in thoir 1962 Report 10:

*

' [on Qua.nhtleu and Unlts "1 The deflnltlons md in thls monogrtph are Trepro- /
duced trom ICRU Report 10a n Sectlon 1 2. l-‘ollowing the deﬂnltionl we dlscuu ;' - / , s
lome ot the bulc concepta lnvolved ln the qua.ntltlea deﬂned _ . » _ ‘ ‘ 11'7
Co . s : Sy
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8. msch Flux Deasity = &‘u quatlmt ot a4 bj At whete A\u the- pl.rtlclq -

Tbeq:oeml thedpuoqnhmhnhthmndumnnorjwlyeqm

The -peclal nnjt of abaorbad dose ln the rad e o ) R
+ . > .‘ N ) -
: 1 rad 1oo arg/g ' '

ul the :;rojly and lndirpcﬂy flonlzlng pu'uelol whtcluuwe entered 8 volume ' ﬂf
(AEE) the sum- ofthe enargfa- of all thou which have: 1e.ft it (ABy, )xnmus ~ .
the energy equivnlent of any’ increue ln mt mus (AER) that took phce'tn e
nuclear or olomenury pciucle na withi n the- lume:

. AE : “E/Afl, _ ‘-“j:'m LT . N
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T Mass Energy Absurpti‘en Coefficlent (F /p) for a glven material,u / p‘
) . .4 for lndirectlypionizlng particlee is (}‘K/P) (1 G) where G-is: the pmpo:tlon AT
. ‘ Y the materlal R k _ '
- ‘ M.ue Stmping“i’ower (S/p)‘ for a given materin.l S/p for cbarged .‘pertlclee -
- ie the quotlent of dE_ by the prochlct Ofp a.nd dl where dE .is the ISGI‘I‘G

t U o energy lpet. by a charged particle of - speciﬂed energy in trlwerelng a path

wo B -

RS S length dl, andp is the density of the medium s ;
: e ‘1;,}_;‘- : dE ; RN
. . ‘.', e, g . . S/P Lo . cat
§ A ST - p E s T

" ‘17 i Linear Energy Transfer (LET)‘ - fdr charged particlee in med.lum,LET is
' the quotient of dE by dl where dE iﬂ the average energy locally lmparted
o to the medium by a charged partinIe of epecifled energy traversing a dists.nce '

- ." is.' c:haq;ed Pnrticle Equilibrium (CPE) — CPE exists u 2 pomt p centered in
o a volume V i each charged pa.rticle ch'ryinga cerulln energy out of V is
R repln.ced by another identical charged particle which clrries the same energy
into V. /1 CPE exiets ata point ihen D= 23 that. ‘polat provided that brems- -

o ) \mg production by secomhry charged partlclee is negligible. >

n

" are mn.croecq»ic qunnti.;iel luch as ebsorbed doee
c, etc Onthe v' r hand, qmrtitlee euohu energy im.perted, charge

' -llherlted, M etc mnyvarygreatly frompointtopoinl: linqe ra,dutionﬂelde &re :
‘In pnenl lnet uuonn in space. Coueequently, these qtuntities muet be determined )

g &
_wn__ .

! " - S -

e I8 . P L B : —\\ . ) v -
* - : . . \ N . o Do s . N ‘ f",x‘ . .
A discussion 'of these terms is given in Chapter 3. ‘ , Lo
o . . : . . 4 ' ,'j_ : R Y
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: for suﬂtclently small reglons of space or tlme by some llmitlng procedure We 11-

X

lmtrate this- procedure usLng the quantity "abeorbed doee. " -»;:' - \“ -

v

Abeorbed dose is a measure nf energy depoelted m a medlum dIvided by the mau o

d the mndlum If we chooee 2 large mass element and measu.re the energy depoelted, oS

we wlll obta.in 2 valueJof E/m)1 (see Flg L. l) Now lfwe nke a em.lller mnu ele-

\

'. ment und meuure the va]ue E/ m)z, tn general we ftnd E/ m)2 will be I.ing'er t}um ;o

E/m)1 : W‘hen m tu large enough to'cause sig'ntficant nd;enuntlon ot the pﬂmry ndi- _ K

: \ltlon (e-g:» x raye) “the ﬂuence of charged partlc.lee in the mass element under con- ,4 :

- slderatlon te not uniform Thle causes the rntto E/ m to tncreué:;tﬁe lize of the i

S 4 '
a . Simﬂu dueullon- may be made for other quantities and it must be renized that

proceu as deecribed above hu oecurred

~

maeemlsdecreaeed a \

k1]

As m is’ further reduced we wlll ﬁnd a regirn in which the chlrged pn.rtlcle ﬂuenee A
te lufﬂclently unlform that‘the ratio " E/m wlll be constant o s in thte region thnt
the ratlo E/ m represents abe-orbed doee. 'rhe eymboltc notation AE/Am il nleﬂ to’

IO - . ’ |

ludtcate that the hmjttng process described was carrted ott e ‘_ SR . . |
' At the other extreme, m, must not be 80 small th.a.t the energy depoettton il clmed co

by a few tntemctlona -If m ts further decreued from the region o( eonsnnt E/m, we' Z

wﬂl ﬁnd t.ha.t the nttio wﬂl diverge That is, as m gete very lmel.l the ener‘y tbpon—

tion is. determined by whether or not a charged partlcle tnterl.cts withln m. Conee- _ ’.’ _ &a

quertly, E will be zero for many mass elements a.nd very\hrge lor othere. These . L

ﬂnctm.tions occur because charged particles lose energy ln dlecrete steps. Hence, ,

the limtttnx proceee lndlca.ted by the eymbol A also requlrel thet the mass element

‘m be large enowh 80 that the energy depbeit.ton is cmed by lm.ny perticlee lndmnqy

lnt_erlctionl .

the qu-.ntlttee defined uetng the _symbol A are meeroeeoptc Mﬂu in whtch a limttin‘

4 i . - PR i

- .
-5 -

(- : ' w
T/ . . . v

-~ . . A B - - Yy -

e



. . . FG. 1.

) Energy dunlty as a finotion of tho mass for wmch O

‘energy density is detéermined. The horixontal uno
" oovers the reglon in which thé absorbed dose oan -
"be uubluhed in a.single meuuromeut The .

.- . shaded portion represeats the range where mﬂl- :

tical fluctuatioas l.rolmpomnt (From (ART), -
_ChlptorZ) S L j‘\_,.c‘

v w
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V The qmntlty, eucpouure, as ourrently‘dnﬁned\roqutru that all the electrons Ub-‘
.ientod by photons ins mass alement of alr be completely stopped in alr. It alno re-‘ »
l qulrec tha.t IJJ. the ions (d one !ign) produced by those electrona be col.lccted To

ma.ke any ablolute meaau.rement of emosure, therecfore requlres uae ol a tree alr
' ionlution chlmber. This in turn puta an upper limlt on the photon energy for whlch
) -uhlolll:c uxpocure meuurements are practicable " This cncrgy l.hnlt (» fow htmdred
" KeV) 15 determined by the ra.nge of the electronl and the ion chnmbcr size. o
In prl.nclplc therc ls no energy limlt on the quantity AQ/Am Thcre ll plnq;]y n

' ‘prlctlca.l limit on the uccuracy wlth whlch upo;ure can. be meuurod u tbe photon e

) encrgy lncroues Rela.tlve meuurement of expocure can be mdc at any phpton

-energy \uht dr—eqﬂvalent cavlty chambers (uee Chlpter 6) The a.ocurl-oy of thelc -
meuurementl dep%mh on the photon energy and the chnmber conltrnctlon Accu— :
‘ ‘ aciu ol 1-2% can be achieved for photonc w to 2 few MeV. Al the photon encrgy ln- .
"cmnl tho amcertal.nty ln thc meuurement mcreaul becaule of mlln‘e to collect V
m the ionl promcod by electrons llberated in the mass element Furthcr unoertﬂnty
il lnlroducod whon there ls uignlﬂcant a.ttenu.ation of the photon field withln the range
o( thc c]nctronl uberated by those photons Consoqucntly the qu.uity expoaurc

as prelently dcﬁnod ll pmtlcal only for photon .ﬂcld- below x fow HcV ln encrgy

: '1 ) Encrxy nnptrtod md Energy Transferred LAbsorbod Dou and Kerm)

Tobottormdcrmnd ablorbcddou kermllndchnrgedptrtich cqnillbrllln, ‘
’-tm.dbwthomrgyhhmoumidcforumuohMWtOM-
. stiom, runrolzun.chemlticgnwln‘lhwlumphotmlnoldntonumuoh-
w Elchlnlomowuylnvolvuthemovomentolmrgytntosndontdthm .
'ra.bhl Igivuma.rbltnrybrenkdowndthoenergymrin(andhuh‘thmu
' .'v‘.onchartodtndunchargodpcrtiolon L
e -7-

— E
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o the uncharged particle energy terms ‘and ln thla example ts: o

‘ obviou.lly AE[ a! AE,

L conilderlng clm-ged and unclmrged parthlel

[
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lThls Il the energy used to. calculate kerma

In this' example, the energy enl:erlng‘ the mnu element on clnrged partlcles ll o )

exa.ctly balamed by energy leaving on charged par(,lclel i e., B

“(AE (AE =1,4-1.420

e L)

Thus we say charged p&mcle oqullibrium (cpz) emu Aho since nons of the
seconcb.ry charged partlclel produce bremutrahlun‘ \vltg.n tln mass olnment

AE = AE_ ,‘and co uently tbe nblorbed dou will oqml the hr_

K- .
/ When the secondary char'ed po. Mlm ong_’;y by brn-ntrlhk-‘ productlon
th

in the mass element abcorbod don and Iwrml will | not be q-l ovn though CPE

exlsts Thin sltuation ‘is lllustrated tn '1; 1.3. In thll ouo. we ium tht

/(AE (AEL) —Oandthntthenllnomr‘yloulnrodmlwrnlu(un) =0,
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Coalequently the energy imparted to. che mass ll

(AEE) (al L)u L)“z
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K _and so absorbed doce will not eqml ke(ma in tlul ca.so Thls

.occurs beca.uae ln“AE:K we conllder only the energy transterred t.o ohlued-pnjrtl’clos :
ln the: mass element and do not congider how the cbnrged purtlclel lubooquently lose .

o

thelr energy Energy lmpqrted (AE) on the other hlnd is & total enorgy hllnnce a
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. s ‘ E-untnlly, ;here are twelve poulble praceuu IJy whlch the electromgnenc
g ﬂeld of a phot.on ma.y lm:-act with m&tter Thele are ehuiﬂod in. 'rgbh T 1, 2 -

: where tbe lnljor procules are "bou:od ln " the ml.nor prooouu ( 2. 1%~contribution

Lt

L ver ceru.xn Qnergy lmrvah) are "undorlinod " and t.he mt are negli;ible pro— e .

',ceml (note tlnt some proceuu lnvo boen completely omltted becnute of thelr s

The iymboll T, 0 md K rder to cross uc’tlonl (or coatﬂclentl) of the vnrloul
n inhraction proouua 'rhe \mlt.l o( t.bou cross leotionl can be bu-n./uom. cm /g
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- or nucleona) are vu‘tually free, t.hey lcttter lndopendently of one another - thus the

term lncoherent scattering Co;nplemmry to thii ‘one refers to coherent scat-—
= soerel

tering as 2 type oi scatterlng in whlch the indlvidml ncattering elements &ct asa

" ,‘2 2 Negliglble Proceuel
'{_:A, E]antlc Nuclear.Scatterhg (]I-m

*;-r

whole Incohei-ent scatterin¢ impllel inolutk: lcsttertw Coherent scattering

PO

-!;-,:. -~

implies elastlc scatterlng . ;-\S\

This ls regarded as t.he nuclelr mlog to very low energy Compton scattering by
“an electron This ‘seems fnconnlmnt since Compton scattering is an inelastic pro— .
cels whereas elastic nuclear lcnnorlng is in thn "elaatlc” ca.t/egnry' A d!gression
Lnto Compton scattering is in orthr at'this _polnt. . ’

Flrst of aﬂ Compton Icuwrlng is dencr!bed (quantum mechanlcally) by the o

Klein—mnhim diﬂerenunl lcattarln; cross aectlon, which reduces to ' T
’ . \ * . .; LA '

~ ch e

2

M . - =
Lo N .& e

mc2 = electron rest mun

0= l.ngle of scattered photon
in the lintit as hy —0! But this is.equivalent to a classical result-obtained by
Thomson, who treated the prnceu as an nhitic one in whldh the fi-ee electron vi-

bratea under the lnﬂuence of -the photon'l ohctrlc fleld, and re-emltl Photon ra.dl-

' ntlon of the same frequency (or energy). Because of tlus hlltorical treatment, low.

energy compton acuttering u ocmﬂonqlly rderred to u Thomlop ncl.ttertng -

- even tbou(h the Thomlon modsl meu u lncouintent (thnt ll ehnﬂc lcntt-rlng

melion coherency. buf the Thomun modal roquire“i tbe eloctron to be froe )
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. terlng from a nuclem" in l.nl.logy to tho low energy umlt of Corq)ton lcutaring
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Returnlng to the proceu ln quostlon (eluuo nnolep.r lcattorlng) we Inve tho o

' situatlon o(a phot_on Uteractint wlth L3 nuoloon hrlnoh R mmr that a. photon tl '

" " re—emlttod wlth the ume energy ...... One. lomotimea rolorl to this as "Thomson lcat-

q
Ay"

This eﬂect is & type of lnelntlo nmlotr ioa.ttermg whoroby the hucleua is
raiak\&u exoited level by abcorblng a photon Tho mlbod nucleul cnbsequently -

de—e:xcltel by emitting a photon of equal or lower onergy e \ “ h

REEN

Cr Delbruck Scl.tterlng (]II- B) -

The phonomenon of the scatterlng ofphotonl by the Coulomb fleld of a nuoleul - .

ls called Delbruck scatterhw (also callod nucloor potenth.l oco;terlng) It ol.n be ' '

' thought of as virh-.l pcir product{on in the ueld of the nuoleul t.hat il pn.ir pro- o

- ductlon followod by aunlh!latlon o( th creo.ted pllr Tbe‘proceu is- elutlo. ’
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S AL . Rayleigh Scattering (I—B)

R Svea e w ar e ste— e a8 LSS .\ e s s ampmrn o et

naylolgh scatterlng (a.lso called "electron ruonmce -cmrln(") ls &n atomlc ----- .

proceu in \vhich the lncldent photon ia absorbed by a (tl(htly) bound eloctron 'l'.'he
electronll rl.ilodtoahlgherenergystate andnmondphownoltbeume energy
u the lncldent photon 8- -then emlthed with the eloctron rthnrnln; to ltl origlnal state
(thls u not excltatlon, however) In eﬂect the recoll cl tho-lcatterod photon\la tl.ken

S oup by the atom as & whole wlth a very smnll energy tra.nsfer 80 the phol;on loaes neg—

ey
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‘c. ' Pair Pro:hction uu{bc Field of an xbcu-on (Im-A-b . : .

[

v
A

ll¢ible energy tpon acattbrlng The proceu la elutlc

B. Photonuclear Reactlona (Il-A)

. Amlogous to the photoelectric effect for electronl. a nuclem can abeorb a pl:roton
and iubaequently emit’ one or moro nmleonl hence, tbe nﬂno "nuclear pbotoeffect "

- All such reactlons h.nve a thresbold phot.on energy below whlch the reactlon cannot ‘

oceur., For tbe (-y, n) reuctlon. the crou leotlon lncmul wlth increulng nnergy
(above threshold), retcbu a ml.xlmum valuo a.nd‘than docreﬁe- 'l'bll is mferred

to u t.he glant relomnce, l.nd llmtt:‘nbd:od to elocl:rlc dlpole nb.orption of the lncl- .

~

dent photon In all uul. the ma.xlmum vtlue ot the toh.l crou lectlon for t.ll pbot.o—_ '

nuclear rmtlou il llnl.llel' tho.n 5% of the tota.l cross sectlon of tln same atom for

COmpton l.nd p!lr-prodxctlon lntersctlou This prooeu is, tberdore. not :enern.lly s

too in'oomnt u a muu o( eneuy ahoorptlon. Howevor, lt can ruult ln radioactive

R

’l'huproouullmlertomdorltand after dlscusln;pnlrproﬁoﬂulnthoﬂeld
dnnnohu- “Thus, ennthowhltllamlnoreﬂ'eot ltwlllbodhouuodhhr
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2. 4 Major Processes N V B :
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A Photoelectric Effect (I—A) \ R 2 ‘- Cw
In the atomjc photoeﬂect a photon’*diuppeurs a.nd an, electron ll ejectod trom a.n -

ltom Onelhotﬂdnotvuualizethuintemtlonu oocurring betwoonlphotonlndl.n
' [electton, b\tnthcrbetwoenlphotonundmm:n Inhct. lcomplotolh-orptlo}
typelntemtioncamotoccurbetweenlphotonmdlfreeelootronllwoumrmo-

) mentum’ wll] npt be couervod L a2
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: approqdmuly by llouhy'i law:
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Thuinmllutﬁ-o hono.olﬂnrm-ﬂork-o whlchoontudictltheulump-

Evo- w &o ‘mmclows mn-t lh‘orb tln momentum, it aoqulru very ltttle :
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Now clou-jy, the photoohctrtc d!oot can oocur only lf the lncomln; photon hu

a uriu‘ol jum.pl ln tln curve of tho lhorpuon cooﬂlolont (i‘)r‘crou loctlon), gor- T
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. We' 100 that the L—o&e actually conllnu o( threo dlffer’ent munbou. ‘as roqulnd

by t.hequntum munbera S "‘f .:‘ 2_ NN e \ '
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) Becau.u . thlrd boqy (thq nuelous) il nquirod for momutum conurvntlou,”‘lt e R
- makes lenu ﬂut photoelocu-lc nbcorptlon -bould [ncrouo rapidly vuh the blndnl T ‘

... evergy of the electron. That ls, the proubmty qt this mmtlonh hlgbolt for- , )
' thoce eloct.rom moct tl(ltly botnd About 80% ol thc intomuonc lnvol\'o tln K—lh‘li 3 ';4_
electrms The ordor o magnltuda o the phof.oelocmc mm.mmm oo.mcm.c '
s . “ - ; * .
e | o e
; T

. That ls. the photoeloctric om: ucuod d.cnuu vﬁ hcnuln‘ photon ener‘y '

waseSai o ew oo
et o

'~\_mmh more slmvly a.t hl;h photol -orlhl
. v Thevac;ncycmt.edby ﬂncjocuonojuolootrutrohﬂ.lmerlhelh llﬂllod
by od.or electrons hllin; into it (d.—cxclhuon) ud t.ils procou my be aocomnhd
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--)Tbe competmon between the emiuion,o[ 2 X x—ray and the emiuiou o!‘ an Alger

* electron is described by the K ﬂuorescence yleld, whlch is defined u the number -

o( K x—ny quanta emltl:ed per mancy in the K hell 'l‘he prob-.bluty thu.t n K

x—ny wlll be emlttod is nearly unity in high-z elementa nnd nolrly zero ln law-z

t

A‘, B

Now, thlu brhga up an lnterestlng question of wbet.her or not tho Al‘ﬂl‘ procan

. 'lhould be considered asa procen whereby a virtunl ﬂuorc.ccnt Xx-Iray "coﬂverti'" ‘

" by means of a photoelectrlc interacuon before it elcapel tho uom Clo‘rly, the ‘

o

Alger proceu, from the dlscunion ubove, docreuu In lmporh.uce u Z lncrauoc

' \Bm. the photoelectric proceu lncrealel w!th z (to Z )' 'I‘hus it nppurl lmprob—
' " able that thl- is whnt luppens In additlon. the nuclear mlo‘ tc the Awer proceu- T

- called: "lnurnal converllon" - |irovldn ovldence to npport the comluliou thl,t the

couvcrllon eloctron {or tln Amr cloctrnn) 1s not dle I:o an "internll photoeloctric

- ctfect "R s ob‘erved es:perimcnully that the 0—0 t:nmitlon proceedl mdily

I enough by lnternal conver-ion withln the nuclear volume l.lthough the emisaion of

photonl by the nucleuc n'50—0 trl.nlltion. is completely loru&n according o F

quantum mechanicn. : o S e ;

" B. Palr Production(m-A) = I
Pairproduction is the maclnnlnm by vhlcl s m is trlnllormod lnto m

' electron-pocitron puir, also known as "mmrhuxu!oa. The prlnclple of conser-

vntlonolmomentumudmrlypmentsthutro-oocurﬂumtrumce There'

B mult be a nucleul or an oloctron preunt for. N- prooou to hq:pon “In the center-'

" of-mass nyntem tho throshold lor the mﬂ.erhllu.tiau procm ln obviouly zmc2 = :

Aa.,.." '. . R ~

1,022 MeV.

\Forti\ereactlonll +Il2 )Ia+ll +I5+Q, ltouholhovltro-couer- -

' vu:t‘on-.ql energy and momentum that the thmhold mrﬂ Ior the reactioa in the
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*An llcldem photou (no lrnck) \nderlwl mh\ producuon in the field of an electron
(triplet) at point A. The positren mhuquenuy trafsfers a large amount of energy -
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e e s A =t o mmiP i ¢

elutic one bocaue this blndhx energy is nmll conturod wlth the photouemrxy

incident.

This is a first- order approadmulon a.nd nqu)mte correctlons are some-

times pecessary for low energy» photons or bl(h z;mmp (FBM, page 190). .

0y R
5 L .
1etar .
' Couefva!lqn of momentum:
' k=% +p
Conservation of energy:
k+m=E+k' ' .
Invariance: 3 . ) .
EZ = pz +‘ mz .v . ’ ’ . ‘:'fq.' )
Hence, | '
2 &-Ey-(E-Ey+m®  (from C. of P.)
:kz + k'z - Ak’ oo.f’ + nz
sk+m-k)P (from C. of E.)
50 that m(k- k") = ki'(] - cos 6) '
or N )
11 ' e
Boic= (1-cosm : 2.9
-3 - ;-5"
v

ThE Compton process is described ty the following diagram (in ¢ = 1 units).’

v

W

p,E=Tem




,\_
x,
Now, sihoe the right-hand side of this equation bas units of reciprocal mass energy,
we can go back to the "usual” notation by letting )
BN ,
" k—hw
vku —hpt

which leads to the well known result

A-a= 21 cos) @
or alternately,
by - byt = by —Z(l-cOBO) ~2.8

_ 1+ a(l-cosé8)
where a = hv/mcz. o _ ‘
. 2 is of great practical importance to'note that the Conﬁdon shift In wavelength,
in any p-.rucuhr dlrectioﬁ,’ is mwm of hy; wh@.. the shift lnenergy is very
dependent on he. That is, hléh enorgy photons suffer a large ensrgy change, but low
energy photons do not. For 8= 90°, . J

mc>
1+me/hy

8o that he' begom a8 maximum _irben h — o, and therefore

v

tbl"=.

hy' < 0.511 MoV, .
The, total differential probability, da7dfl, for & photon to make a Comptén collisidn

such that the scattered photon is within a solid angle about theta, is given by the Klein-

Nishira formuls (ART, p. 102). luqnth;l‘ over all angles leads to the total Compton

cross section used in the mass attenuation coefficient, according to

, dor " .
o= z[’ an an .‘(bnrm/ntom) . ) -

whare do/dil is in barns/eloctron - sr and Z is the atomic number. - ©
’ =
A -3 - )

et



The absorption component of the total differential cross section is obtained by
weighting the total dlfl‘erentlnl cross section by the fraction of energy carried oﬂ’ by

the __electron. That is,

da’
a _do E '
danTT dn 'Eg)' :
The total Compton ahiorpﬂon coefficient can be obtained by lntegratlon over all

solid angles as follow-

- do
_ 1 do ~£ B'ﬁEdn —I-O'E
T 47 d do dn hy
4r 4.1 :
or
_ oE
%" "

Similarly, one can determine the scattering component. When integrated over all

~ S -

angles, we can obtain the result:

o=0 4+ 0
a ]

-2.5  Attenuation and Absorption

For use in calculating photon attenuation and absorption several macroscopic
quantities have béen davelnpodﬂ from the cross sections for the processes discussed
in this chapter. The ICRU has given &(Lclal sanction to three coeflicients (see

Chgur 1) ,

Mass attenuation coefficient

i

9

“'/p = ’—:('r +0+-'”R +K) ‘ ' (2.9’)

. ~31 -
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Mass energy transfer coefficient . . «

) 1
pk/p =5 [‘r(l-f) + o-h% +x(}. - 2—;-‘:’—)] o (2.10)

Mzss energy absorption coefficient -

b, /0= wy(1-G)/p @1y

The unite of these coefficients are cmz/g and the symbois are the following:
T = éhotoeloctrlc cross section ' .
i o = total Comptoﬁ c‘ron section’
oy Rayleigh cross section | T " | '
x. = palr produéﬁon cr&u section’
= fluorescent x-'rajr fraction
G‘= fraction of énergy lost by secongdary electrons in bremutrahlung
proceues ' o o
Thue coemclenu will be referred to and uud in mhuquent clupterl
Two ot.ber coefficients often found in the lltenture are both calied mass absorp- '

tion coefficients and are appmlmuions to the mass energy-lboorptloh\cocﬂlclent:

l,.g/p: % (1- + a—EE : k)\ v - o '(2.12) .
4 /p= 1l + a'-i— + K(l' - _2mc2 ) \(2 13)
- #abtml P Ty T hw . i

e TN
These: coemcienu will not be uned In this monograph Tabulauonl of the varlous

coeﬂ.clents can be found. in the lite;uure 87,8~

SO o0
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i . CHAPTER 3

CHARGED. PARTICLE INTERACTIONS

3.1 [ntroductlon ' "\ : gg I
In the previous chap&r we saw that photon interactions in matter relulted in
" the transfer of algnlﬁcant amouus of kinetic energy to electrons. Th.ls chipter
will : consider in detail the. mteracuons of charged particles and ptrtlcnhrly elec-
trona ae they move through a medium Ch&rgod pl.rtioles movug tlu-o‘gh a modjum
interact with the medium buica.lly in three different ways: (1) by collision with an
atom as a whole, (2) by collision with an electron, and (3) by radiative Processes
(premsstmhlung). The mode of lntefmt.lon is largely determined by the energy of
. the particle and the- distance of closest spproach of the particle to the atom with
-which it interacts. - . |
A'. If the dlluncq o! closest approach is hrgebcompﬁrod with atomic dimensions,
theatomui'hdloructlhotheﬂelddthapiuhgpgrt&cle. The result Is
" an excitation or lonization of ‘the atom. The coulomb force is the ‘major inter-
action force nnd the puslu po;rﬂclcﬂu c.onlldered 8 point charge. These ‘dis-
tant omouxte;s are also called saft collisions.
: B. If'the distance of th approach is of the order of atomic dimensions, the In-
" teraction is between the moving charged pirt.lcle and one of the atomic electrons.
| This process results in the ejection of an electron from the atom with considerable
" energy and is often described ni»a‘h:ocl(t-on process, or hard collision. In ge’n—
eral, the energy acquired by the sacondary eloctron is large compared with the
Nuln. energy and the process can be treated as a tree eloctron colllsion but
the htl_'ipllc magnetic moment (cpln) ot the clurgod plrtlcle must be taken into
sccount 1n ‘the collision prqbabiutﬁ. Badiative pl;o;:uup can still be ignored but

if the particles are-identical, exchange phenomenl ocour and become especially

a4 -
- : oA



important when the minimum distance of approach is of the order of the deBroglie

wavelength, A = h/p. o |

'C. When the distanoe of closest Ilppro.ch becomes smaller than the atomic radius,
the deflection of the particle trajectory ln the electrio field of the nuclevs s
the most important eﬁoc;. This deflection process results in radiative energy
losses and the emitted radiation (bremsstrahlung) covers the entire energy qnc—
trumuptotbo mnximum kinetic energy of the charged particls. Put, qmuum-
electrodynamics (QED) demands that '
1. if radiation is emitted, lru-uuy consutl ofa number of lov-anrgy (M)

x/ quanh\ such that
! E (w) «T, (tot-ﬁndpuuch).

2. ‘mamum-mmmucmmmmwmm
incident-particle mrgy : ' N
3.2 l(inemnucloltthollhlonProom'

We will discuss the collision process in an hurmndkh oum rqloa whare
the intersction can be treated as a collision with 2 free ohctron.

Mhrnemuccdhilmmnummrﬁchdml total ensrgy
E = T + M and momentum P, and an electron at rest with mass m. Tholuoncuo-

+  *The discussion of the collision HMMCIMIHIW probability formulas
'L‘I’ih-lnc-lmu Thua, toroturntoopmltamh«morlwlthm’or

respectively, wherever they appear.




e
o

can be described by the folloving figure

pP,E=T+M
PLE=T/em
“hreYAs
Com.erv.utiondzpern:_"
' ' E+m=E+E" _
Conservation of Momentum: ‘
' v p'.,pu ' "-r.' -

N d -p“z+l'z
which lead to - S / |
E'= m“x* lﬂz+g’zbo¢=0| ";rv“,in
(E+m)” -p cos @ ’ . _

Hence, K

T' = 2m —

[+ 0"+ ) %)% = p" cos®e -
= K.E. of recoil slectron. -

Now, T'hamx.lmumvhono-o,soM ‘ .

s

T =2 — : .
Tmax T SR T g aw’ -‘i})l?z'u

Thhtomuhlsldonucdtonq (3)dnu-hsndnomr
Pormoutndpm%u H»mw&utwoclmmdlmnd
1. HighE Case: °
For RO p»llz/m

--38 -
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That, is, lhlghenergy Mmorprdmcubepm&icauymwlu-ol

'couillon with a free electron. %
2. Low Energy Case: - ,»
i For : ‘ pc; len -

we have ‘ T.'nu"’,?‘“‘_’/"":z'"”“l _,’mz o .

Th;tis,mmnnm_mmﬂ;r(oraiﬁvcanumM
onlyonulevltticleveloclty y, -

Bﬂrhlnndberger wmumummhmunmu& :
lﬁarudmnuoa'r' =2um fails, mmmhmmmhm

.unwum mxwuumromwmunmhnuumw

nuhaddhonaodthtmn!orthmm(tboputbhowlnmuw&w

'lem-zzo 000 MeV. Coauqutﬂ.ly lwmm&w'thhwu

:pprculunuoa will hold.

Ndv!orthomcdthechctm.l-p,w;&u:- .-
T __ =3~ : ;
Max ;{} g’-&lm(pz*mz)rﬁ

@-3)

] - m+ (p‘ +m )l
£ - (1"[3 m’%p’ sul,

Trnak ™ 'rg;:"i’n =T

s e e o e

< . .




But since the two electrons are indistinguishable after the coll.llion, by convention -
' thomnwlththehl;hettmmbcmlderedmepﬂmryehctronndnq '
“i 1
N 1}
. 'rm - 'r/z

14
kN

3.3 Colluion Prohsbmuu with Free Electrons gKnock—cn Cross s.cuonl)
. ‘l'ilo ;uﬂemtth] colllltcwprotlbﬂlty 0 l('l‘ T')dT'dx ‘ll defined as tln proba-.

biblity Ior a chugod particle of kinetic energy T, trlvmut a dﬂcknou dx(g-cm" ),
to iransfer an energy dT' about T* to an atomic eloctron (mumod free). '
"{m In the nouuon of FBM,

- N z
T~ .Ocold'r' Tdﬁ_] (cm -l )
wheve thc H refers to "hard" collisions.
A. laldtu tloctrou (Iﬂhr Cross Section) ‘
Fce 'r»ni “e=1) ' ‘ o N
t
(T, 'r')crr' = 3Cm ——I‘—q'——, [1 - 2] L @3.4)
col (T- T') (1" ) .
= probnblllty &‘u either electron is infd'r' about T*
where \g‘;- N (z/A) r = 0.150 (Z/A) (cm -z l)
A,Z = atomic weight, number '
* Ng= Avogadro's number = 6 X 108 a.tom/molc
. 13 Y

ry= e2/m=2.82 x 10"

cm = classical radius of electron

Remark: One carnot distinguish between the primry and secondary eleétron.
Therefore, $_ , ust be interpreted as leaving one slectron at T' and ,thc‘otbe;- at
T-T'. All possibie cases are accounted for wl\th;iOS'l‘"s T/2, so that for electron-
electron interactions, T' = T/2. Nots that #,, 18 symmetric in both T'.and T- T'.
Figure 3.1 shows an electron interaction la-which T is approximately T/2.
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B. Incident Positrons (Bhnbha Cross Sections) RS )
For T >>m
272
- dr ™, (T ]_ ¢
#1 (T T = 2Cm p [1 - (F) 1 3.5

probability th‘utr the ¢lectron is in dT' about T’

prs

and
' E S a ' 272 ) L
O (T TN - 20m =T [‘ S E [L4) ] o @.6)
= probability that the posiiron is in dT' about T*.
so that - _ . : ) s@% -
@, o/(T. T'MT" = [ocol('r ') + @1 (T T')]dT" ' . _:(‘3.7').'

= probablllty Lha%ther tbe positron or l:he elcctron :

<

is‘in d'l" abom: T'.
C .Heavy Incident Particles of Spln One-Hnl! te. g; . Protonl and Muonl) (Bln.hlu.

uuley and Corben Cross Section) ’ ' f’
For T>»m - .
. : 2 K .
2Cm _daTr' | T P/ T
(T, T')MT" = »{1 -8 - 2 ] 3.9)
col i2 (T' T! 2 (T+¥) : .

s

D: Heavy Incident Particles of Spin Zero (e.g., Alpha Particles and Pions)

(Bbabba Croes Section)

For T»m .
2Cm _dr T . -
foiT THT = 258 [ﬂ"——] . (3.9)
col . (™ ’T;'ha.x :

(Note: for alpha particles one must ultiply. by 2 - 4, since all formulas ibore,\

assume z = 1).

- 40 ~ - . . # '



'E. Rutherford Formula
thn T' » T‘ (i.e., distant colllllons with l!ttl.e energy tnnder) The

.5’! ¥

nbowclormuhs(ai 37 3.8, 39)reduceto

2Cm dT' _ - ' (3,10)'

‘ (T CT! )dTl =
| col (_T')!

‘which i known a8 the Rutherford formula (not to be confused with the Rutherford

scattering ro_rmilla for the same(pmcess -~ the elastic lcnthrln ol'-‘f'char‘.ed particles).

The above expresslon gives the collision prohblllty for all particles and dqnndl
' only on the energy of the secondary electron T, and oa the vcloclty of the primary
particle< It can be derived rulher easily using cllllicl_.ly mechanics.

Consider a charged particle moving past a free electron as indicated below:

X

£ ze ¢~ b =impact‘parameter
‘ i X " 17eras

The momentum transferred to the éléctron, . is calculated from

=

L P = f F dt (time integration ove* the force)

We are only interested in the perpendic,uia;: force, since the parallel forces cancel,

80 that. . ’ N
’ zet
| F=F =5 cos¢ ‘
. r
} . o ,
L F= z6%b ) :
-
(x2 ¥ b2)37§
Now, v !
; X ='vt A
80 th.-t dt = % dx V ! )

i
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and therefore

. 2 i
dx 2ze
- f &z
(x @+ 2 > v
. . \
The energy: trmte;;ed to t.he electron is : 2 oy
» ) . |'E"|2 22%e2
=2m - 2 2.
mb v
or ' b2 - 2e :
mﬂzT'
4 r
. - 20 - N
#0 that |2bdb)| = 7 T’
mg(T)

foraz=1 clnrge (incldent particle). Now, the probability of a collisjon with

impact ptrnmeter in db about b in a thickness dx 1s glven by

NyZ o
F(bydbax = 2wbdb——dx $, 4T dx

S

or v‘? ’ . .
2"8 N z . 4\\
ol(T T')dT' = dT‘ ' .
maz(T’ »
But,
_ r,= ez/ m
and )
Z 2
C=TNy2 %
so that * -

o, (T. T = —;,— ———i em®-g ™)

I The derivation of Rutherford's formula preunt.ad above brings out the physical basis
for the dependence of ‘c on the various factors in the formula:
" 1. The factor C expresses the proportionality of the gollinlun proho.bility to
the electron density. = - o . : . M.u:

X T
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2. Tbe hctor 1/}92 expresses the dependence of the onergy transfer on the
Vcollision time. . ) .

3. The factor l/('l")2 ea:preue; the fact that collisions with Iu;ge impact
pa'ﬁuieters are mor.(e ui:;aly ﬂu:n(colllltom with small impact p;nmoterl'.

3.4 Ionization Loss (Energy Loss by Collision)

So far we have restricted the discussion to collision prbhhlhtlél of cﬁu‘ged
: pu'tloles via hard colusions In the total picture of oharge-particle collillonl
hard collisions are compmuvely rare nnd do not have much lnﬂuonce q:on tha
most probable -energy loss. However, this should not be lntomroted to mean t.hat
they are unimportant, since each hard coluslon carries away 2 rehuvely hrge
amount d’ energy when it does ocour.

The nveragg energy loss per unit path length (also known.as the g&r_n.‘g M

' m) from ionlza.tlon { and excitation) is given by . L : S
IR IR
&/ oo Fcol <25 Yool *

where H means "hard” (close) and 8 means "soft" (distant). This cap be writfen
o ] N -

dT 25 - H 2__-1.
'E)eol i j;. e dT' '1’;‘ . T T (MeV-em™g )
~ where ‘ ' '

_ ngl = @ 8iven in the formulas in'3.3. '

83 | = collision cross section for saft-coilisions (not derived hore).

Fl

H .

energy transfer above which collisions can bo‘oon_sl'dered hard.

L
oo [ A B



Although not absolutely correct, let us now make the assumption that

o -l - Rutherford formula (Eq. (3.109)

col  Veol
.
. max - T; -
B L i )
col T:nl T;nln T . .

- _— e e 2,2
Now, it can be shown from quantum mechau'llc‘}s. that T /?mn —»(Zéﬁv /I) ?vhera.
I ig the mean excltauon energy. Thus

, 2 L
%) S o ACm,, (—TL) in units of ¢ = 1.

"ieol X
Although not correct, it does indicate the genernl features of the theory. (Note:
Agﬂn, tm; expression holds for zZ = 1 part.lcle For puﬂclu with ohr‘o z, multl-

ply l.bove (and future) stopplng power formulu by 4 )
Now, the soft—col.uslon stopplng power, as d.xlvd by lu.t h

: dTg "
" — = 2Cm (?__%_Zm ) P ' :
—8) in - . .31
, dx col 2 { a-#/ " f S ( )

The derivation of (3. 11) wiurgot be prolented here b.cnm d the m M comel
aboutbecauseoitheblndlngotﬂxeelectron- tothcuo-n mm,u&o-tq)-
- ping po-ver formula as the qumtity I quatlon (3 11) lmlpa lot pl-atrou as well

’.’uhaavychargedparﬂcles . o w4 - : .
o We c.an calculate qulte easlly the hard—-collulon term (or the case d 2 huvy o

-

{spin zero) part:lcle That la (from Eq (8 8))

E———

Ty

kN T' . 3 p [
ﬁ) =f maxT'¢ T - ZCmf m d’l,"-(l-ﬁz"g;"’l." ) ~
& /ool YR A o T'mlx
2Cm LB
- %Cm {1,, ﬁz(j } R
‘a.ndfqr_.}i« Thax ,l_ o _ B B . -
. - . 4 'l . 1 . - . s
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So that upon adding the soft and hard’terms‘:. _
@ : )e ZCm ( 28" T}, ) } 31 D

¢ (MeV-cm ~£ ) (3.12)
ot ra- ﬂfr - _ |

This relation nmllel to heavy charged particlea (M»m) wlth energy and charge ful- | /

ﬂlling tbe Born lppruximn.tion cond[t.lon

37 . o
At this- -polnt, certun modlﬁcatlo:m must be made to the basic fermuln to.correct -
for various stomic eﬂects The first of these effe(;:.a is known as the Mlzatlon
{or de nsity) effect. Up*ho this polnt we have conﬂldered the collialon process as
occurring between the charged particle and isol;ted atoms. This is valid to a great
extent when the absorbing medium is # gas. When the electfon tre.vele ln a cendenseq
\medlum, the ltoml can be considered isolated only ln the case of close colliaions o
‘ However, for dh@ col]lslons we must consider the electrlcal polarization ot the
medium in which the pu'ticle moves. “The dielectric constant of the medium weakenu
the electric neld acttng at a distance from the ul:om, causing a decreue of the energy
' trn.nder to locnr.ed far from the particle, and hence a decrease in the mass
stopping power (ldt—coll.lslon term). i
"Thus, in case of a medium in two phases ‘of different densities, such as water

and vapor, the lower density pﬁue has a higher mass stopping power and herce the
' name "density diect"' — this effect is appreclable however, only for rela.tivistic
velocities. Tbe most q:ten-ive treatment of ‘this is that d Sternhelmer 3 ‘
Another lwodut d’!ect of tbe dielectric constant is Lhe production of Cerenkov
udiltion. TN- effect looountl for part of the relauv:lstlc correction to energy loss
by dlstllt cd.llllonl The denlity effect and the Cerenkov llght are lntetrelated
both beiu functions of the dlelectrlc constant of the medium, and hence, are gen-

erally treutodtogether o ‘ : ' . . /’ﬁ
. ‘- 45;- ﬂ. .

\‘
P




L A'second smaller correction is necessary because the atoinic electrons will
3 cod:ributé lau to the atohping power’ if the particle velocity Ls c_:oupn-abla to the -

veloc!ty o( the electron in its orbit. This shell correction can be.as much as 10%

for low energy heavy {:huged pnrﬂclos but is less than 1% for electrons of onerglu
'(reltert.hano.l I_dev and is 2 maximum of ~10% at an electron energy dlbut
2 EeV'. Consequently, shell'co‘rrecuona are generally ignored for electron ltoppug

powers. _
~ Considering all of these corrections the final ltq)phg power formula for a

lingly—clnrged partlcle heavier than an electron is

ZmBZT L :
daT 2Cm { ( ) zgz - 8- U} (Mev-cmz—g'l) (3.13)

K)c:ol 52 12(1 ﬁz)

-wher'e »
8§ = density »e'ﬁect corroctlon3 ‘ N
U = shell correcﬂon t'.erm3 - , .\
- Equation (3.13) is equivalent to Eq. (1) of Barkas and Berger. 1-

" The overall picture, then, .is as follows .

1. The initial behavlor of the ionization loss, glven by Eq. (3.13), u that It
starts decrea.slng proportional to 82, ' )

2. "I‘he 1ogarithm1c term conta.jnlng the factor 1/(1 ﬁz) causes a slow Increase
in the relativistic region (as the maximum eﬁecuvei impact parameter in-
creases). The point at which the slop§ of dT/dx cMea 18'known as mini-

mu.;zl lonization. It occurs approximately at T ~3M | _ ( '

3. ‘Tbe lncreaag ténds to ﬂatten out into a plateau as the po]arlzation effects

R

become mcreasl.ngly more slgnlficant This phte_au is of the order of

[

2 Mev—cm -g
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leiy, _one can go through a similar analysis for incident electrons and posi-

trons. In pirticuhr the soft collision formuh .Bol' as given by Bethe, 2 1s still

corroct. One need oaly to use the proper hard collision formuh to obtain:

-;El 2Cm { [—T—L-’] +Fir)-8 } (MeV-cm®-g ) (3.14)
ol - 2(I/m) .

"
where

- CF @ =1-F - @ s ym2le ) @3.15)
2 for electrons and

2 ’ - '
. - 14 10 4
y F (1) =2In2 - [(J + + + ] . (3.16)
. % THE et @)

for positrons and where
T T/m
8= denslty effect cc:-x-rov:tlon3

8toppln¢ power values using Eq. (3 14) have been publ.uhod by Berger and

Seltzer. ‘ B
3.5 Restricted Stopping Power (LET) .
- For some applications the energy deposited by a charged particle in & region 'd\\

_ specified dimensions about Its track Is of interest. The basic dmlng power formula -~
/" 18 used but we must exclude the energy escaping from the region of interest in the
 form of fast knock-on electrons (dulta rays). The expression for the restricted
' mean collisicn loss for elactrons and positrons (LET ) is:
, L*(T'é)‘%g;}h[ﬁ] +f(1,A) -a} (3.17)
for‘,electrdns - ' - ’
Fr.8)=-1-F +In[(r - A)a]) +7/tr - A)“
+[a%2 + @r+1) hig‘ - a/n)}/r + 1)? . (3.18)

@
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and for positrons ‘ S o . s
h ' 2 N 3
Fr, 00 = lntrd) - /s [ va- I, Gelrens- @/
:. ) T . (7 + 2) 3
- ) Lo ‘ 3 ‘: . . )
" - = D2 as ilAL/a tAJ‘] - (3.19)
(r+2) ‘ . _

“In this Ioer Ais the I‘duuc'onerd of the daltl ﬁy which just escapes the
region of interest. For.as eloclron of mru 7 passing through matter -the maxi-
mum energy transferred to delta rlys is /2. By inserting A = 7/2 in the above

) oqmtinn for L (7, 4) it can easily be shown that

._ L-('r.'r/z)'%) .

col

which is slso called LET,, (or unrestricted stopping power).

3.6 Compounds . . o

(Xtenonemodntoknawthestqaphgpowerdcompounds uthert!unpm ’
‘e_lomcnh. Btopplng power can be calculated to a first approximation using Braggs
addittvity rule; ' '

%“E Y &,

whorc ‘j is the weight !rlcuon of alementj

S8ince the Bnu additivity rule does not take into account the chuga of the
elootronlc conﬁ;nration in going from an element to a compound some error will

 be involved in the calculation. These errors will porml.ly be of the order of & few

percent and will be most serious for low energies.

* -
e . e

3.7 Geussian Fluctuations in the Energy Loss by Collision  ~ .

P&rtichcdaglveﬁktndnnddlﬂnnnﬁ:n do not all lose exactly the same
amount of emrgy in traversing & glvcn thickness 'f material. The actual energy
loss is a lh.t.utlca.l phenomenon nnd fluctuates u‘ound the’ nrerlge value as cu.lcuhted
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.~.above. Only heavy chu-pd puﬂcln will be considered bere since lu;h mm

. -electrons lose energy lubntanthlly by ndlniva collisions. . ,
Let w('l‘ T, x)dT represent the problblluy Lhat a particle of lnmal enorgy T

..mlnmrgylncfruMTmOrtnveulqrtucwdm em )dm&mr '
lloul gives the follow!ng equation for w('r T, x) :
w(‘ro- ‘+¢) U(To-'r X) = “W(Tot e ‘)f Ol (TIT )dT' ’

+dx ’w(’ro.'rwr xuol(’rwr'r')d'r- @3.20)
=9

where ,
Q,ol(‘l‘.'l")-= 0 for 'l"="l';lnx and w(’!‘o,'r,;) = 0 for T>T0.‘ .

" With the following nesumptions: , .
L col'E’)i' f T! g}“,('r 'r')d'r' = constant .

“f

2. T.n'ro-xkcd-averagemrgyltx 7
V 3 col(T *TIT)= ol(T'T',) ﬂ ’col(r') only .
4. (T, T+ T)x) varies only slightly so that one can expand in a power series
of T' about T, and neglect terms beyond second order. - - . . o
One obulnu A . ¢ ' ’ D ;
' ' oy’ 1.2 & ) ' ' '{
Sw {0 N o
Bx "o 31110 . S .21
where ) A
2 - y
pim jo' (T'fe (T, TN |
A . B
To solve this, we introduce the Fourier transform pair T ‘ 2
. 1 - “aT - :“ LT
Tx, a) = —— w(x, T ar A . )
¢ ) 14 -/_.. ¢ e o e L
: . 1 f*_ -~ iaT ‘
T, T)= — . ] wxa)e “dx .
) ‘ N il ﬁ [: 2t T t
- T -49 - ‘ A L } !
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where we have temporarily dropped the To for cpuvenlonce.' -Tbe Fourler, transform

of Bq. (3.21) is:

4

- 1 2 2_
‘%’hk_colw_ip @w
2

S @fx,a) = :(o.a) exp [(h kcol - ‘% P qz) x]'

Now, - Sl _ ' A
(0, T) = 8Ty~ T) (i-¢., single lncident particle of energy T,)

sothat " ‘ P ‘
oL - ~la‘l’ .1 _-laTg
* s f ‘“° awe e .

Thordore, ¥ o : o J

1 ' 1 22
w(x,a)=—-—exp[ mT + pux]
| vE ( zeie’s)
T, = To-xX
And,

Fex, T) = 7—1_ f ‘oT(x,a)etha
'=-;‘;f~exp[(h'l'+zpax)] “'Tda."' S
1 -(T-T )2/2.0 j‘ KT-T, ‘
. T " p xja- _—!_"

where we have completed the square: S o ;

~

T LT . #
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' Now, this integral can be accomplished by choosing the rectangular contour .

ReiTTg) o f L Rei(TTg)

4
. - X [
® a = . . ' "‘
. 1767TA4 Loy
-~ M N
X

By Cauclw's theorem, I:hehtegrali-roundﬂﬂaolosedpathts zero booause t.hehi.o-
grandunmlytjcateverypointwithmﬂdonc Astecomelveryhrgo theh,-.-—
gmlsuougthoverualpartsuemntolppmhzem and it follows that

- [ 12 [ KT-T&’]Z“}i; f_l(T-TI)/p x l 12 [ l(T-T‘)]z »
expl- 3P X|a- —5— : exp| - 3P xja- —5—| |

px -@+i(T-T f/pzx px

S 1\/‘,./."___“2

where o

Hence

N (Tt Xy -« YT e
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is large. -

Therefore, when gll of the above conditlons are fulfilied, the dintrlbution functlon
w at the depth x is a Gaussian tuhcthn of T with s maximum at T and baving a
balf-width of o ’

L e
The most probable energy is defined as the value of T.for which the function “"('I"(" T, x}
is a maximum. We see that this _"océurs atT=T, 88 expected ' |

H

: . N N
Now, using the ¢ ol formula for 8spin zero particles, Eq. (3.9), (the other

formulas could have been used as well)‘, we have, *

f-'r "2 ¢H,('r T')d'r'=ic?—mf ( ﬂzT.T')‘ﬂ‘ 2cmT (1'%:)

From experiment, the condiuona for the valldlty of the Gauspian solmon can be

e:qaressedby saying. that R

. | T! <O << T (or Ty~ T,)

sothaf ’ _ .
. 2 ] 2 [
_ . _?.g_m_"_(l-&)=g(1-ﬁz.)»1
- ﬁ T -2

max -

In other worids, we have'a Gaussian distribution provided that )
kS 'n\
2Cmx
2

4"

G=

. N
The expreasion for p2 contains the factor ('I") whereas the expression for kg
contains the factor’ T' Therefore, distant colu-lons are much less important fn
the comput.u;lon of p than they are {n the computation of kcol' and we assume that

col“’col for allyalues of T' down toT' =0,

-'82 - .
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For thin absorbers (i.e., small x) and/or high onof&ica (8o that T ax is

large), G Is not a lgfée quantlty and one cgnnot consider the fluctuations ss Gaussian.

3.8 Landau Fluctuatlons in the Energy Loss by Colllslon ’

N

“When G {8 not large, one.cdnnot replnce the lntegro—dlfferentlal Eq. (3. 20) by

‘the partial differential Eq (3. 21), and the determinaxlon of w becomes a difficult
mathematical task. Using Laplace tranaf%rms Landau hag obtained a soluﬂon of . .

the 1ntegro—d1ﬁerential equal:jon that is “(r'alld when Gis less than about 0. 05. A
7

complete solution has been glven by Symon The most probable energy loss, ep

is obtained from the most probable energy, T accordmg to

e -q -7 - 2Cmx m(-tc:nx)_ﬁz_\:a”;,;, . (3.23)
( ‘ i . o .

p 0T p T g2 1-;_32)12—

where j is a function of the parameter G and of the particle velbblty B, and where 5

is the density effethorrectlon: For high energy particles traversing a thin absorber
(l.e., G <0.05) : S
}—0.37

Now, since the probability of collision decreases with insreasing energy trans-
, fer, that is, ' '
H dT" I
¢ dT! = s v
col (T,)Z y

the energy-loss distribution {8 asymmetrical with a long tail on the high-energy
side, corresponding to infrequent collisions with large energy transfer. This is

called the Landau distribution, S

r

3.9 Radiative Processes and Probabilities L . W

t

The treatment of electron energy loss by radiative photon emiﬁsion (brems-
strahlung) is influenced by the distance from the micleus at which the radiative loss LT

occurs. Radiative energy loss is caused by an acceleration (generally in the form

- 58 -
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of & change in direction) of the charged pa.l:tlcle undex—' i-;le, influence of the electric |

. ff&ld of- a neg.rby”nucleus. " If the dlstance of a.pbroa.ch IQ "large cot}:ps.red with the
nuclear radius { > lo"lsfb‘m) but small c‘omi)are}i with the dtomic radius (<’10-'8 cm),
the field can be considered that of a polnt charge Ze at the center of the nncleus. ‘on”
the other }mnd Lf the distance of approach is of the order of the atomjc radlus or
larger, the screening of the field of the.nucleus by the atomic electrona must be
considergd. One might conslder a third process whereby the’ distance of approach
is of the order of the nuclear radius. As it turns out, in prgbtlce radiative pro—
cesses take p]ace at dismnces far from the nucleus so that w‘e do not need to con—
sider this. ) . - o v i

According to the theory developed by Bethe and Hq;ﬂerg' (and summarized by

Rouls)» based on the Fermi-Thomss au;mlc moﬁekt'he influence of screening on a
radlatjie proc'e;aa depends on the .recou momentum of the atom in the process. The
effect of screering on a radiative procegs ln which ;i.n electron o{ initial total energy .
E=T+ m) ptoduces a photon of energy hv Is measured by the quaxﬂty

mhy -1/3

v =100 EE- )  (3.24)

'Z
It i8 seen that y is an explicit function of the electi-oﬁ‘:energy. When the ensrgy E
is small v i8 large and the screenirg may be néglected. When the electron 9nergy
is large, ¥ is small and the screening is nearly complete. Since the proh.blh}y\

? 4T by) d(hv)dx for an electron of kinetic energy T to produce a photon in d(by)
about hy in traversing dx(g-cm ) is dependem on the screening effect, no single
expression can be written for ;hia probability. The radiation probability will be

given here for two cases, no screening and complete acréenipg with the restriction

o=
-

that E >>m.



J kY
// :’
" No Bcreening('-y >> 1) | _ '
¢mA(T hu)d(hv)-4a—zzr§ [1+ (%')2-§%]
[
“\1’ - X [ 2 E' %](cm -g ) | (3.29)

. F
oy

Complét;é’screenlm (r=0

l_"_l_\
+
——
b1}

\_—'N
[}
wite
)
—_—

N
Orag(r ) d) = b 2 2 o .|

E'

Y3y, 1 —E—} fen’-gY) ' (3.26)

x [in 1832

Note: E'=E - hp ' ,
i ‘\ o / /
E =._‘ T+m=T o / _ e
: . K
a = fine structure constant = 1/137
. n =-refers to "nucleus.’ *

H

- These proh&bu.ltles are delﬂved using the Born-approximation wh.\ch is valid
only for elements where Z/ 137 <«<l. Ifor elements of high Z it can be shown that
the Born approximation error ls proportional to (24197)2. The absolute errox:;can
5e determined only by 'meaaurement.‘ Experimentally it has Leen found that:brems-
stra.hlung production trom hlghi‘z materials is of the order of 5 to 10‘}'; higher- than ‘
predlcted by the theory )

Radiation energ'y loss by charged particles is also possible in the field of the
atomic electrons (again, however, we only consider Incident electrons). If the
_electron energy is such that scl;eenlng‘ may be neglected (and considering all of the

slectrons of the atom tog;mer),' the probability of radlat.lve\em‘&gy loss is given by
; o \

<
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Therefore the total pro!iébility is

md"““’)~ [ :ad * "md]d‘h”) |
e 0 0 o (B 2] (02 Yt
5, (3.27)

-

5 .
/ \(
,y

Fdr complete screenlng (a.nd considering all of the electron.s of the atom together),
L g

_ 2 d(hv EY 2ZE -2/3]
¢ (T, hv}.gi(hv) te T Zr —(—lhu [ (—-) -3 —E-] [ln 1440 Z

| ,

L E' . 2 _

VY9 E (em’-g ) . : (3-28)
j's &

e
, ,Neglectmg thu1/9 (E'/E) torm; the ratio of ol < ¢f_a 4 18 Proportional to 1/Z. ~The

wh-'

following table gives some comparlsions

.. Table 3.1
z S 10 92
L . L40 0.129 0.0122
: 1 mMev) nuclgn - N 40 1.3
'q(MeV) elec&dns 490. 105/. - 24.

(™ ‘Q%epé;‘gs}' requi'réd to obtain 90% of asymptotic 'value of ¢ rad')

n ld ‘obvious that radiation energy losses in the field of electrons are important

only for very high lenergy electrons in low Z materials. We can therefore write -

o= [+ #0]am |
l -9

. _4a—r $ 22+ A 1[ (“a‘) E

- %-‘é—’]é[m 18327 /34 2 L]I (3.29)

where’."%; ’ ]
| (’m‘/ 'r-d)

| 'i‘he beno £ for most materials is a small correction. 'I“ho lnteat estimates mdlcato

0.88<£<1.04 zrml.terh.llbatmnl’bmdllg 'Ihereforef—llsgoodtnnﬁnt
nmruxlmaﬂon.

Al

| . -se-
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FIG. 3.2

Bremgstrahlung. The incident photon beam direction is indicated by zu'ww
The Compton Interaction at A produces an electron which loses a'large fraction
of its onergy by-radiation at B. The bremntra.hlung pboton probl.bly undorgoes
a Compton Lnterlctlon at C. i

T -67~




Radlntive energy -loss by an electron is clearly showr in Fig 3.2, The sudden
increase ln curva.hxre of the incident electron patb {under the inﬂueme oa ma.g—
netic ﬂeld) indicates a large energy loss The hremsstmhlung photon emltted does
not leave a track but apparently makea a Comptnn interaction.

S

3. 10 Radiative Energy Loss and the Radiation Len@h ’ .

The radiative energy lose of an electron passing through matter can be calcu-

lated from the probebilities stated in the prqviqus section. Thus the energy lost

by radiation is: -
’ - T -
ar ; 2 -1
a;) = [ o (T ) A (Mev-om®g™hy .
rad 0 . .

If we neglect radiation in the field of electrons (l.‘e. » Prad= ’rad) we get for

the case of no screégiixg (m«E<<137 mz 3
‘ ﬂ) 4o 2 ° 222 2Eln (2—*1 - 3) (MeV-om?-g Y (3. 30)
4% /ad S

_and for complete ccreen.hg (E >>137 mZ- 1/3)

T No 3 .17 2 -y '
E"—)rad =4a T r T[ln(183Z 1/ )+ -1—8-] (M?V-cm -g ) (3.121)
Note: T=E.
It ia con\?énlent at(thls‘ point to introduce the.concept of radiation length. From

-

Eq. (8.31) above it can be seen that at high energié_s

aT - mS
T = -K dx . R

(we have now included the minus“sign to indicate loss). Thus:

T{x) -Kx .

oy " °© | ._
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where Kisa constant for any given absorber. Connequently, the rad:lntive epergy
f

loss will decrease w:ponentlal.ly with dlstance in the abaorber. The distnnce over’

which the {ncident electron kinetic energy is reduced by a factor 1/e (due to radi-

ative losses only) is defined as a radiation length and is denoted’by‘_xo. * Hence

when: s R o
Tx)/T(0) = ¢
Kx =1
and /
/f' X = K - XO ',

“In the Bethe-Heitler formulation then (from Eq. (3.31)),

N .
1 0 2 -1/3 1 2 -1 :
i—-=4a Tzzro[m(waz / )+-1-§] {cm -g ). (3.32)
1t can be seen that In the epergy region where the concept of radiauon length is
/ valid (energy losses due primarﬂy to radiative proceases), 1/X is proportlonal to .
Z and Is lndependent of energy.

I we include the effect of atomic e.le‘ctrons and a correction for the Born ap-

7o : : ~
proximation we get:5 :
. N :
4a-2Z(2Z+1) rz ing1es 2”173 :
1 _Gaeg . 2 -1 3 33
f" Z 2 (em -8 ) (3.33)
140, 12(82) o o

3.11 Comparison of Collision and Radiative Energy Losses for Electrons.

Comparison of the energy loss equations for collision procenes with those for

the radiative processes shows first ths,t while collision energy loss increases wlth

* Dovzhenko and Poma.nsku derive, in accordance with current theoretical €nd
experimental ideas, values for the radiation. hWﬂm and the critical energies of
common materials, ) .

5.

C .+ -b%-
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-Z» radiative energy loss increases with Z2 8econdly, c.;olliaion losses increase -

with lnE (for T > m) while radmtlve losses increase with E Therefore at high
energies the radiation energy loss predomlnaxes As t.he electron energy de—
creases, colliaion energy loases become signiﬂcant until ata certlln enetgy t.he .
twp‘ are equal. Balotw this energy collision losses predominato This energy ls.

' called the critical energy, ¢ o ‘ ' Tt
T This critica} energy can be approximated by4

Z+1.2

. | eé: (550) Mev o »_ @)

The ra'f'r!g of radiative to collipion energy loes 18 given approximately bj."[tF_BM):

W), g o
(dT dx)col %0 . - - E.35)
It is instructive also to conslder the bebavior of the fractional energy loas per
radiation length for both processes (see Fig. 3.3). . ' o

For collision energy losses:

. g_) ~ BE .

E & col E-Z )
where -
J " - X/xo . -
For radiative energy losses: ;

at low epergies (y>>1) » . ' ‘
’ : 2E 1 i :
1 ,41) o w(E-3)
E &g 183z Y%+ &
-+ at high-energies (y =~ 0) v
_d .*.1.1) I TN
E dtﬁ rad E . .
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This shows that at very high energies ( >1 GeV) where virtually all the energy

losses are due to radmtive processes the fractional’ energy loss per radiation length

N

1s mdependent of absor'bing rmu:erlal nnd partlcle energy and in fact is’ a.lmost

ufenticaltolaashownln!‘ig 3.3. Thus: - g ' , UL

which leads to

[
i

as ;ve would expect. ]
~ Ttis apparent from Fig. 3.3 tht the d-.erlpuon d radiation phenornem is only o \\
Blightly dependent on atomic numblr whea ﬁkm are mulurod in rtdlation RS , ’Wl:(
lengths, and this dependence becotnu loss pro-n-ood with lncreul:g energy Now :
‘we have demonstrated in Chnpter 2, by means of the Feynman dhmm, that pair

production is the photon interaction that is coumlemennry to brelnutrahhmg ,

" Therefore, if Ln.ana.lytlc showext theory the lpproxinntlon is made that only pair -A

production and bremsstra.hhmg interictions are important, one can expect thlt the ) .

oy N

: longitudlnal development of an electromagnetic ‘cascade shower will be essenthlly. -
Z-independent whenever the' dlstnme is eu:pressed in radiation lei:gth untts. - '}'hls
high energy a.pproximatlon is. commonly referred to as Approxlmatlon A Ln shower '

. .m.“

&=

T e flw i i

theory.

3. 12 ‘Radiation Energy Losaes by Henvy Partlclea frove N

v N

Without going into the detalls d heavy particle ro.dh.t.lon loss proba.bllltles,

classical treatment of the radiation lou procul will lhow why these_losses are
geéherally negligible Ior heavy charged particles. Conlider 'l ptrticle o charge e,
‘ mass M and velocityﬂ mavingpnetl mcleu.lc(chnrge Ze, andlet(l—ﬁ)«l

(l.e., 8 = 1) l! we cons!der the nucle\u a point charge and usume’ its mus is

~ L

- 81 _ e . ’ ,_1;
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large compared with M, we can neglect any motion of the nticleus during g:e Mer-

adtions:- In the proximity of the nucleus the moving particle will be acted upon by i

afonx'c«5 T J | . ' o L .
ezt
St S B
where b is the impact pnin}eter. Hence the particle ‘:lll undergo & maximum ac- -
celerltlbil' . J ‘ | : . . \‘ | i
= = 1 -

. 1-
v
According to clulical electrodymmlca t.hls acceleration will cause the pl.rtlolo to

radiate energy where the eneru radlnted per unit time is given by"‘ﬁ

_g;_a2~8282 . 7

4

the differential ndhtlal probabﬂlty b

o 2%e*
o T+ 1) ) = =5

Now substitiiting r(z) = ez/ m (classical radius of electron) we see that

m2

@ (T2 1) dbw) = 2° 2 ().

This shows clearly that radiation energy losses are inversely. proportional to the .
lqmie of the particle mass.™” )
Conueqmntly the rn.diatlve .energy lou by any pa.rtlcle of mass M will be less

u:mthttdanelecu-onbyafactord(m/n)

k ‘
This is what we would have éxpected, however, since the same relationship

. appears In the complementary process. for photons — namely, - pair production. We

'Fromthuomclnuethnttheenergymdlawdwﬂlbeproportlonﬂtoa l.ndbemo )

-

~
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see that for muons, . the next closest mass ‘to the electron, that

ibmd) = Prad) ™ (0'1501611\:f;%vf ‘401000 ¢rad) SR

80 I:ha.t for doslmetry purposes, we can neglect radh.t}on lossec by heavy chn.rged

- particles.

3.13 Fluctuations in'the Energy Loss lzy Radiation

Up to thie polm we have asgumed th:t the radiative energy loss is continunus
as an electron passes through an absorber. Consequently the formulas given
{Eqs. (3.30) and (3.31)) are for average energy loss by radiation. However, the .
prdbl.bluty is significant that an electron loses a large fractloﬁ of its energy in a
‘single radiative process. TheMON; we expect to find a distribution about the
average for radiative energy loss just as we did for fonization loss. The corre-
gponding probakility function 18:>

— o [T /) (t/1n2)-1
w(Tg, T, )T = _0 I‘(t]ln2)
. where -
o
/2y = J % /0201 g :
0

This dlsu'ibitlon is significant when the radiative energy loss process predominates

({.e., T >¢b}. In this energy region other pr&cessea become significant, namely

cascade shower production. Consequently, an average radiative h;opplng power is

™ looger valid. A detailed treatment of radiative energy loss fluctuatlons will

not be undertaken at this point. Analytic shower theory is discussed in detail In

the text by Roesi. 5

3.14 M__Me_ﬂt_rﬂsm
Since heavy charged particles or low energy electrons lose energy more or

less ooo,tinuous]y as they move t.hrough an abcorber, they have a definite range.

- 64 -



— . T e e e e S et i il

This range can be calculated knowitg the rats of energy'loés Consequently, the /{/
mean range“R of a pa.rtlcle of kinetic energy T {8 defined by: ' A

X A Ry(T) = f dT/(- dT/dx)

where - %is given by the approprlate stopplng power fonfiuh. This formula
ignores mutliple scattering.

Now, the rate of energy loss ls not stricﬂy continuous but includes somse statis-
tical fluctustions as discussed previocusly. .Therefore there will be a dlat‘rib\tlon '
of ranges about the mean correaponding to the statistical distribution of energy loss.
Bince the snergy Iou process is Gaussian for thick absorbers, the range diltrlbu-\\ ‘
" tion is also Gaussian. The probahbility P(R)dR of a particle with an initial energy

Thavingarambetweenanuda+dliuzivenw

¥ P(RMR = —> [(R-’Rd}cﬂt | a\;e'
\ BRI Chind B oo

where

ol = x - ao)>" f-pmxn Ro)dll

The qm.:ﬂty ((R Ry ) ey 18 generally obtained from maut;rcmﬁtl of the number
v of particles pepetrating to a given distance. Because of the Gaussian pature of the
distribution the reiative number-distance curve {8 as shown in Fig. 3. 4:

_Distance ~ Rg Rg

176747

FIG. 3.4
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The point R, where the curve of N has ope-half jts maximum value is also the
point at which the curve'has its maximum slope, - 147,/27. By ‘qonﬁtrucdng a-tap-
gent to the curve at this polnt and extrabéah.ting to the R-axis intersection one ob-
tadrs the point B, known a6 the extrapolated range. Tho relationship ixaiween R,
and the mean range Ro i given by the equation for the tangent line:

(¥ - ¥,) = m(x, -
1/2 - 0= ;lbﬁ; Ry~ R
b Y |
“Rg - Ry = 'E'EE =8
‘ where 8 Is defined as the M parameter and
- S5t -,

The pei’ceztagg straggling {s defined as

100/ & - Bp®>,,

R,

0
The percentage straggling decgeases slowly as the initial particle energy increases

¢E

-until a minimum is reached at T/M = 2.5. : It may be recalicd that this Is the same
region at which the minimum is reached in the stopping pawcr curve. Beyond this
minimum, ¢ agaln increases reflecting the hrﬂhence of the (llﬂ%—l term. It turns
out that € 2ls0 increases slowly with Z,v varylng about 25% from beryllium to lead.

This treatment of particle range is not applicable to high eiérgy electrons where
the prodomlmnt energy losses result from the productlon ot hremutrahlmg Whon

o ot S u,w._\_..__

the chctron energy i- nbove the oritioal energy for the absorbing material, one
M_Iduolmn;nnte denergy loudmtocollhlonllndhremstnhluzg in the

- 68 -


file://-/fvfix

above definition of range. -° For energles much larger than the critical ‘energy,
X
the concept of electron range is meaningless because of cascade shower production.

3.15 Elastic Scattering of Charged Particles
When a charged particle passes in the neighborhood of & nucleus, it undergoes

a change in direction, referred to as scattering. Because of :t.he' relatively small
probability that a photon is emitted wi‘th energy comparable to the kinetic energy
of the charged particle, the sciuanm process is generally considered to be an
elastic one. Iniddltion we assume that the nucleus is very much heavier than the
incident particle and thus does not acquire significant kinetic energy. ’

We define ﬂ:le‘ differential mafterlhg probability as follows:

ZoHdw &x = prohl.bmty' that a Einr;:d%;hrtlﬁ"e“&fmomcntum p and velooity
8, traversing a thickness ck(g—om-z),.fundergoes 2 collision
which dsflects the trajectory of the particle into the solid angie
do about 6 (from its original direction). -

Various formulas have been derived for =(g)dw dx, which depends on the mure
of the medium as wellllu the charge and spin of the particle. If we neglect the
shielding of a point charge, Ze, by the atomic electrons, and if we use.the Born
appfcudmntlon, we can obtain iﬁe following expraulons. for hesvy aingly ohu:god
particles (c = 1 units).’ _ ‘

A. 8pin Zero Particles (e.g., alpha particles and plons)

2 2
Z@8 =N & (3 m (em®-g ") (3.37)
where L
N = Avogadro's number '
m = mass of electron _
? ) , ry = 02/m = cllu_lic:l electron udiul .
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. o Z = atomic number .
A = atomic welght

Note: for alpba-particles, mult}piy, By 22 - (2)2 -4

ﬁ B. Spin One-Half Particles (e.g., protons nxd muons)

z2 2 dy
= _-N ~T%
E(0)dw X (ﬁ) sin®(6/2)

This formula is called the Mouv 9cattertng formula Ior heavy plruoles.

A
u-ﬁzun (e/zmom -5 ) ("3.38)

C. Electron Scattering ¢

Mottu derived the elastic scattering cross section for electron scattering
from puclei of charge Ze by employing the relativistic Dirac theory with the Born
approximation. By expanding Mott's exact formuls in powers of aZ, McKlﬂey and

“ruhh;-chuommed o

z2 2 dw
S(hdw = -N —a
oA °(E’)A sin’ (©/2). _
Cox1- ﬁz sin (o/z) + xfa Z(1 - Bin(B/2)) Bin(6/2)] (cm -z ) (3.39)

where a = 1/137 = ﬂne nructure constant.
Note: The above formula is valld only for high velocities. (8 ~ 1) and for rather low
% materiala (@2 < 0.2—Z <27) '
LD Rutherford Scattering Formulg :
For small deﬂectiéns, 8in{6/2) ~ 0/2, and we can neglect the spin terms, eo
that 21l formulas above'becqme -

2 2
- . z° 2/m\dw , 2 -1
T(0)w = 4Ny S 1) (—-—pﬂ)» i fem“-g ) (3.40)
This equation, as well as the previous ones, are not defined at 8= 0.*

E. Derivation of the Rutherford Scattering Formula Using the Born Appraximation

The basic formula for the Born approximation is given l:»y13
8 gy - s AU o (om?/atom) @3.41)
dw 4 n v . N o -

*Note: We will see shortly that 6 > #, (Eq. (3.43)) due to electron screening.
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where  p = particle mémeht}lm'=ﬂ'i ‘ T
v - part.ic'le velocity

and . .
Wk = [ e[ Fuw) ewlk-7) s

allspace \ "
) = matrix element between the initial stnte,(i)ind fioal state (E'j.
(Essentially, ’the Born approximation comes from Fermi's Golden Me No. 2 with
the apprmdmf.tiom: ‘ '

1) ¢1'~ eﬂz'F plane wave incident

2) ;jlf ~ elE' T 7 plane wave out

3) H = Hamiltonian of the interaction = U(r) only
_ " 4) Fixed point scattering center.)
Now, the scattering process is described by the diagrams,

~
~

ASYMPTOTES

AL

1747440

176740

e -
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so that k=K' (i.e.| elastic scattering) and q = |k - K'] = 2k sin (6/2). Let

, . .
U(n =§g— A

and
(k-K) - r=q-F=qm
where
\z - -
u=ocos 4 (q,r)ymcos .
and
r, =%, Z'l/a/a2 = radius of atom (Ferm!-Thomas mbdels'zz)' ‘

Furthermore
ar=rlsm pgdrdpde = 2rrd dr e’

(u(hbtu; the sign and assuming azimuthal symmetry). So that
(k'IUIk)%fel(EF):; U &r o
- o 1
iy fqrp ’
..221202.{! Ll.—er/r‘rzdrch
-1 .
. .V 2 ) Lo
= ——-2——“ Ze fe'e‘-ninx dx’
q 0 ‘

where x -:'éir and ¢ = (qr‘)ﬂ. Now, one can integrate by parts tw.ce to obtain

[e‘él ;;n,x dx -k - (T;l?»)ﬁoo.x +gan » e'f‘],: ,

ﬂl-‘;‘] 1+(q!_,.)—7
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"Therefore, . . z )

2
<k'lmk> = 4'220 1 3
q 1+{qry)

And from Eq. (3.41)

do 2 2 »
5o dw = —F—— <k lulk > dw -
AT h'y L

dw
P q" [f‘_+ (ary) —7]_2 -
7 D i “ . -
Now, \ ‘
\p =k =8/ (de Brogu;eys_.vglaqth)
B =v - -~ (c=1 units) :
: T, = e*/m (¢ =1 units) :

~and we can define ¢, by

.8, = a2 zl/a k/ro

1
so that .
oo . r g~ 1/3 .
car, = [2k sin (6/7) °_ar_ -'[iz"‘“("/z’ "
= £ unqora
1 o
Therefore, . ) 3 s \
, g
3 ’ . © b
do 1,2 2/m dw
dw= 2% oy
dw Y™ % ro(pp) l.;;-f(”a**%;ﬂ?
. ! . ’ ) A
22 /m dw . 2 .
>4 2Z°r (— {om*“/atom)
pB I 3 !|5 L
o ) 0+ 01 ) | /\

- for small angles.
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e PN e [

2 . .
4N, & f:(}%) 2 f“;f]z (3-47
which is & form of the Rutherford scattering formula.

The ¢ ) term accounts for the screening of the electric __tjeld of the nucleus
by the outer electrons. 14. 15 , - - .

At this point, & few general remarks are in order. First of all, when a '
charged particlé penetrates an absorbing medjum, mo;teg{ the acattering inter-
actions lead to veﬁ small ddlectW. Bumll net ddlwtbnq l.re zuiera.]ly the -
result of a iargentmber of very small deflections; -irherm, large net deflec-
tions are the result of a single large-angle lcuttorplnllnut?berotvérymu
deflections. Because of this fact, one refers to the smali-angle )ionttariu as.
multiple soattering and the large-angle scattering is called single soattering.
The intermediate case is known as plural ”mm.», ' )

Seoondly, one can compute the scattering probnhﬂ:lty in the field of the

B

atomic electroml to obtain
. 2 A
: 2r 2
_ 0 /m\ dw
=0 do = 4% - (35) 5F

Hence, even though collisions with atomic electtonl m responsible Ior nln)ost
all of the eergy loss, their contribution to acattering is fairly small (10‘5 for, '

 Z=10, 1% for Z = 82

-T2~
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It should be noeed thn the actual process is oo'm'pucgted«by the fact m'“ L A

_ the ncattering from atomic electronl is tnellltic wbereas the above formuh is

P

for an elastic process. Furthermore. it can only 1pply to heavy clu,rged particlea

nnce eloct'romelectron tnteractbnl must account for exolumge effecth (l e., iden-
tical p..rticlu requh'e one to invoke the Paull cxchulon prlnclple) The net re-
mlt ll the same: unce Z2 is mnny rq)llccd by Z(z + 1) in the crou sections
given #0 far (nmu:r to the ootmﬁou nndo In the radiativo probabﬂitiu)
l‘mlly.&s exproubu tlnt have been pnunted have boen derived under _
the-assumption of a pouwchrp ZQ,, The [inite ll:o of the nucleul. as well \
u the “screening of m Ilold by the uomlo electrons, ltmlt the- vaudlty of the
results to a.certain rqeofuguludoﬂooﬁou Tbeeﬂectofncreeninghu

" been studied both by Goudsmit and SI;mdemonu and by Molier\ Accordlng

to Ront. th¢ lcreming of the electrlc field of the mcleus by the outer electrou N

v

\m' not .wr”lﬁhﬂr\ nffr\n\? thr r-nﬁ*ﬂ’r*"’""‘ﬂ m“\f\"’ﬂ(ﬁ‘ it}
P

S 'al‘ma'zt/stm/n ;0221/3 xr, 3.4y

¢ ¢

This quantlty shows up in the Gonchmit and Slmdornon oalculaﬂon and in the .

derivation above as follows (tor small angles):

2 z g

’ = z" 2 dw
[ - ] = e .
o (6) de “‘o A 'O(pﬁ) (% o2 .
Note that =(6) dw no longer diverges as 6—0. e .
\
\
~ ' \

( i . (T A .
. - : >. - ! "A

.
——

et ¥ ¢
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In order to account for the finite size of the nucleus, Wlll.lam.a ﬂnds that

the range of valldity of Lhe formulas for S (0)w (s llmlted (for large angles) by

B9 280 A” -1/3 {m/p) L (3.44)

We will make vse of theos _Hmita in thg; peui scetion.

F. .The Mean Square Angle of Scattering . )

.‘Assume ths;t a charged particle traverses a medium of fi. te thickness x(g-crﬁ-z).
The value of (02 ) at x+dx equals the value of (82) at x plus e mean squaro angle

of scattering lndx which h;5

e’y = f6* somwax -

( 5

This may be rewritten as:

where

-
",
o

- 167N, Z rﬁ (ﬂ) In [196(Z/A)1/6 1/3]
where we have assumed that ' . .
a. 5(@)dw given by the Rutherford scattering formula (3. 40), _

b. the charged particle undergoes a large number of yery small angle col-

¢ .
N

lisions, so that sin 8~ 8,
c. S(6) = 0for o<e"'<:i- 8 29,,
d. 0 and 9 glven by: Eqs (3.43) and (3 44), respectively.
- Now, the coefﬂclent 196 (Z/A)]'/6 in the logu'lthm varies from 175 to 169 for

.;f’/

A =27 (lcnv Z)and A=2.5Z (hjgh Z) respectively I-‘m'thermore from the P
£
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definition of the radiation length (see Sec. 3. 10),

1 1/3

Ny 2 2,
)—(5;401 = 21y, (1332 ](cm -g )

80 that we-can, to a good approxim.ation reexpress 0 in units d reciprocal ndl-

v

. ation lengths to obtain

E :
2 .
Oy (7;3)2 fl';‘ ' - .45

where I-:a is defined by
47 1/2

| E, ;'-(;) m = 21.2 MeV " (3.46)

E \2
d(02>_ = (;ﬁi) dx (square ra.dhns) ‘

where dx is-now expressed in radiation lengths.
If the scattering layer is auﬂlclenuy t.hln so that energy loss can be neglected

then 0 18 constant, and we ﬂnd that

_ 21,/x o
orms_ _I;F (3.47)

where pg is in MeV/c, x is radiation lengths, and orms is in radians. For high

_ energy electrons,

= FE=FT+m)>T
to a very good approximation. We then find I'.hat

_ 21,/x : :
Oms= “T (3.48)

Often it Is more convenient to consider the projected tugle 0 rather thln the total

- (apace) angle #. It can be shown r.hat

2

,x.?

Nln—d

-5 -
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so that

| & . . ':
- R S (ey)rmss %?é ‘ S @50

G. Ferml Eyges Theory of Multiple Scattering with Energy Loss

’I‘he a.nalytlcaJ treatment of this process is very diﬂ’lcult unless one makes
axtenstve approxlmations. A review of the various approaches has been given by
Zerby and Keller. 17 One of the most widely USed computations is attrltnted to

Fermi and Eyges, and is also called Gaussian scattering. We wlll hrlcﬂy discuss

this treatment since the results are quite often used In shielding calculations around

high energy accelerators. 18 N

The basic equation is the Fermi diffusion equation (FDE):

r~

m N

—_ Y +L & F
— 6, 25 E =3 (3.51)
Y
where - -
W - 28/E,

and where F(x,y, 6,)dy df, = number of particles at x having lateral displacement
(,dy) and traveling ot an angle (6,,d8) . . .

y . 5

pme o
-
. f&

Beam§ ’

. 17679

¥

The derivation of this equlﬂon is. given, for example, by Barkas.
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Eygas2°,solves this equation (with energy loég lncluded)"Bj’ the method of

Fourier transforms, with the ’ﬂssumptlon that p,p,\ and hence W, are functions of

x — that Is, the fact that a particle at x has traveled a someﬁ,vhai: greater distance

than x, due to thé deviations caused by scattering, is neglected (a good approxi-

mation for high eneigy particles). ‘ "‘
The final result of Eyges' mathematics s ‘«.,, .
| . [ 62 A, - 2y 9IA1“+y2"A°] .
F(x,y,8,) = = A exp |~ — iB ) (3'5.2.,)

where

B = Aghy - AT

Aglx)= j: 7‘-‘5’7 | )

)
i

b'4 '
= f* &x-mdp £
A ‘/<; whm) ' '

2
A (x) = (x-7) dy
2 '/: W)

Now, if we integrate over Oy, we obtain the lateral distribution — {ndependent of
angle:
H(x, ym = ./9' F(x,y, ay)dOy dy

g s
- /4A2
1 .
= e— . . dy (3.54)
2 \ fi XZ N . X
.8imilarly, the angular dlstrlmtloﬁ —-‘lrrqcpectiv'e of displacement —-is:
Ey G(x, 0,)d8, = _{ F(x,y,0,)dy 6,
- e’-ﬂ';/uo'do : © (3.55)
2yxhg - Y |

Thus, we get Gaussian distributions for G and H as anticipated.

w
]

-7 -
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The mean nqt;u:e projected l.nglé of soattering is deﬂhed by L
2 "
<e) 6% G(x, 0.)d6_ = 2& (x) = 2
5 Py f Wzm :

If we aasumé that the scattering medium is thick enough t\o consider the scattering
to be essentially mqltiple, but thin enough to neglect energy loss, we have
’ | W=2pﬁ/Es=conatant .
and therefore L . o -
| CO2>= 2x/W
or

(ay)rm= 15vx

as before (see Eq. (3.50).

A. more complete treatment of multiple Bcattez'mg, whiclt a.llows for plura.l lnd

21

gingle scattering as well, has been done by Moliere, and Scott, “" and is beyond

the pr:"ofamt discussion.

3.16 Soaling Lawsa for Stogp;ng Power and Range
'As we have shown in Section 3.4, the unrestricted mass stopping power for a

" heavy charged particle of mass M, charge z, a.nd velocity £ traveling in a medium
of atomic number Z, atomic welght A, and density p is of the form

2 & L (2)(* f(ﬁ.m(ueV-.cm”—_z'1>' . @58
co ’ .

¥

where

T e

and where the specific dependence on density lg now indicated. Fe:- tweo puﬁcloo.
land 2, of different charge but moving with the same velooity in & gives medium,

- 78 -



- - . - e e e . " [E—y

" we have

1
1 N
= 2
P %r)col - (i].__)
zggz 2/
p dx col

Hence for & charged pnrtlole of velocity 8 trlveuu in two

we have .
/ a )
s 1dT AY
| > -&)"“ - (—A s (3.58)
T B e
; &) ZYA '
‘ col -
¥ wo furthsr asoums thot
' Z . 1
%32
Then
1dT ~ 1 dT .
) Py 2 . . . (3.59)
p dX)p P E)ool A

’ Tﬁua, toa good approximation lhelonl,y difference in the shielding power of various '
materials 15 due to thotr donsitics. This suggests that absorber thickiiesses be
measured lnz/cmz. ' - o .

: nenngednheavyobtrzedptrticlollgivenby

b "“’“‘"ﬁ s

NW. : . o
T?w;nu
'i'iiha're s PR e
| r=Q- ﬁz ) 1/2
Yo ’ . o v 19 -



80 that : -

8 I
0 .
S A f , pﬂ .
Re—x J | 3 ,
pPZx. 0 [I;[Zm, )]_wi_(l- ) : '
I(i - . -
‘or o -
MY/ A ‘ - , ;
R« (?-)('ﬁ) F(ﬂo, D o ‘ (3.60)
Theréfore, for two different particles, 1 and 2, traveling with the nme,velo;:l_ty in ‘
a given medium, we have that ‘ ) ' AN B
' : 2~ . ‘
R, (Ml)( zy ) )
—_— = N-= . 7 (3.61)
_ (R \Mp/A _ _ P
And If we make the reasonsblé assumption that F(B,. 1) depends caly weeklyonl,
then for the same particle traveling in tvo'diﬂ’orent_ media, a and b, we bave- ’ "
R (Z/A), (pb , '
‘R . .
— = : .61
R, ~ @A, \a ) e
and with the further approximation that Z/A =1/2, we bave '
' R, S (3.62)
—_— /P .
Rb 2
“A8 we have previously indicated. : ' ) 5

Finally, there/is another convenient way to scale the unrestricted stopping
power for heavy particles having the same charge. Consider Eq. (3.‘13) in the .-

’4

appraximate form

1E) cpef] e
p ool 1{1-8T)
~ From the relativistic equations .

; E=yM=T+M

# =118
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e IR : v J
1ar_* om (3 +1) tn (22) (ZNE, + 2) iy
P& T T\ MM !
- ~.which l\uoycta that the stopping power curve for different particles of the same z
will be essentially the same when plotted against the ratio T/M. This is 'lllul:‘trnted
in Fig. 3.5 using the stopping power data of Barkas and Berger. Notice thit the .
minimum occurs at about T/M = 3, as previously indicated in Section 3.4. il
. -
‘l"l-::‘
@
!
~)'_\,
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STOPPING POWER (Mev-cm?-g!) |
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. The quantity "absorbed dose" as deﬂned ‘by the ICRU (see Section 1 «2 ltems -

~ 4 and 5) is a macroscopic concept lika other physlcal qmnﬂties such as tempera- ’
ture and prouure "It is useful because It speelfles ina single number t.he evergy '
concentration near the point of Interest. However, it is obvloﬁg ;b_eca.'use.ot_ t!fe‘ dif- -
ferel;ceg in biological rbaponses to equal absorbed doses of diffdrﬁ'ﬁ r:}dlaﬂ'on; .
that local energy densities ;nd microscopic distributlons are importuit in ao}ne
inatanceb For some rldiatlonu the local energy demities can be slgn.lﬂcantly dif-- |
ferentfromthe lblorbeddose (Bee Fig. 1.1. )
» The local energy denllty is the quot.ient E/m where E i8 the energy depoaited

'zln 2 mus.element m. Iis uymbol is Z nnd it has units of etgs/g ‘The difference
between Z lnd the absorbed dose (= AED/Am) con:es a.bout as one shrinks the
mul element a.bout the point of lttereat. ‘When the:mass element becomes vgry
lma.ll the epergy losses of the chargéd partches pauing through m are no longer
avengnd out u:d in Iact;z wil] be zero in tbe. mjorlty of lnstances When Z is -
not zero,- ‘moreover, it can be very much larger thamD Tbese g’tea.t ﬂuctu.t.tlon;t .
in Z come about because energy is lost by chargod partioleS\LKdlacrete steps.
Thlll the localenergy density in a small mass element will depend\on r.he number
of charged plrticlel trp.vershg the mass and the amount of energy hch happens

o

W to lou during the tnverul . ‘ .
. In this chlptor we wll] discuss unear energy transfer (LET), LET distributions.
.-and energy density distributions. Although t.heaq processes ar_e mlcroccop‘m"l.nd

somewhat peripheral to the ;éalcula.tlon and measurement of absorbed Eloo_e,ﬁ ‘they

5
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are important in understanding the éne;-gy loss process and the relationships be-

- tween absorbed dose and r;idiation effects

4.2 Linear Epergy Transfer
: We th previously discussed (Chapters 2 and 3) the interactions of charged

and uncharged particles with an absorbing medium. The deposition of energy in a
medium is through the interactions of charged particles with the atoms of the ab-
;orber lnd the average rate of energy loss is given by the stopping power formula
appropriate for the charged particle of interest. At low energies stopping pow;'

L im m. inverse function of the square of the particle velocity. Thus it is obvious

7. that as the particle slows down, the rate of enérgy loss increases. Consequently
2 hrge amount of energy can be deposited in a small mass element. Some of thé
knock-on electrons set in motion through the cha.rged particle interactions can
have significant kinetic energy, how'ever, and deposit some of this energy outside
the m- element about the point of lnterest This is called "delta ray" productjon.

The colllslon probability is given by (see Chapter 3)

. - !2

¢coI = ?(T;)T . ) .

where- ’ ’ -
P -z is the ch;:ge d the moving particle -
3 8 is the parttcle velocity {c = 1 unita) © .

T' (s the energy transferred ln thn collisfon.

Consequently the probability for a collision to vocur is higher for a slow particle

| transferring small amounﬁ of energy in each collision. From Table 4.1 it is ob-
vioue that, hl.led:on'vveloclty the interaction probability for a given energy Is much
Mr for a proton or slpha particle than for an eloch'on; Therefore, the a- .
pqtfcle or proton hu a much greater collision danilty for a given energy than an
elactron. T J : — |



'f F‘ *
T;it;la 4.1 -
. ) ‘ . A
/ .
~ Particle -
Energy (MeV) " e p @
et | P
1 .9 . 002 . 0004
10 1.0 .2 . 004
100, - 1.0 | .17 .08
1,000 1.0 .15 .36
10,000 1.0 ' .99 .9,

A

. Now consider the energy transferred in a single collision .("1").' For the elec-
tron T! = T/2 while for the heavy particles T;n‘; >2m (ﬁz/(l-ﬂz)). From
Table 4.2 we see, based on the maximum energy transferred, that the interaction .

probability again is much greater for the heavy particles than for the electron.

& . . o o o~y T T AT © b T e i e et

Table 4.2
]
T ay (MeV) -
Energy (MeV) e p a
1 5 . 002 0004
10 5.0 | - .a |7 . 008
‘ 100 50.0 2 | .oss
1, 000 . 500.0 3.0 55
10, 000 5,000.0 99.0 9.0
, L ’
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"As an axample, for partlcles of energy 1 MeV the collision probo.bﬂltles would

be in the approximate ratio

' - . a = - 7- 10
@ @b e =110 107

The points to be made are that for a given kinetic energy T,

1) Heavy particles are more likely to interact than are electrons.

2) The energy Lransferred per interaction 1s much less for heavy particles.

Consequently, §-ray production is much less and the local energy deposi-

 tion is much greater.

The linear energy transfer (LET) concept i8 a description of the rate of energy
loss from the standpoint of the apaOEber. As such it considers only the epergy
"10@-11y imparted" to the absorber. It is different from stopping power in that LET
refers to the average rate of energy deposited in a Hmited volume whereas ltopping
power refers to the average rate of cnergy lost no matter where in the absorber it
is ‘depocited . Thus in the LET concept an upper limit is placed on the discrete '
enntgy loues beyond which the losses are no lorger comlderod local. As was
pointed out in Bection 3.5, we can take this-upper limit as T{nu and calculate
LE‘;‘_ which iz equal to the stopping power. COnverseiy we can also calculate a
reih:ictod stopping power c_omépondlng to 2 maximum energy transfer less than
T o’
4.3 Delta Rqs .

As we have discussed In Chlptor 3, the principal mode of olnrted particle
energy loss iz through collisions for all particles mept high energy oloctron-

These collisions can be classified inta two types depending on  the Impact parameter.

Tbo term stopping power will imply unrestricted 'tq:plq powor and corresponds
sumerically to LET,,



TN

Distant (or soft) collisions are most probai:le and result in small energy trannferu

_ Near {or hard) collisions on the other hand can transfer a large amount of energy
to the secondary electron. The amount of energy transferred is go‘verped by the.

. collision kinematics discussed in Cba.pter 3. When the secondary electron hag a
kinetic energy that is large enom;h to cause lonlzutlon and form its own "l:rn.ck "t

s called a "delta ray" (8-ray) This energy limit is about 100 ev. ’

Biological effects of radiation are generally consldered dependent qwn -the

'deposition of energy In microscopic volumes ganemlly estlmntod to be less tlnn 1

sm in diameter (MT, Ch. 11) In tissue this distance corresponds -to the nxe of -

1 6 keV electron. Hence, if a charged particle ,prodméc 2d-ray Inv"i)‘ an energy -
fretter than about 10 keV, thc energy cannot be considered "iocally lmrtod "
Customarily LET calculations have excluded eneigy »ulocl:lte'd with secondary 4
particles above a given cutoff energy mA.* The 3-rays with energy Ln excess of
mA are then treated as soparate particles. The value for mA depends to a large
extent on the size of the mass element being considered in the microscopic energy
distribution. Figure 4.1 shows. the variation ln.LET depending on the vn.lue chosen

for mA for electrons and positrons. H mA is chosen'eq'nal to T, , the va.lua ob- )

tained is called LET and is numerlcally equal to the ‘stopping power. For heavy
particles the difference between the stopping power (LET,) and LET A is small for
particle energies less than M (wnem M is the rest mass energy of the particle).
Since thnre s incomplete knoﬁhﬁe of the rato of energy loss of electrons
having energies below a few keV (the proonu can no longer be trected as 2 collision
between "free’’ electrons) only LET can be cllcuhted to any llgnlfloul degree of
wcurloy In additfon, the choloe of the value A is rather arbitrary. Consequently

u

C S ' . - .
The LET formula (Eq. 3-17) Ils in terms of v = T/m, thus A is In units of m.

- L ez e L e T R
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o _ ‘ i
0.0001 . 0.00! ool . 0. 1.0
- [+ ] 1787438
' . FIG. 4.1
The ratio P= LETo/LET,, of electrons (a) and
positrons () as a n of g=mA/T. FPor-
~ electrons g < 0.5; for positrons g £1.0.
(Ref. 3.) : _
. ‘/\ )
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only LET hu u;nlﬂcant meaning 'In do-lmetry appllca.uon- Tberdore, lor
_purposes of radiation protection the quallty factor (QF) ls related tco LET on!y

i LET Distributions (ART, Cb. 2) ‘
‘Linear energy trmlter Is the average rate of energy depo-ltlon by a paruclo

ofa pnrtlcuhr energy. The' lppllcatlon of LET to doslmetry is compllcuod by the
fact that all charged ptrticlel traverllng a mass element exposed to a ptrticuhr
radiation will not have the same energy (even if the incident rle is mono-
energetic). This energy spectrum of charged pu't.lcled ‘will lud toa LET dutx-li '
bution in the absorbing medium. A knowlem of the: L’ET distribution can lead to
an undersundug of how the microscopic emrgy distribution vu-lu ‘with the incident -
radiation. The LET distributions can be expressed in several dlﬂerent nyt.,
 One method is to define the fraction of particle track léngth T(L) ata given

LET, L, per unit LET Interval. Hence, T(L)dL expresses the relative amount of
track in the LET interval between L and (L + dL). :

A second method i to define the fraction of dose delivered D(L) at & given LET,
L, per unit LET interval. Then, D(i.)dL ‘expresses the relative ,arllalorBed dose de-
livered in the LET interval between L and (L + dL).

Related to the second method 1s the definition of the energy dllllpated N(L)LdL

byeloctronsperunitvolumclntheLEThtervﬂbetwoeandL+dL where

N(L) = -y(T) (dL/dT) " (cm - LET} _ (4.1)
- The function y(T) is the electron nce at energy T per energy interval resulting
from the abcorpuon of a given of X or v radiation. The term (dL/dT) " 1s . »
derived from the formula for electron LET (Eq. (3.17) and . is)). The negative . o

sign arises because dL/dT is negative since L 1s a decreasing function of energy. . o~

%
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It can be seen from the definitions that the three expressions are interrelated.

Thu.l,-

DL) = — NL)L L (4.2)
A A N(L)L AL :
_ Also, if one assumes that the total track length laid down in 2 volume of unit mass .
within the absorbing medium is X, then the length of track bétween L and L + dL ls
KT(L)dL. Multiplying this by L yields an energy representation and since we are
considering & volume of unit mass, it also represents dose. Therefore, o
LKT(L)L =D(LL. - (4.3)
' This leads to & discussion of average values of LET.. élm T(L) is a fractiomal

track length, , .
[ rax = '
fL *LTLML =T (4.4)
tho track aversge LET. Now from Eq. (4.3) we have; -
: ¢ . Lmax '
., L2
' K= 2B = (4.5)
max Ly
f LT(L)dL -
_ L nin |
(Nots: Bince D(L) is defined as a fraction, S D{L)dL = }') This leads to
..l L. h )‘ .
Ly = LEE) | : 4.8
We can also find the dose average LET
, N _ - L max , ‘.
LD=f . LD(L)dL - TN
L
min 5,
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And the number average LET
e n j:‘ mAX P N(L)L
. EN min

= "L - B
. : fI: MAX N(L)IL
min »

Theld?lvenge values of LET can be used to determine such qunntl’th’u as eﬂ'ectlve,
) ’lmctl;nuon crc:u ,ectl.om (a-‘) and effective RBE (R e) under the usunﬁ)tloﬁ that
. g, and R are groportlonu to LET.. For example, let us u-umé that RBE is a2

function of LET that can be expanded in a power serles, i.e.,

2 .
r(?r.) =T, + rlL +>r2L LRI (4.9)
‘M [ ’
Lmax B .
R,=f oW @10
»Lmln R
Then ‘
R, -fL"“" r, DIL)ML +f“"’"‘ r, LD{L)L +fL'”“ rszn(L)dL +7..
Lnin Lmin - Tlipyg -
Re=ro+r1LD+r2LD+. . 4 . (4.11)
where -f'D and ED are the first and second moments of IXL).

4.5 'Event Bixe '

.At this polnt, it Ls useful to b}'leily discuas the Qmeept of ovent size Y defined
by Roul2 as the energy Ey dupoclted.in a spherical vdm of diameter d divided
by d; that is, .

Y= 'Ey/d" L )

In the idealizcd case of straight particle tracks baving uniform LET, Y bas 2 con -
stant vl.lue‘in spheres of different sﬁe_l. Actually, because oltnck curvature and
3-ray production, Y is genonlly) not constant. Thu variation in Y upre@ the

) o)
<93 - |

(4. 8)

Y
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general inadequacy of specifying local energy dt;pocltion ln terms of LET,,. Tbo‘
event size Y has a (I:ertnh; fqmionshlp to the LET and to the local energy density
which will be discussed in Section 4. 8. ' -
If we consider a path Ie:gi:h x through 2 lpﬁéncﬂ vaolume of dlametar _c!\trj—

versed by particles of uniform LET, L, then the energy deposited in the volume

E_ =Lx
. y
Y= L(x/ﬁ!) . _ - ~ (4.18)
Hence,
Yoax= L - = ) _ {4.14)

3
¢

4.6 Local Energy Density (Z) (ART)
Local energy density is the qnnnuty of interest in the discussion of rldittlm

aﬂgctl on an ab-orbiq medium. It In du‘octly related to LET and event size Y as
defined in Bection 4.5. nal:ohualpochl rehuonlh!ptolbtorboddou
* I we consider an absorber of unit density material, an increment AZ of local

energy danl!ty {ergs/g) is related to Y(keVAim) and d(um). When 2 single évent of .

size Y occurs in & lpheﬁ 'of dismeter d, the energy depcsited ls Yd in a volume

equal to (1/6) +&®, Thus, ' : . |
Yd (1.6 x 10”2 "‘/"‘v) o (1
%I’ds ' 10'12 cm:’/um3 (1 g/cmaj

or S ;

. AZ - 3060(Y/d°) (exg/)- : _(4.15)

It should be noted that if the radiation Is of high LET and d is small, AZ will

AN

AZ =

rqireiem & very appreciabls local ourﬁ concentration. Figure 4.8 mhoys the
maximum local energy density, AZ. ina 1 um sphere of tissue traversed by slectrons
or protons of various energies assuming L = LET,,. Theec curves have beca cal-
culated from EQ. (4.14) and (4. 15) which give AZ = 3080 L for x = d - 1um.
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To compare the lnq:"gu .ntal loca.l energy donllty rate for the mvi@ o a |
~ single particle with ub‘o&bm ] dose rate, consider the following situation. Puﬂclu(
(e orp)wlthenergydlli lemld.donuum Tbelblorboddountclq

= I'Rad/hr. We consider . tissus mbu-c old= lummdlctmb =6 keV.' Nw Io‘r
. the electron, LET» f= 0.14L;’V4|m{|uh‘?k 4.1 lndm = 0 19 chjun)
thcprotonLET =LET )chAun Ullu&ucmmhnnmuhuhuthe
lmximumAZ(mEq {4. 1\>)and(§ li)nndlubuquoulydlurmlmtheuud

energy deposition. This is (one in Table'4.3. - B
) Table 4.3
Comptruon of Enery. ; qutmon Rate with Absorbed Dose Rate- \m h
. ) < Q Tiﬂ. to .
Particle R 7 -V Pu-uclo Ve} Traverse Az/t
' (erg/g-sec) | (erg/p (cm/uc) A tem |iers/g-sec)
B | ) ) ! (.”) .
e 2.8x10°% | 430 3.85x10'° [s.5x 0715 | 1.3 x10!7]
, ; RN . . ) .- . o
P 2.8x10% fozx10t | 1.38x10® r.2x107M ) 2310

Note: R=1rad/hour, Particle Energy = 1 MeV.

Since AZ represents the energy deposition from & single particle, it is obvious that
the local ensrgy deposition can be much hrgcrthntho mlcro.coplc uboorhoddou ‘
and the looa.lwmmonnumhntrmmblloomndﬂﬂn tholboorhod
dose rate. ' :
" The energy density distribution is used to d-t.rmlu tho frequency vith which
any event esulting innpnucnhrAZwm occur. Now,- ncmd-ﬂm thofncuon ;
of dose dtllvonda!mcnnthnltyAZuD(AZ) lothntormhrlddlblorbed ’
dose 100IMAZ) erg/g are d-l!yorod at an gn.r;y dumty AZ per unit Aymrnl
Thas, th-frqmmydoequﬂ*mdwmhmnlﬂqlnmmm‘&ultyAzW S

P v l« o . - e
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rad per unit AZ is *< L o =7
b, S .
v o HAZ) S - g, .‘ P (4.16)

We can also express t.he frequem:y of energy lncrementa AZ in terms of a probe.bll.lty

o occurrence of an 1ncrement AZ, P(AZ) wbere

D(Az)j ——Al-)zmlmz S @
f . ™% P(AZ)AZ HAZ) g I
8o, :
P ‘ ' ' ' ( 3 ): ’
| 442) = 100 ——21A2) T 4
' T HAL)aZ AZ) ‘
The froquency of evests of all sizes is given by l.ntagra.tion of f{(AZ):
3 1 .:'\ ‘ ' ’
fz"" UAZ) KAZ) = 100 s 419)
fA PAZMZHAD) |
F= 192 (for 1 nd of aﬁaorbed dose) . L

. AZ L
The quantity P('AZ) fs the probtblllty that an indlvldn.l emrgy loss AZ wul oocur.
" The prouuuty of finding an energy density Z n.t a .peomc point is denoted by P(Z)
' whick:also is the relative frequency with which Z will be found in'a large mumber |
qf randomly selected spherical volumes in the irradn.tod madium. When the ab- .
sorbed dose D is very low, the value d Z is mlxc;;le;s than t.he mean vt.lun dAz
The q:berloa.l volumes mder conlideution will be traversed ouly once or not at
all by a chrgod p‘.rtlcle Thus, Z is due to drgle eventu and P(Z) Il proport?ond
toP(AZ) Onthoothorhnd, whenDll hrge z lsoausodby muwlndivldunl
trtnrnll uch of 'hlch deposit t,n increment AZ . . ) )
'I'ho Wu P(Z) Is an extremely conplea( {unctlomcf the three vu'inbles
E z d. lnd D and u lnch dou not have a limplo lntl.ytlcn.l expreulon It c.’.p be

—
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mes tured in certain cases by simuhtug thc :mn.ll (~1 um) dumeu!r tiuue sphere
with 1 spherlcnl volume of tissue equivalent gas. Tbe gas. volurne diameter and

pmcm are adjusted to thperly slmuhl.e the unit denslty tissue sphere of inter-

. elt. THus, if the gas volume dhmetur is 10 cm and the unit den-lty mbere to be

_simulaied is lum (10 cm). the gas duuity must be IOQ g/cm .

De: 2ite measurement a.nd éalcuhtloul difficulties some general features of
the Z die ributiczs con o diccussed. First, wo ’wﬂl congider the behavior of P(Z)
as a function of d (the diameter of the sphere of interest). M d is large (or the
order,,,.at millimeters), LZ i= always very nearly equl toD (i.e., the mass element
is Iarge enc igh to averlie out the individual variations in the locally dwoc,,ltodl
energy) . Consequently, the curve of P(Z) as & function of Z will take the shape of
3 Gaussian dictribution of narrow width abowt Z = D. As d is made smaller, the .
individunl ﬂuanuou in z become more important and the width of tho dhtrlbdlon
will increase alihough the mean value of Z -m rcml.lnoqmlton (Tusmunu
that D h high enc..uyh to ensure a Gaussian dtltrlbll:lon as diocusud below. )

The behnvior A P(Z) as a function of absovbed dose D lhon-l that P{Z) is again

, Gluuluu mubl-hueemhweummmmuymucdcw

Z |s due to many events. This requires higher doses d high LET radiation than

N lowLETndhuqnbocmqeunqnf;ylonproecuhmmmﬂormﬂoqthpﬂh

of low LET radiations. The magnitude of the individual energy density increments
Azmmthekuthdmechuodwuchmwmwndmw

l‘romﬂq {4. 15)

- AZ = 3060 (Y(dz) ' ~
and since . 4 :
Y = Lix/d
from (4.13), o
f ' AZ = 3060 ux/dﬁ. : L .20
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Hemg AZ also depends dlrectly on the LET of the particle. Thus, although P(Z)

is Gaussian for large values of D, it bocomes skewed as D becomei smaller and

the lndividm increments AZ become more important. In hct l'or low doses P(Z)
appmcbes P(AZ) which is highly lkeaod because of the. M;h prohnbmty of AZ being
geroandtbehctthﬂvhenmlﬁergctlondouukephceﬂ willbeveryhrgecom-
pared with D~ Some typical distributions are shown In Figs. 4.3 to 4.6.° The
unlyucal details of these distributions -were discussed in Sections 3.7 and 3.8.
'Blnce distributions in loal energy density are Intimately related to distributions

in collision energy’ lou. they will be lﬂoctod ln the same way and exhibit sither

a Gausslan or Landau type of distribution.

4.7 Conclusions

When an absorbing medium is irradiated, the energy density is llﬁyl non-
uniform on a microecopic scale. :AWtboconcepu. analytical treatment, and
measurements involved are mw. considerable progress has been mads (oward
better definition and understanding of local energy deasity. More work needs to be
dome particularly in the ares of applicability. X agpears at this poist that knowledgs
of the detailed distributions of LET and energy dessity might be moet impoctant Is
: mwmmwmmonpy On the other hand, the formmlistion
dpmnmﬂmpmummwmwhmﬂm thﬂhlﬂa
d&hmmmuwmmdmdoumwmlnwrlw
m-hmummmhm-mmuumoocm. These measurements are
difficult at present primarily because of the complex and cumbom equipment
required. _\

*From (ART), Chapter 2.
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CHAPTER § - RN
DOSE CALCULATIONS

5.1 ntmducu«:

In the previous nctlonlwehtchodhmﬂth Mcmtioudphotcu
&ndehctrouutbequtthrmuhummm hthumuonwgwm
deveiop the basic formulas for the calculation of radiation flux density and ahuorbod
dose rate from external gimm radiation sources of various geometries. A deter-
mimuondmeab.orboddosemqnmnmlm of the dose rate which in turn |
requiru a knowledge of the source energy, the flux density and the rate o(l.bao:rp-
tion of the radiation per unit path length about the point of interest. The flux density

. dupemk on the ragiiation squrce. We shall discuss gamma ray squrcu first, then
" will develop formulas for calculating the particle flux density for various sources,
and finally will present the calculation of absorbed dose rate and dose. -

§:2 Sources

" Radiation sources can be characterized by their strength and thelr geometry.
In our discussion we will be concerned primarily with photons and four source:
geometries with the following source strengths: -

1) Point source ] (Photons sec”))
2) Line source . & (photons om™ -lec-l)
3) Aressource 8, (photons om ™ -sec”)
1) Volume source &, (photons om™>- sec)

,. To determine energy fluk density we must muitiply the source strength by the
~-photon energy. In general, the source will not be monoenergetic, and consequently |
the source strength will be a function of energy. In our treatment we will davalq:
the forrmulas for particle flux density for various source geometries. Since this is
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‘ e
a purely 'g_eomen-'kc treatment, the source energy does notl!?ect the formulation.
We will point out the qunntiueu in the formuhi which are eneﬁj dependeu and
which would require an mtegraﬂon (or sum over ducrete mergie-) in the case o(

a source t!nt h not monoenergetic.

te

-3 nuxDeulg : ‘A'r : \ »

1
tenenl peitern to be followed in the developmmt of the nux denuty for-

o

g Wi be to derive the expression for flux density at a point ulumln( a wiform
K urceLdistrlbuuon and neglecting: (1) Attenuation, (2) buildup, and (3 sel
absorpuon We will then mend each development to include nomniform source
dlltrlbutlon. attenuation, huump and self nbsorpuon as appropriate.
- The dutribuuon of aotlvlty ina radlo:ctlve source is generally considered
/ ‘ uniform unlou otherwiae specified. One case where the source d!lh'ibuﬂon is
Bot uniform is a n;nclur reactor core, nmther is a pipeline cu'rying a short-
' lived radioactive isotope. Therefore, we will introduce calculations involving
certdn nonuniform source distributions.

A&wmmu‘ of course, becomes an important parameter when absorbers are
introduced between the source and the point ot interest. Attenuation is generally
energy dependent and any terms in which the attenuation coefficient lmem will
have to be included in the integraiion over energy for sources which are not -
monoénergetic. Buildup also becomes important when absorbers are prolent
between the source and the point of interest. A detailed discussion of buildup
is included later in Section 5.12. Buildup is also generally a function of energy

. lndmustbetrutedu such for any mmesthntuemtmommeﬁc

Sell lboorpuon may be lmportlnt in the oonsldenuon of volume mrcu

particularly when the source dimensions are of the same order of mlgnitndo as
. the photon mean freq path in the mnierh.l. 8ince this 1s an absorption process,

it too is energy dependent.
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6.4 Point lsotropic Source

R 2
dA, - -
- de r
-\ P
13 r ’L . y
) dg
X ,
17e7a14

Although radiation sources hﬁe finite dimensions, dny are often sufficiently
smllcompared\vlththedilh.ncefromtbepolnt'dmﬁ;'mmuttothq‘sourrcc&h
tbosoumemybetrutedu;pom. mu-umpumdqunumwson:oc _‘

_ implies that the source mwmumom and photon absorption in the sowrce’
may be neglected. The photon flux density at point P is by definitioa the mumber of
photoucrmli"theam‘Ar per u;.lt time. Thas,

- ¢= S/Ar .

In spherical coordinates :

f' [ > 040
A = rdé r sin
F % %
- 4712,
Thus
0- 2y " (6.1)
4%r

'

If an absarber s interposed between 8 and P we must account for the photon attenwa-

tion. Thus
1)>
’ G ~ut .
$=—3¢e (8.2)
4rr” :

a

where um.ppmmﬁ,.mdmuo-cmnmmdu.mmw

ln‘/cmz. ’ .
T ' - 105 -
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Bulld can be acccunted for by simply multiplying Eq. (5.2) by the appropriate

baildup fasctor B, 20 that

0=—L5 e -3)
47r '

‘The various forms d-Bmdi.cuueﬁlaSoctlons.u-.

5.0 Lipe Source | _
Thetommfortheﬂuxéeultyuapoinl’lromaline.ourccolleqthl.

depends on the location of P with respect to the line. Thmpolm,ulndiaud

in the following diagrams, will be considered.

1707AYS

Athth.dlﬂmmdn\ndduity(romthnuumdomaudyugh-by‘v
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Similarly for P,

¢
VRGN GRS QS

Py

7 T 1rermre

"o .[ fi-;%uo,l-mn - 5.5
S ,

.- ’e .
For the situation where the point of interest Py, is on the axis of the line source

nl

o
4 P3

1767A22 ‘

) mw_(\"ﬁ_ T
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Now if we consider the littuuon in whlch absorbers hvc boan added between

thesmemdlhopolnldiderutweﬂndthuthelnwwlnthecuedP
2,
©

}?«“seca ' S

becomes

|a,|
where t, sec s the thickness amwf“‘ morbaruoumnmfmmqymp This
lwugulc:n bcput into tbeform of the mevert integral r(o ut) (sce Appendxx tor

. grphs o F(8, bt ' T
Kt sech .| ut sect
¢2__ngz’ Ry ‘d“fl ?n\ a}
8 . “ L s
= 7% {Flo,l. ?alt‘) + F(lo4, z‘:u,t,) PR LI
" A shailar squation can be derived for ¢1., |
" 8 S
oy {ruo,: Zht)- rqq zu, ,)} X e
Purthermore, Eq. (5.8 becomes
- “ l - wE k. Jc .
O $3 " T (0 e P _ o. u

“ Now, Hf we further include bulldug, the lorm of the ﬂnx den-lty equluon -m d-pud
wuth-mdtboformcbountoupnuudnbuudm Pormmph um
choose a linear rcprumuun for ‘pulldp -

v

B >l +a(!);u‘

-~ 108 -
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o l! we assume that there is no attenuation or"'ﬁulldup then : A

Introduce & term e in the diﬂetentulxg;m damuty 80 that T e

—— e o e - - -
. 1l
2 ' o _
?;i\:\ & v
) - 'S "
where
& (tsh)
then, for a single absor N

8 92' -ut sec #

a L as apt sec g)e de - 7 ' .

- N ot .y
'¢2=%,{F(pd,m)-&F(lﬂﬂ.}lt)+ayt _!l'o:". sec § gf‘"f.?go} - (5.10p

The integral in general must bq evﬂmted'numorlc;ﬂy.' Slm;in:r. equlnons can be o -
writtenforpolntaP and Pg. , : ' LA
We can now conslder the case of 2 nonunl.form source, d.lstrlbutlon For mmple

consiger the situation of a plpeline transporting a liquid co:talntng a ‘shor{-lived

radioisotope and the point of observation 18 P,. (See previous figure.) In this'case, I
8,0 82) i K(Yz -y) where _ . - L\l, . B | : ' o ,’
K=A/v o L . D
v = flow velogity (In negative y-a_ufectlon on d_it_i.?ram) '
8,= A, Alv - S . .‘ »

A= activity ln tho plpo aty=y,.

0

y vla l Ll )

2 SLU" ‘*cuAe “Khtang o

¢z TTHE g S
“ . :"‘i '; R : . e . It

which can be integrated numarlcal.ly 7 e . ) ) .
Wo can consider self- a.bcorptlon ln Hw aourcégln t.he case of P : wm.tlrf

. (y n o

s = PSR

» —
f . R A C s
4’3 T TE dv cE LT
Lo B &
o : " t
. . { !
s [ - .
. » L
E
’ - 109 - :
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_where ji_ s the linear attenuation coefficient of the source material. By Lch:ie

S

’  of variables o e -
- L,
¥3= qx P ©

e
-7
. x
PR - S, mdaf = x ® X
: Syax- [ Spaxp
u.l x n'nﬂ x :

.%J

¢5= 411; eﬂ,l% Ej b - H"z“‘ ""} . 5.12)

m

. where E, is ‘an exporential utegnl (uc Appendin {or grnphl of En)
The quesuon often arlseq as to when a line source can %’wrmdmtod by a

point source. In the simplest geometrical lumﬂon we have (from Eq. (5.4)),

e . S B
A e e oD :
\ For smnl[ angles the approxlmatlon tan |0 =[6] can be made. In the case where |
: lol_lal ta.nlol—tanlol L/2h; and 80, |6,] + |6, = L/h in the small angle
n.pproximatlon Thus CT | . H | ' -
- L . ‘,Z'_
- 8,
: .- by =
' LR

.which Is the equstion for a point source with 8 = SLL.
. The smali angle approximation is good to about 10% for # < 30°. Since

tan30%=0. 58 a line source can be treated as a point source for values of L/h <1. 2

e

Eas

~. {or, when the uptntlon dlstance h is gmtar than the length of the line L).
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‘5.6 Area Source

dA V 12603

P ,

We now consider & source uniformly d‘rlhdog over a plane as shown in the

figure. The differential flux density at P is
S SAM

d¢ = <= .
. 4%p 2 : !

where, . :

~

dA = rdrd@

b2=d2+r2-'2rdou9

p2=h2+b2=h2+d;+rz-2rdool0

Then the flux density at point P is given by:

8 2x .
A, 0 rdrdé

¢ =-— 5, 13).
Ll ‘/; h!+?+r]-lrdoo-0 '(, )

We can do the integration over § by realizing the integral is of the form

x et e
. J ar . b
jo.z 1 + .'9“' - ﬁ - a ] (. < 1) .

=
&)
v

-
t
[
o
-
1

W,




IRy . . f e e

Therefore : 4
o ¢=..s;.5_ fno rdr o
20 _'[(hz+dz:+rz)2—4r}d2]iﬁ.
If we now letx=r2, we have ) ; .

2

=—‘A-'[R —7?+2(h!—?)x+(bm

8, R PSRN ,/(R§+h2-?)!+4?h! ‘
=Tl (5.14)‘ !
Inthelpech.lcma_’c’P on the axis of the disc, d= 0. Honce,
‘ ' SA R2+h2 .’ ) -
. U ¢1 = T x —'T—h ° i I . (6.15)
If there is absorbing material between the source and the point of measurement,
. socs
thuc:nbetakennuoaccouﬂtuhdmbymcludingaterme.2?” in‘the dif-
ferential flux density .equation. Now secf = p/h, -‘gg that . -
8 ~(p/h) Tut .
d¢ = e {; L ldA
47p :

The integral of this equation ia quite cotmpllcmdv and will not beAdlil'cu_ued here..
I is solved and the flux denilljy equation given in Rcu:l}:wcall]L (p. 394) for the two
cuu'o( : )
d2<R°+h and &> R - b,

!wetrwthoouodP ontheudaclthedhc, theeqmuonlimpllﬁeato

fﬂoe Jhy sek
S e

h +r
and seof = p/h'as before. lwono-mb.utm y-(};ultlp)/h, theinto‘rt.lbocomu
?“1‘1'”’1

wetf e T{ okt . ,}
o ﬁl !l ll\

. wlu.ch is just the diﬂme two exponential mto(rah (soe uppondleor;rl.pbs of En)

S
ey
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 80 that

T [El‘f;“x Y - El(’f“x 1'”’1’] , “’rW
| For an hilnlu plane nourcc uoﬁl—-- nothu |

T"'xw #hy)

"

Atthupo(u nmmforhnbp(ormuerlu)muchd&.lhorb‘n. ’

Using the upouuhl lpprulmtlon for buildup (MT)

-a tloeﬁ Ca putsech
B> Ae ¥ .’+(1 A)ezﬂ o

we lrrlve at

$

T }A[EJ“ +aput] - l’1[(1““’1)“‘ ”"51]] ,
+(1- A)@}:lu +ayut] - E, [+ azpt .ocpl]]z T (8.17)

4

» ‘Here we have simplifisd the expression by considering only a ‘lllglo absorber of
thickness t, and we have taken the polnt of observation at P, on the axis of the disc.
We can 2130 consider the linesr representation of buildup
: Bel+a ut sech
in which case the flux density at P, la

o= f} [E10t) - X, 0t mec) +-age™* - eMrefy) . g

In this case it is obblous that the scattered radiation simply adds the exponential
terms 1nto the equation for flux density. In the prevlou- uproulon the contrlb\tion
: from scatter is’ {ncluded in the e;q)onentin.l lntegrlll lnd is not explicitly isolated.

The treatment of ﬂux denulty trom a duo souroe oan be emtendod to-include the
case of a nonuniform source dintrlbunon - We wlll consider a two dlmonllonal
Gaussian radul dlltrlbution (o' = % =cr, = (x + yz)l/z). For llmpllclty we wll.l
consider only the fléx density at P, & distance h abovo the position of mudmum '

~ source utrelgth ‘We \vlll taka the source to be infinite ln extent’' and assumse no

¥
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attenuation. Then -

0 \
2,2 ‘
8 -r Jof :
A [
=) S 5.19)
2'!)’-' r +h

which gives ‘ _ . ' -
5 ¢, = B_A f.—o-%‘!T
- . S A xeatld
£ ‘
Now let - - &
usx+ho? H - X
du=dx B
g 2 f" 8, .2 o Co
A h A _h 2,2 .- .
=7 bz b2/02 ° d“T’ /o'zEﬂh fo~) - 6.200
o _ : v

There is some point from the duc beyond which the dhc may ba trutod as’a

: point source § = 8, IR The point source equation is then . .
. ¢='—T-SA'R°'=S—A§;" : R
2 A f n ot

¥ we choose the polnt P, we are lnt_eréltod In the distance h for which thtil?praxi- '
mation - * '

8, ® ] R +h®
L 0 o —A_ lq -0 N
4 ';i’ 4 hi -
. (from Eq. (3.15) holds. Thus -/ . ?
Co ’ nﬁ / 0+h2 ‘
z ~bl— s
h \ n
- 114 - i N
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. We now consider an area of inﬂnlte extent but of a ﬁnlte thickness. In this case E

' 2
| LA
.‘-/—f -~ -8
» )
msmrmImtxm ugoodcovmm mnx"/h <020(oz'R/h<0 45) Thus :

8 disc source may betrutodulpou.:wrcetorh>2 2R (orwhenthe upu{tlon
distance h.is greater than the source diameter ZBO)

5.1 Inﬂnlte Slab Source

The logical extension of the infinite area source is the infinite slab source.

lelf abeorption in the source material must be considered from the bogl.nnhg. Wﬂof
can derive ‘the flux denslty by a simple extension of the area source by wrlting the
differential flux density from an mﬂnlte area element loutod at a distance x wlthln

the slab.
_ From Eq. (5.16) (extended to an infinite plane)

dg = Ezv—Ei‘[ut +ug(h - x)]dx

Here Svdx 8 , h 18 now the slab thickness, a.ndu is the ll.near attenuation coef-
ﬂclczt of the source material. We also consider attenuation in a single absorber

poc,lticned between the slab and the observation point (but we neglect bu.lldq)). By , )
integrating over x, weé hﬁ.ve — ' :

"’ = —fh 1[#“# (b - !ﬂd! LN i
] . . o
muuungy ut+u(h x) we get . o S 0 A
‘ o KR D o ‘ /A
$= ;,l X,y \
. 5. ut \’k
- e . ‘*( \



-Realizing that
3 - . -
[ Eomr s :
"t” .\\. '
_ this becomes ) -
. o= .:.l '[ ®t) - E_(ut + "h)]" NS
Yy ] 2“' Ez - 2 Fl . . ( - )

We have assumed also that Bv Ls constant through tholhb _
1t is instructive to derive this result from the hulc goonotry

k3 W . 4

\T8IANT

.From the figure we see that the differential flux density at P ie
. [§

To-(r-asec P . ’ . :
d¢=:8-::!dVe le-utuco | -

In spherical coordinates : !
4V = r? sind degpdr

A - 116 -
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i

" 8o the flux density is given by . ) « .
- iy ~l(r-asecou_+utsece]

4 x /2 (a+h)sec # , s
¢ = %,f ch -madof , L2 5] &

r

av X/2 sin0dd_ u uwd—ptmor - r:r“h)ma

"To »u’ . L asechd -

/2 . ~(ptiu_h)secs”
w %—f. lln&{e_“tma- e by ’L
¥s0 :
Now if we substitute y= utsecf in the first integral and y = (ut + p hysece in the
" second Integral we obtain ' X : v
S8y, { eV . f | 029 }
¢ = Kt dy - (st +pu M 5 dy
% | ut ) ¥ Jutip b —yTu
80 2 -
‘ 8V ' v Fgy
¢ =g [(Eptut) - Eput 4 b, (5.22)
. :

which is idutlml to Eq. (5. 21)
.The properties of E,(x) m such that as X—w, Bz(x)——o and as x -oo 53(*) —1,
so that for-a slab scurce of infinjte thickness (h— ), Ejut +u.h) ———0 and

»

Cee N pm |
: ¢“§#—' E (it : | (8.33)

-

ldhrhﬂﬂnmhglhorherhotwmﬂuihblonmmdl’. then ut = 0 and

O-’é[l-l,ﬁ;ﬂ o (s.-u)

rmmnttammmmmnmmamum-maumb
. 'mmu-hb-mamuumuu L : ,

.,."u T ) .

Y éL S .28

(that u, };t-o.lﬁdp‘h—o.). o8 ” S ' _
' T S




Up to this poiat we have not considered bulldup. This can be taken into account -
by inserting any of the accepted representations for bulldup into the differential flux

density equation and carrying out the integration. - This becomes quits complicated
and we will simply write the result assuming the linear buildup representation (I'r)
3 'f'l + alp.(r - aseuf) + azptuca
Namely,
.Y {n +a)) [Byut) - Byt + 4 )
¥, 1 s

+ a,ut Ei@‘t) - (agpt + ap h) Eloat'+ " h), (8.1¢)

} Expreuiou can also be derived assuming that the source variu with diuaaco in

the slab. l-bq:mslom for different types of source mhtlona are given in Rocholl
and will I:ot be discussed here.

- ,/¢ .
5.8 Right-Circular Cylindar Source: Infinite-Siab Shi Uniform Activ
" Py
- _4-T f‘
ﬂ?&- L - ' } 7 82
: ® \ | M\ ‘ /7 -
T S« 4
' ’ A \\/ 2
Vd
h s '.'Z . C o, ~ ~ - q
, | L '
o~ - I // 9| \‘Pl
Pt el . —_— 1
E M EN 92 . . | X
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| | S SR | ™
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The slab absorber is parallel to the cylinder axis. The rurce streuth per
_ unit volume 8, is constant. The mm. lolmou thu problem ll very lengthy
md is not generally used. What is usually done’ (rm() 4ir to approximate the cyl- )
inder by 2 Line source o strength 8, = 158, which is ro-monod wltllint.he oyllndor "
) to correctly account for self absorption. There is no cimple c:preulon for
Z = Z(R,, a, b). the self l.bsorpuon distance; however, by enplrical],y fitting dn
approximate metbod to the exact ca.lcilhtlonl, only three curves for Z plus the
F(6, b) curves {that is, the Stevert integrals) for lLine aources are nesded in order
to salve cylinder-slab prohleml The three curves neéded to obtain Z are glnn

lntheAppendixandureu-edufollow-- ' |
CASE: I/R ' )
" Usé'figare A.20 (see Appendix) andu R, to obtain  Z, where u (cm _’)uﬂn
macroscopic source Attenuation coefficicot. Then obtain Iﬁ from
_ by=by +p 2 | ' .. G

where o ‘ o ‘\
. | b. = z;,glti | - (5.28)

Finally, obtain the flax density ot P, from

R $,= ,L?Lzo) [r(a hz)+r(oz bz)] L (5.29)

_ SVRf) P - d . } - b
. 2= Tavz) (Fl3.5y) - F(6), b)) .- (5.30)
~ uil.ng the F-functions which are plotted in the Awend§ These uum- of ﬂ:e flux
density are suppc.edly good to + 10%; * provided I./Ro 210"

P

*Note: Pro ided that the carraqt bulidq) factors have been included.”
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.QMI -/Rodo | | R
g Uu Fl‘l A. 21:.ndA ulncauumtlonwithaachothertoobhlnu Z. Thlt
u knowlnc Ry &, andu ﬂndm[romtbeﬂntmph knowlul/ll l.ndb jnd
) Ky z/m from the second graph; 't:llon multlply these l:ogether to ohu!nu z. Flnllly,
fouowthereclpenbovetoobu.lnnﬁ Thhnpprmdmatjonwlllbegoodto+40% and
-5%. , ) ‘
Other formulas are given for cyllndeﬁ v}ewed exterior on end, and tnter}dgl '
(FBM). -
: Ehg le: » ' » . ‘
Conuider a cylindricsl tank containing radicactive water uniformly distributed
throughout. The field positron is P, with 6, = 6,, and the distance is restricted to
_ Ry$ 2 £70.0 Inches’ ¢
. 1) RO:-\5.5 inches ‘
2) b= 14.0 inches ’ | /
3) no hhlelding or buildup A
4) sslf absorption in the water | : o
and ' o .
B the 'namcuve"iahrée conslata mainly of 0.511 MeV photons with
. by =0 002 em” (t.bo l:otal attenuation coeﬁlcient for water). .
Tbe norml.llzed flux density is ottalnod from Eq. (6.29), and ig -
F(a, '
; 2¢/8sz (‘:2;) L h | g
/ . where we have drtppedthaluhocﬂptontheg/andwhere o . j',;‘. !
N uno h/2(a #Z) = ‘
DTz
Using Figs. A.14, 20, 21, and 22,  we obtain Table 5. 1.- o . N
¥ ' o o ' - +y, N
P - < e @v S



Table 5.1 -

aom) a m | (VewZ | g2 | Zom | ane | ¢ f_s‘(o,hb

i ml
B 9) 24;/4_5\,30).
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The data in Table 5.1 are plotted lnAFig 5 1 where they are compared with

expenmental data that was obtnined as followa o . " ‘, . ‘
A ta.nk havmg the above dimensions was filled W’ith water taken from a SLAC*
/ "beam dump that had been opemllng [or several hours with'a high energy (E > 10 GeV}
) electron beam at a steady mwer level of 30 kW The ta.nk was returned to the- Iabora-
.tory a.nd allowed te sit until the domlmnt actlvity ( . Q, '~I‘1'/2 = 2 mln_utes) had decayed ‘
av&ay The dominant activity was then e whlch is a positron emitter -(therétere.
0.511 MeV anmhxlation quanta) with a half life of 20 mlnutes Measurei‘nentd were -

qu}.ckly made (over a few rnlnutes) as a t'unctlon of djstance from the ta.nk ustng a

“

GM counter . The data are plotted In Fig. 5. 1 (normalized “at a.= 20 lnches) The :
comparisdn is reasonably go_od'considermg that buildup wag,_, e).cclﬁuded from the ca.l-

-_eulation and the GM counter probably'rdoeeﬁ't-c'orrectly 'rﬁe&gure“the photon flux .

de’nrgity,,' . ‘. ) “ ; . . o - - “ - » MY

- 15.9 g_;herical‘S‘oﬁfce: Infinite-Slab Shield, Uniform Actlv&y"ﬁistrlbu'tion
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Radiation s.t various distances from a right circular oyll.nd;ina] source.
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The following discussion holds only for a shield perpendicular to the radial

Ar."rrr\,-, ";"'r L

vector from the sphere center to P. Agaln, as in the case of the cylinder above.

the exact calculation ls leng‘thy The solution is approxlma.ted by replacug the

sphere by an approprintely located disk source of radlus R (t.hat is, the sphere .

ra.dlus), whjch has a source strength per unit area
8, =4R, &V/s

Shra
A AT LTSRN

, f\m‘.
P —

The self absorption distance, Z, 'is obtained by enap{rical flttlng, ‘using the exact )

caloulations. | Figures A.23 and A.24 can be used to obtain Z as follows: Jas

CASE: a/R <1 ' . _
Use Fig. A.23 with Hyla+ Ry to obtald z/n 22d heace, %. Then calculate

-

h2 from
' Fg,‘: b1 +u'Z
where _ :
. =Zu
i
Finally, calculate the ﬂux density from
¢ = § 8R, (E,(b,) - E, (b, sec 6)] 7 B (5 31)

Range of Aceuracy: -20% to +50%. - ' N
CASE: a/R, ' i
Use Fig. A.24 with Kg R to obtain By Z, and then follow the above roclpe to

olxajn ¢. Range of aqc,uracy: -5% to + 15%.
Example: - o
Consider a sphere containing ra.dioactlve water uniformly dlstrlbuted throughout :
lnd with no shield between source and deteqtor Take
RO = 7. O\lnqhes

3.5 a £70,0 inches
¥ - .
p = 0.002 em™? (0.511 MeV photons in water)
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The normalized flux density is obtained frfm Eq (5.31) and is

’ 3¢/2sz = El( ) El(b sec 0)

whére "
b
I . {
. . by = HsZ : : i
and . . . . . ’ ’ ’ . :
tanﬂ Ro/(a + Z) /_,g B o i
Usmg Figs. A.23, A.24, and A.2, we obtain Table 5.2. T

3
,
7

The data in Table 5. 2 are plotted in Fig. 5 2 where they are compa.red wlth

3

g expertmenl:al data that was obtajned ina manner similar to that described in Sectlon

5.8, but using a hemlspherlca.l tank The dam were normal.lzed to the calculatlon
at a = 4 inches. '

. ;

A pbint source, corresponding to ¢ ~ 1/32, is plotted aa thej stralght line in

7
Fig. 5.2. L
~
5.10 Spherical Séurce: 'F'Jié;d Position at Center of Sphere o .
z i
. g \
¢ .
i :
]
y .
| 1787ATS
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Table 5.2 / _ ‘
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| ,.-“ f‘l ; - b ’
- %V_ (1/-9' 5-0) -/ 1 (5.32)
< s : : ¢ .

}‘b.is submersion sltm.tlon is applicable to flnding the dose rate ln a mdloacuve cloud
‘or in & "body of contammated water. By aymmetty, the uncollided flux from & hemi- =

sphere (tbat is, no buildup) is exactly one—-half of this.

5.11 Tra.nsport of Radiation
The most t.horough descrlptlon of a radlation field (gamm.l. nsutron, muon, etc.)

o
<

consists in specifylng at each. polnt the numbe: of parﬂclel per unit time 'olu in each
direction in each energy lnterva.l We can deﬂ.ne the number ﬂl.lx donl!g by
#(T,E, ﬁ)dEdfl = number of particles at T, with energy ln dE about E and wtt.hin
the element af solid angle dﬁ about ﬁ (unit vector direction), -

7 which oross In unit tife a dtﬁerentia.l element of ares whose
normal i8 in the direction ﬁ
We also can deﬂne an’ energy flux densltz by
1, .t = B4(F, £, 0 o 5,39
which gives the energy carried by particles rather than their number.
The equation that gwéms the transport of particles throogh matter, assuming
that equilibrium in time has been eatablished, s given by '
.0 o(r,E. +uoir. E. O |
= [fo@ £ Qo ~ 4, B —EpErafly + o7 E, ) (5.34)
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. - . ™ .
en= attenuation (or Interaction) coefficient

-
-

7 s(r E, A) = source number densily - . - .o
ok

= number. of particles created per unit time at T which Inove in the

“ . c <

b directlon ) per unlt solid angle with energy in dE ahout E. - .

-

number of scatterm per unit volume at r

-]
n

]

. ZNp/A electrons/cm “for photons
¥ a-(ﬁ'on. E'—E)= differential cross section for scattering from ' to 0 and from -
;' to E. ' ' \ » .- R
Equatiou (5 34) is Boltzmann's mtegro-diﬂeﬁngal equation for the number ‘flux
ﬂ“density nnder tlme—aqumbrium conditions. Mulﬂplylng tlirmgh by E lnd unhg Eq N

(5 33) we Ottaln
7.457 £, 8) + 11T, E. §)

ffiE e bt —A 2 0 EE b sEm ) 6 ®

where 8 = Es which is the energy flux denslty form of the steady -ptate Boltzmn.nn )

%

transport equation. '
' Now, for the case of photons, the differedla;l scattering cross section is obtained _
; from-the Klein—ﬁlshim formuls and from the kinematic equations relating enérgy and
angle for. Compton scattering of photons from free electrons (uée Sectl‘on.z 4c) A
modified form of Eq. . 35) is the basis for nll ca.lcuhtlons in gammn—mdhtion
doulmetry Becauae of its baslc complexlty, however, tha trl.nsport eqution is
never solved in closed form in practicnl cmu The greatest use oi the tra.nsport
- eqmtlon arises in estimating buildup -’factors that are applied to the results of calcu—
la.tions based on the uncollided-ﬂm: approxlmatlon — such as the sw;-ce gaometry
'computa.tlonithat were carried out in Sections 5. 4 through 5. 10,
1t is the’ Compton intersction procen that maku clloul&tiou (and sometimes

- experiments) so prohibltlvely difficult. To appreciate this fully, let us assume thlt

“ - 129 - - i P
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4.line-.r pu-tm dltteremml eqmtlon. o e

Q=0 :i:v—-‘E)-eqtm;s zero In Eq. (5.35). In other words, we will make the un-
/

eollided (or unscnttered) flux appruxlmxﬂon, that is, no Compton luttering back:

into the polnt detector, nlthough Comptca Gcatterlw oﬁ caa e conildered in the

attenuation coefficlent, if so dulrod Eqmtlon (5 35) bocomu I

. Vﬁl(rEﬁ)'rul(rEﬁ) su-r:ﬁ) - (5.36)

"which ls a linear inbomo‘eneoul pa.rthl dlt[erontul oquuon,

"As an mmpl.e d the soluuon of thln eqmdon, hst us alcuhtc t.be energy flux

density, Yr, E), for a monoeqerge_tio lqotrq;lc point source located at T = 0. In this

case,

U sEEMh-0  forfTl>o0 ‘ . .
L P . ﬁ =B o ¢ . A e (5. 37).
and ‘ _ . ) , A
o taz b $ 3 |
. l, V=:§§;r +_—x_'sin0 %Blng-f- Y -53 - -(5'38,)
80 that Eq. (5.36) reduces.to X
co —12-%(1-21) +pI=0, r.>0 . (5.39)
) v r , : e b
whicii ’has the soltutibn ,
B . wEr : : ‘
Kr,E) = Qe—z--—- (MeV/qmz - B&g) . ;T (5.40)

r- E ’ : ’ .

" where C I8 a constant of lntegntlon.- i we let C = SE/4x%, we obtain:

£ 4

¢ = -—Te \uf.\‘ ' 5.4

41rr
which is similar to Eq. (5.2) of Section 5.4. It shouid be polnted out that in the
derivations that were made lnﬂectiona 5 4 throngh 6. m we used the point-source
formula (5.2) as a starting polnt rather than Eq. (5 38) In effect, we made a unear
lq)erpocluon of ilsotropic point nourcel, whlch was va.l.id since Eq. (& \36) ls ']

G

\

\\
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5.12 Buildup Factor Correctlon.s to the Uncollided—!-‘lux Denalty Calcu.lations \

Because the uncollided flux density approximation neglect;/photons tln.t undergo

) Compton scs.tt.ering -in Lnberactlonq, such quinuues as expo;ure rate, abaorbed doae

rate and flux density (number an& energy) are: undereatlmated in uncolljded ﬂux den—
sity calculations. “The degree c( mdcreltlmntlon dependl on uvertl factors, t.he '

most important being the energy of the prtmary phm md the diltance 1) trom \
source-to-detector. In order to oorroot for Compton .co,ttaru, lnto the detectOr L
one Introduces the concq)t of buu@ Yor uch phylial qmntlty of interest, coe. o
can define a buildup factor. Thus, we hve o - '

Number Flux Density Buﬂdgiwtor ' . A g o

' mrmnemitynnug_xpmmr Lo

' IR . a
Abaozl'})ed Dose Bu_i.l.dup Factor o K S T
' o ‘ . . .- “
Q B _f“°;’f)‘1(?. il ’ s s
s ,‘"r) fllepn(E) L é)dE ) 5.4

‘ where the zei-o subscript indicates the uncqll.lded tlux denslty (number or mrgy) L
by v

Generauy, B ia deﬂned usi.ngu /p inatud olu /p, whe}a . P = Fv

4o - 2 . . ) 4§ e .'_;it,\
oL e i _ E_E. . zmc : _ . v., .
~ Fe'!i'/ =3 [ Q !) e v+ X (1. & ,)] Zf.(l e . (5'-‘5‘3-,3
and v & o . '

u‘/p= = [‘l’ +tr117 + x] - " = o (5.49.,.'

as we lnve sedén ln Seotion 2.5. Bowevei' even though the two coeﬂiohul are
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" factors. . N

A a.ppr‘oxllmately%the same {except for high energies), Eq. (5:44) is the correct

N

5

definition for B

- The exposure—dose bulldw factor B la defined'to be‘i

P i

i : o 7 |
‘[J }llr o ](r E)dE : : B : . s
fp‘) (E) Io(r E)d]-: N - , ) .

= p?ifE ' ' (5.47)

,_B(r)-

a
4

- where 2Pl ® is the absorption coefficient for alr (that is, the detector is assumed

to be an idetl nlr-vn'u imlnzation chambe_r). Goldstein and Wﬂkm‘ call this lllq;ly

'tbedoubulldqaflctor ' ‘ .

Inordarwc&lcnhtetbeb\dld\phctonlhun. it is necessary to know ﬂr E)
or Xr, l:) Tbequuuo: may zhenbe ﬁuodnbodthonndfor buﬂdmflctorsand
wacollided flux densities if one must salve the exact problem anyhow. It turns out
that 'the Boltzmum transport oqum<m can be solved only for relatively simple <
geometries; hooever, one can improve on the u:icollldeo flux den;ﬂty or dose rate

. v . 1 .
estimates for more complex configurations by using these approximate buildup

3 -

. Beverzl techniques have been developed in order to,' find solutions to the Boltzmann

. transport equation (5.35, or modiflcatfons of it), and we shall br}fﬂy discuss some

of these techniques in the: followi.ng paragraphs. -

a. The "Straight-shead" Approxjmation Method"
Basic assumptions are

1. Inofinite homogeneous absorblng medium

. 2 Neglect angular change in direction of photon; but account for photon -

energy loeses.



7
/

. N ‘ C
The second assumption is motivated by the fact that at high energles

~ Compton scatt,erings are predomlnately at small angles Thls ia seen, (or

> example, in Fig. 4 5o (FBM) The results of this appraxima.tion are .

b

. Monte Carlo Method - . "

i

N

quite poor (eapecially for low-2 materlall) and may be oﬁ' by several orderl
of magnitude. - C .

b. Method of Successive Scatterings .
In this technlque one makes use of the fact thai the unacattered flux denslty
is eaally obtained, The unscattered flux denaity and the scattering crosa .

- section glve the collision density (lntauctlons/cma sec) for first scntterilg
7/

- By treating such scatiering collkaioms as new sources, the !lu.x of slng’ly—

'scanei'ed photons can be found. A more detajled dg_sérlptlon uf this teehrﬂtjue St

~o

is given by Goldgteln.4
In this technique, each, photon inr.erac.tlon is chosen at random ttom tbe glven
probability distribution for that type of p'rocess (such as absorption, scat- .
tering, etc. ).; One simply follows & sufficiently large number of photons
through the mediumr, keeblﬁg recorgi‘ of their histories. The ;echnlqt;e be-
comes prohibitive for deep penetrat‘ions due pﬁmarily to the leng"th of time
needed to perform the large mm'lber of calf:uln'ﬂons: _ The preqent éeneration
of.eomputers has alleviated thig difficulty to some extent; however, modifi-™~
_cations (alpproidma.tlons) of Ehe basic Monte 'C;a.rlo technique are generally - -
necessary in order to rm.ke such caleculations feasli:le. This is especially
true for electromagnetic cagca@e sgowef éalcula!j.ions. The greatest asset’ 4
of theLLMonte Carlo calculation lies in the fact that It can be applied Qisen- '
tmly to any geometry. The Moptq Cérlg technlque -howgver, does not

solve the Boltzmann transport equation itself.
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. - "Method of Morhents '

This technique which was orlginated by Speriner and Flno 5 is a semi- \
numerlcal method for solvlng the Boltzmann tr:nsport equltion ucept l.’or
diaunceu signiﬂcmtly less un.n one mean free p.th from the .ourco. the

technjque yields resulta of high accuracy for point and pluno l-otroplc sources

in infinite aboorbing media. Tha bacic chortcoming of this techique is
governed by the above restrictions. In such cases, the method of successive
scatterings and the Monte Carlo technique are superior. The authority on

this subject is Goldstein and Wﬂkl.ns who plot the axposure—dose buildup

factor '(dose buildup-factor in their nomenclature) and the t.bsorbed—doae

buildup factor (energy—nb-orptlon buildup factor in their nomenc_!;ture) as a

function of the relaxation length, ur, for eight.diﬂ'erent media and for an

,.energy range from 0.5 to 10 MeV. Some of their curves have been repro- -

s

duced in the Appendht (Figs. A.25 through A. 30)

The bulldup factors of Goldstein and Wllls:lmi6 are the ones most notably used

- in the fields of dosimetry and health physics. A few precautionary remarks, are

%

-

in oljder:

1. The exposure-dose bufldup factor, B " (comuionly*caned,the dose build-
. up factor) is quite ofipn mistaken as the quantity to be used for absorbed
dose c.alculallons, whereas one s-hould really use the absorbed dose
buildup factor, B deﬂned‘by Eq. (5.44) (the energy absorptlon buﬂdu[\
factor in Goldstein and Wilkins nomenclature).
2. Goldsteln and Wﬂklna used p /p in their c;lcnlations {Eq. (5 46)),
‘ whereaﬂ, to_rt)e‘precise they should have used um/p (Eq. {5.45)). The
difference is probably negligible but should be checked for each indi-

vidual situation.

PN



5.13 mroxlmau.ng the Bull p Flctor with Formul.u L i

ﬁp tmctors. The most attractive represenution, referred to as the Taylor for-

et s et =+ e e . = e e s e s e P g T ot o SR e § ¢ 3

3. It should be retterated that these calculations are for point and ph.ne

A laotropic sources In lnﬂnlte abaorblng media. .

l

a

As we have seen in previoul uectlona. various equntlonl can represent buud

uiu.[a‘, is given by ~ = )
. . N -a g . L
B(E.ux) = 2; An e (5.48
n= .

where Eo is the primary-photon energy and g is the associated linear attenustion

coefficient. In practice, only two térms are required to fit the Goldstein-Wilkins®

*

data to within 5% for the point isotropic source in an infinits medium. We have,
therefore,

i3 . -GI‘“. )
B(Eo.m‘) = ‘.‘1 e + Az E (5.49)

, A, =1-A

and where Al' a, a.ndAaz are functions of E,, for u:zy‘giveu medium. One has to

decide on B ;Br‘ or B, when choosing the parameters A, e sda,. These

B
quantities are plotted in the Appendix (see Figs. A.31 through A.36).

" The wisdom of fitting tuaﬁ“comst‘em—wuuu data to & sum of exponentials lies
in the fact’ that one can, m many. cueu, replace the uncollided flux density equa- '
tion by 8 sum of N terma (ususally two), each identica.l in form to the uncollided-
flux demsity equation but with fictitious aftenuatp_q qoafﬁclents,glven by ,u(lﬂxﬂ)
and with weighting factors gi_;ren by An. For example, ﬂ;e aiergy flux density, I,

for o finite-line source in an infinite medium (with 81=92=9) is given by the
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uncollided -flux deﬁslt‘y equation’

e
pud

1]

|y

o)
—
@
g

where b =pua »
' a= sou;‘ce'—to—;i;tector istance
" dnd by the energy ﬂux density with bulldup equation
si‘E "N : '.
1= 2 ;Anr(o,mm) .
where

-p(l+an) a

Thus, the proceding caloulations (Sections 5.4 through 5. 10) for the nncomdén

. flux density can be taken ovér mcroly'-by invokin the ahove cln.nge- in the attenu-
ation coefficient and weighting factor. Other formulas for approximating the
butidup factor are given in (MT) and have been Iliustrated in Sections 5.5, 5.8 :
‘and 5.7. ' :

In: lcml.l prl.ctice. one is faced wtth the problem of determining the buﬂdup
for a .ource-shb conflguratlon. whereas the buildup factors discussed above I.re
for sources in an infinite medium. ‘An approximﬂ.tion most often used Ls simply .
tb use the infinite medium buildup factors for such geometries. éfmiparisons
with luch oa.lcuhuons are readily found in the lltenmre snd are geneully q\ute
reasonable — at least for radiation ptotection lppucs,uons

When sl;le_ldfng consista of multiple hyern, the e_problem of arriving at A

- highly accurate buildup factor chomel elpocll.lly difficult. The crux of the
problem of selecting a good bulldup fastor for such shielding arrangements lies
in the fact that the flux incideat on second and.subsequent shielding layers is

generally far different from that incident on the first layer. Therefore a product
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of huﬂdlp factors, _one for each successive layer, is quite artificial l.lllm the
buildup factor for uch layer ucbmmmmludmwmum )
onthnhyer su#:etheener‘yﬂnxonuchhmbopdhm-qbom”
eomplu. &oproblemotga:enﬂu tuﬂhphcbrh“hl‘“. At :
the present time no generally acceptable method of handling the preblem is
avajlable. However, several emplricll techaiques lor m ., hﬂap factor
have been suggested. They should probably be thought of as rules o! thumb
generllly yleld.ing‘only rather rough predictions about flux and dose. Some of
them are: . [ .ﬁ:{a PR

1. For a light matérial followed by a heavy material, only the bufldup -

A factor for thé heav:;' material should be used. )

2. For a heavy material followed by & light material, the product ok the
buildup factors is used (in the case of more than two slabs, this 4
technique can be used but may yield a very conservative answer (i.e.,
fiux and dose pi-edictﬁns on the high sidey). -

3. ' For a series of layers, the butldup factors entering into & product
buildup factor may each be weighted according to the number of relax-
ation lengths ol each shield material present.

4. The a.ctull shield may be rephcod by an equivalent shield of simple
compo:ltbn. “Equivalent" is used here in the sense of virtually
identical ln‘regu‘d to gamma-penetration pl_'operties. (f‘BM) !

5.14 Calculation of Absorbed Dose From Gamma Radiation

We have now reached a point where we can fully appreciate the oomplmdty
of and some of the difficulties auocnt.ed wif.h gamma ray dosimetry. The buw
cause of the difficulties is the fact th..n.t.not all gamma ray interactions are purely
absorptive. This Iact combined vrlth'vu-ioﬁl source geom;trlu gives rise to the
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complex nature of gamma ray absorbed dose calculations. It is because of these

complexities that an absolutely accurate calculation of absorbed dose in an object

exposed to g?unma radiation is“‘VIrtuaIly -Lm;houlble. | )
Any object inserted into a radiation ffgld will perﬁ;rb that fleld by absorbing

and scattering the gamma rays and electrons. We ca.n.; u 2 first approximation,

:usume that the object does not perturb the field and calculate the ab;rbéd dose

bassd on the calculated gamma ray flux density at the point when the object is

not'pres‘ént. Assuming we have considered sbsorption and scattering in the flux

- density calculation, this approximation will generzlly be tdequate when applied

to small objects such as ifon chambers or dosimeters used in dose measurement.
The ipproximstion is generally not adequate when one is interested in calculating o

the absorbed dose at some depth in a ni‘nulve object such as a man. In this l‘itua-;._‘ N

- tion, stteoustion and buildup should be considered since man is more than one

mean free path thick (for hy < 10 MeV). c ,p"
In this section we will discusa the equations necessary to calculate the gamma *
ray absorbed do\-e at a point assuming we have determlned the flux danslty at th.it

_+. Energy Egt_id Energylmptrtedhthemmotallenergyantorlng

2 mass clement on charged and unchnrged particles mmun t.he eneru
leaving the mass element on charged and uncharged pnrtlclu minus the
energy converted to rest mass in the mass element. .

Mass Attenuation Coefficient — The mass attenustion coefficient meas-

ures the number of photons interacting (through any process) in passing
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through an absorbing medium.
“/' = lp(-r+o'+;:7' +K)
P = p R
The mass attenuation coefficient is generally used in the cxpomtnl

“ when cal&:ulating the reduction in flux density of photons passing
through an absorbing material (see Section 2.5).

Mass Energy Absorption Coefficient — The mass energy absorption
coefficient measures the amount of energy deposited in a medium by
photons interacting in the medium (see Section 2.5). B

. _ 2 .
m /o= % [1'(1-0 +G'EE;- + K (1 _%9__)] (I‘G]

\t

: ln prlnclple. the calculation of absorbed dose is raﬂler simple. Ono deter- -

mines the ;i:oton flux density at the pohn of interest, multlpllu by tho energy

of the photons to get the energy flux density and then by the mass energy tbsorp-
tion coefficient to determlne how much of the energy is actually deposited at the
“point of interest.’ Flmlly applyln‘ the appropriate conﬂ*.ntl to convert the
un.zts to rads and multiplying by the time during which the photon flux density
was present yleids the absorbed dose. Mathematically

8 -3 -L " e -
Dirads) = 1.6x 10™° gfem™? sec ™) E(Mev) —2 (em? 57 oo (5,50

In actua] practice, however, tha calculntion of absorbed dose is guieﬂlly veri
difficult and the best we can hope to do is obtain a reasonable approximation.

We saw, lnthe sections above, ho'; cqnfplex the calculation of the flux density
becomes in all but the w08t simple geometrical situations. The addition of
u'tex_mlxora which introduce the need for scattering corrections compound the
complexity. Boattering corrections using bulldup factors are at best gross
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nppmxlm.l.uoni, particularly since. the buildup factors by nature of their tieter-
mination are strictly applicable on@y in infinite media. . ' -

We must, in addition, account for the energy -pe(_;trum of the pbotonl -tnce
in pncnl the source will not be monoener;euc and even if it is there will be an
energy distribuation after the pbotonl have traversed aa nttenuntlng medium. In
general, the energy dopendenc;e of the flux density, lttemutlon and energy ab’aorp;
tion coefficients, and buildup factors are not essily written in an analytical Iorm;
Consequently, we are left with choosing an average or effective energy for the
photons in our calculation and thus introducing another approximation.

Alno ln cnlcuhﬂm the nbcorbed dose by means of Eq (5.50), we are
ununiu charged particle oqulllbrmm at the point of intorect since the mu;
energy absorption coefficient treats only the energy deposited by photon inter-
actions in the mass element at the point of intérest. If.charged particle equilib-
rium does not exist, we must somehow calcuiate the difference betwsea mrgy
* entering and leaving the mass element on charged pu"tic]u.

Flmlly, we must account for the fact that the flux danllty, and oonutpcatly
the dose rate, may not be constant in time. If the source is a single radhuclidc )
the time variation of the {lux devsity is determined by the half-14fe of the nuclide
and is easily handled, 'Howo;ver, radiation lbur_ce: are seldom 80 sin ple and if *
the source ls 8 .combhvuon of several ndlo;luclldu, fission pmdlctl. .or an
opemlng reactor or accelerator, the treatment of the time variation of flux
danuty (or dose rate) is rather cﬂmplu

An approximate formula that is often used>to cnléulat@ the 'dose'' rate at
1 foot from a point isotropic glmml ray source is -

{R=6cr -
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R=

where C is the source lctivlty in curies and- E i3 the gamma ray m w MeV.
The guantity that lsactunllycalcuhtedby mon-olthu mtb- hﬁm
rate in roenigens/hour. There are cettain umluuou to the use o( ttu formaula
which should be understood, and the following derivation Is u-ém n poun-. out
the-e limitations. ‘ "

Thc flux density at 1 foot from a point lsotropic source assuming no attenua-

tion ll

=3.'lx10 L -Cll)sexlo (uchr’)
47 (30.5 cm)

'y c(cy

= 1.16 x 10! ¢ (y-cm 207}

: ' : - . '. @ » £
In the epergy region 0.07 < E < 2 MeV the masa energy absorption coefficient
for air is . L o . Lo {

!
: ' “en/p =2.7x 10 2cm ra (:k 15%

We will see that 1R =87 erg/; in air. Hence,

1.16 x 10 °Cly-em” -lu-l)z'lxw1 (c_m-g’) 1.6 x 10° gq-uev ]1!'.(1(0\0
' . 87 (erg-g .
or

mmmm;/hq =« 8 CE : p (5-51)

[X

"wherechthewtivltylnCuriesnndEhthaphotonmeoV Thus, in |

the energy range 0.07 < E < 2.0 MeV this formula can be expected to give the
exposurente(towuh.ln~2o‘h at lfootfromnpotntuotmptcnmn?amrce, -
u'umin( no attenuation or buildup.

“The rehtbnllup between exposure and lboorbod dose Is lnothor meortant
congept. The lmporunoe oi the reuuonnup will become more evident In
Chapter 6 when’we discuss dose meuurcmm What il genmlly m?mrod is
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expolure and ln understanding of the relauonshlp of exposure to ahsorbed dogse -

is nocalury
If we make use of the terms already defined: >

Particle Fluence P

Energy ‘f‘lﬁ:nce AN F

Absarbed Dose D r v
Exposure 4 R X

Mns Energy Absorption Coefﬁcient : pen/p )

Masy Stopping Power ‘ : %ﬂ ‘—‘d;-r

¢

we can dervelt;p certain relationshipe between them in the calculation of lblo'rbod

‘dose. Ficst, we introduce the quantity, W. W is the ener:y tequired to prochce

oneloup:lr!nttrmdlnsnmmuredvﬂueofuev/lp Iormoctradutiou
and energies of {nterest. U-ingthuqmntltywectncalcuhtetheab.orbcddou
murexposedtommderchnrgedptruclee@iubﬂum. ; ’

D=

= 0.87 rad

n general then, the absorbed dose in air is given by

_,D,(r.q=o.a7xuoeni¢en) 7 (6.57)

a

.. Now, if we have & monoenergetic pboton beam of energy E, ﬂu; energy
fluence is F = #E. .With E measured in ergs the absorbed dose at a point in air
will be given by . '

Dirsdy =(L/100E (s /p),, . = 087 X (roentgen) (5.53)
from above. ‘ ‘ _ -
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. .
If the beam of photons has 2 spectrum wlth a maximhm; energy Em' then.the - -

. o e
absorbed dose is given by Lok ot : .
f‘& ’ . ’ I " k)

D(rad)—'mf ¢(E)(-§'¢) JBaE " '(5.5'4;';‘:";

where $(E) now has the units cm_2 Mev L,

: lf the ed.iu:m involved is not air and chatged particle oqumbrlum axhu

r

vthen the doae to t.he medium is

D, (rad) = 0.87 X ,-(;0“;‘——7‘/% (5.55)
where X | s exposure In rootgen. R A N b
Up to now: wa have nomafdemod flenga-r ~n fh- M"‘ﬂcb incident oa t th mcﬂmm A f '
«» of interest. Ktheplrticlumehlttodpuﬂcluwtthlﬂumeporunjtenergy o {j
interval ¢(E) enteringnvohunoofcmluctlonueadAnnddepthdl the dose ' : {
| o .Iiano*sfmg'—m«é)dumn |
‘ "D(rad) = — g '_ - O
= S 5 -
_Lexw” ™ ar Cs 5.56
where the stopping power, dT/dx - "T o :‘
- AU ‘
-~ L "
\ % '
4\_] N
) , .
. ) i
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CHAPTER 6

MEASUREMENT OF RAD[ATION DOSE — CAVTITY CHAMBER THEORY

6.1 Introduction ) .
To measure absorbed dose (energy absorbed per unit mass) in 8 medium.

;

e&poued‘ to ionizing radiation one must i{ntroduce into the medfum a radiation

sensitive device. Normally, this device will constitute a discontinuity in the .

mé'dlum since it generally differs from the medlum In atomic mmbcr and daasity.

’ Because of these dlfferences we know from the prdvloiu chapters that it will have

dl.fferent properties with rega.rd to absorption of energy from hnlzui ndhtlonl

This radiation sensitive device can be a gas, liquid, ‘or soiid and will be referred

1_;7 -
to as a cavity. P
i

) Consider this cavity situated in a medium permeated by‘ a épatln.lly uniform

‘flux deasity of photons (¢). At any point withln this medium (at & depth equal to

or g-reater than the ma}imum secondary electton range®*), charged perticle
equilibrium Wlosely approximated and the photon flux denslty will give

rlse to a spatially uniform electron flux density (¢e) By conaiderlng a ﬂnlte

i

exposure time t and defining fluence @ = ¢t (or ¢e = ¢et) we ca.n determine the
absorbed dose to the medium** (M): ' \ -

Dy = ¢F o‘en/p )M '

" This can also be written, uaing the electron fluence : ‘ -

i : = 1 dT
e (2,

Note: secondary electrons are those electrons produced by photons; knock-on
electrons from ;heae secondary electrons will be called &-rays.
**We assume throughout this discussion tégt G=0, 8o that M /p =“K/p'

,_ il
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where it is understood that -~ -
. Lue o . E
: H max M
¢E—ﬁe£‘=f ME—E—Q—(EJCIE
A i

dE P
and \,.‘" e ‘ i
Enax 4o (E)
Py 14T gf L id_.I(E)dE
e pdx o dE p dx

Now, if we introduce & cavity into this medium, the absorbed dose to the
cavity will in general be different Irom the absorbed dose to the medium. The
relationship between the dose to the cavity and the dose to the medimn‘depends .
on the cavity materia] e;nd thé cgvity size, Ig >genera1,_ wé will assume the cavity
material is differept fl:om the medium. Concerning cavity aize, ﬁae are three
situations. ' ‘ |

.1. Cavity dimensions s‘mall‘compared with the electron range

2. Cavity dimeastons hrge compared with the electron range.

3. Cavity dimensions of the order of the electron range.

The first situation was assumed in the development of tha Bragy-Gray theory..
‘ However, later thearies by Laurence, Spencer and Attix, Burch, and Burlin '

have allowed the extension of the Bragg-Gray theory to situations 2 and 8.

6.2 Cavity Size Small Relative to Range of Electrons

A. Basic Assumptions

The requirements underlying the statement that the cavity size Is smlll

relative to the range of the elecl:rons- imply the tollowﬁ;g assumptions (ART):
1.  ‘The secondary electron spectrum generated in the medium by the
primary i)hoton flux density is not modified by the presence 6f :t!'w

cavity matérial.
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2. Photon interactions which generate secondary electrons ln the cavity
can be neglected. ‘ | .

3. The primary pﬁoton ﬂuéncé 1‘n. the region hvm'whlch'leoondnl;-y elec- -
trons can enter the caﬁty is a/ptatlully uniform. This implies that the
.secondary electron fluence (¢e) 18 also uniform .

B. Bragg-Gray Cavity Theory
We assume, a8 Gray did, | that the introduction of & gas-filled cavity into

' & homogensous medium does not change the eleotron spectrum that is present
in the medium. In other words,

C
e

= oM =
ec=oM-0

e
"where 'be is the e’lectrqn fluence (which could hnve been written as a ;ilfferentm.
a® fdEsswel). ‘

Consider now, two geometrically identical volumeb elements — to make it

" easfer {but less general), two cubes — one & aina;l cavity in an irradiated
medium and the other a solid element of the unkormly irradiated medium. Let
the respective linear dimensions §f the twc; volume .éi&ments be in the ratio s:1,
where® . ‘ : 'T-‘

P

dqT
dx

4T
&l (MeV/cm)

M (MeV/cm)

6.1

80 that the volume elements are related by

_ .3
6VC =g BVM

‘Let SE be the amount of caergy loat by one eleottou'iig éroaalglng the volume, SA

be the cross-sectiondl area of an élement and &N be thxellnpmb‘er of electrons

8 is called the stopping power ratio. . o o
‘ o - 147 -




crossing the volume. Then, t , -

. a7
6Ec "_dx)c s
\
- 8T
GEM-— Ix 1

This leads to SE; = 3E,,. Also

—aCsa = o &2
SNC—Oe BAC Oes

—aM -
BNy=®q GAM =%,

which'leads to SN = s* BNﬁ; Hence, if _E denotes the energy lost per unit

+

volume, we hﬁw

- 'E - C - &

vC SVC s3 SVM
But .

E - BNM 6EM

VoM BVM
80 that

-1
VEC = 8 VEM

That iﬁ, the ;energy lost (ber‘cm% by electrons ln the cavity is 1/s times that
lost in the medium. The basic usumpuon here is that @ (or de /d]-) is

- unohancod in other words, the cuvlty is small relative to the range of the

elect:mm and the electron energy loss is continuous.
Now, we have seen (Chapter 1) that the energy lmparted to matter by elec-

trons in the mass element Am is .

. AEp = (uﬁ)c T(AE) ), + (ARy), - (AR}, - (AEQ)
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(bere ¢ = charged particle, t = uncharged particle) and that under charged particle

equilibrium con_gﬂtiol_u
(AEE)c - (AEL)O
by d'eﬁnition. 'I:hus .
AE =(AEg), - (AEp), - (ABgly

o -aR

y : \
- - }

so that the epergy imparted (i.e., loat) by the secondary electrons in a volume

(mass) element in the medium is eqfial to the energy lost by the photons tlirough

lnteractlonﬁ within thet volume (mosc) clement (épaummé G = 0; that i8, brems-

‘strahlung production is negugible)

We can now state Gray's prlnciple of equivalence from t.he a.bove m m—
ments: : o :

"The energy lost per uit volume by el;ct:onl in the cuﬁfy ll 1/:

times the energy lost by y-rays per unit volume of the solid. " (AR'I")
To complete the dertvttion of tha qu:-Gray relation, .we munt pow'make o
further assumption, as Gray did, that enqr‘y Jost by the electronl ln croasing
the volume is equal to the mrgy dapolltod in the volume for both eavity and
medium. In other words, emergy does not lelve tho'vohn_no in the form of 5-rays
without belng ‘replaced by an equivalent amount of energy-entering.

- Now, H';;I@the wnuuanpef@t voluﬁ‘aofgu, and if the average energy
dissipated in the gas per ion pa1r<f9rm&,d, W, is independent of energy. we can
calcuhtethenergylbc?gbodperun;tvohimeqftho_.qudby -

By = Ec=aW I o | .3
which is oalled the Bragg-Gray formuls. = R

o ]
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It is more common to use the energy absorption pe‘:r unit mass {f the -olﬁ.l

m M’
the above equation as follow- wbere the m denotes mass:

CE., :ndthelonlzationperuﬂltmaulnthegu. J, whlchc?mclbouttmm

_ mEMPu='WmJPc o
hut.w'ele:t- st B .
'.1."_1') = w o
_ Pdx/M ' . o .
m® I ) {6.3)
pdx/C »
mEM TV ad e

C. Extensiona of the Bragg-Gray Theory
In addition to the assumptions :uted al.)ovi;, Gray also Qéncludod that the
itoppltg power ratio ;u "almost independent of the cosrgy 6! the electrons ".
In reality, it is not and Laurence (1937 modified the Bragg-Gray theory to
scoount for the energy dependence of the stopping powef ratio (ART). By ‘
ummlnlg a wnw energy loss model for electrons traversing a medium
the secondary electron spectrum is given by ( dT)u at CPE (i.e., the
reciprocal of the mass stopping power of the medium). Under these oondiﬂanl
Laurence derived an expression for the mass stopping power ratio of the medium
" to the cavity gas (subscripts Z and G, mpoot!ﬁlm
1" @/ng [ 1 |
W 1+ bz('ro) I + dz(To'] . o (6.5?
In this equation, z('I‘ﬁ) and dz('ro) are functions of the inlthlolech'on energy
I.ndluv‘ebemtlbulltadmmw 'n. mnddmonbz('r() depends to's -
 small extent on the lonization poteatials (I, and I ;). ' The function d (T ) acoounts
for the density (polarization) effect. | ‘ |
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The inherent assumption in the Bragg-Gray thoory that the electron energy
lou is continuous 1s also not strictly correct. ln 1955, 8pmcer and Attix l.nd
in an independent paper, Burch, published tbeories to acoount for the ducrete
energy losses by electrons (ART). "The Spencet-Attix theory limited the stopping
power ratio to energy losses below an arbitrary energy limit A. I practice, A
. is taken to be the energy of an electron which will just cross the cavity. Com- .
sequently, A is thymm&Mthtdm depenﬁentmthooaiﬂy-ho
(or gas pressure). Burch used the ;aﬁme model as Gray but redefined his vedume
element dimenlionn to exclude the energy leaving the volume on §-rays ee btems-
strthiung. The extreme difficulties involved in this formalation have provesied
any numerical solution (o the theof'y

Spencer and Attix were able to derlve an approximate sxpressica fer the
ratio of the total electron flux density to the primary eloottu flux deasity ot an
energy T for electrons of initial energy T, This expression lnzrr..'n} t
muyobuiudnumeﬂuuylnduuledtoommoﬁ-humm

Kz‘TO'T’ Rz(To'T’ (: :’r)

The Tesult is that Spencer nnd ‘Attix were able to derive an analytical expression
for the mass stopping power ratio taking into account both the eaergy dependeace
and the fact that the eiéctronl do not‘lose eﬁergy ooatinuously . The. formula
Il‘ivenlnﬂlenmetormutheLnuremeformuhlnNBSHndbookW :

L (Z/A) o ] Z :
Again, the functions ¢,(T,, 2 and 4, (T)) are tabulated. The cavity size de-
peadence enters through c,(Ty, &) while d,(Ty) 1sideatical to the d,(Ty) in the
Laurence equation. '
' i
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These modmcations to the bui;: Bragx~Gra,y stopping power ratio are im-

| port.?m for certain situstions, in pnruouhr when charged particle equilibrium

doea not exist. This situstion may arise at the interface between the medium
i }

gnd the cavity or when the primary photons have energles greater than a few MeV.

When this occurs, there will be an imbalance betweén the energy entering the
volume and the energy leaving the volumé on charged particles. He&e, tho ’
Bragg-Gray assumption that ;he energy lost in the volume Ey gecondary elot;tmm
is squal to the energy lost by photons through interactions in the volume is no

lol;er valid. That is:

- ), (o o) - (ol - s

and

(ggj; .

L-jc

However, the result E EM or ideatically AED = 2 AEY is still Valid. That

in, theenergy imp.rtodtotheclvity tsreluedtotheeacrgylmmtedhoﬂu‘
medium by 1/s. Stnce the absorbed dose 1s défined in terms of energy tmparted
(¢ will still be measured properly by the cavity provided the correct value is
chosen for 8.

In general, In the energy region whete‘ CPE can not be assumed, we can also

- not assume 8-ray equilibrium. Conlequmtly. the energy lost in the uvtty is
" not neceuarily equal to the energy deponted in the cavity. Thh is the situation

the Spencer-Attix theory attempts to take Into account by chooning » limit on the
amownt of emergy lost which can still be considered locally deposited. In fact,

what is done is to use a restricted stopping txrwer ratio in place of m® The

TbelmbolalnthhlormulationhdeﬁmdinChlptarlandilnottben.mo
‘uthoAlntheapmer-Mtlxmatbn(ﬁ @ for
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?W energies, the secondary electrons may dso lose energy by brems-

' (i e., collision plu! radiation loss) at high mrglu

‘obvious that the consideration of cavity size Iﬂ important oaly for grossly mig-

energy restriction is based on the cavity size. Thus we can wriie: '

-y : ﬁ T
mEM—m“W J _ ‘ -,
. .

strahlung prochctbn In this case, the energy lost is most certainly not deposited

locally. Consequently; one must realize that the correct ltoppln.powerlomu'
theeollhlonc&oppin‘pawar m-mm«mmymwmmm o

TheaﬂectdtheSpmoer-Au.lxmodmcmudo'nmrt 6.1. Itis

matchodmednmhule‘dmdur ha'el.l-ssehdnym 8-nyocpmb-
ﬁmmymtmmeLWQbmmmmWwwbow
Whereas the Spencer-Attix formulation must be used, when the system uu;-

nificantly mismatched.

6.3 The Effect of Cavity Size?'5/

We have discussed lu detail the theoretical dev&loﬁndt for absorbed dose - 5 ‘ !
-
measurements using a small cavity. The qualitative effect of oavlty_!pho is P

&
—

shown in Fig. 6.2. o _ .
A. Small Cavity (Fig. 6.28) o ‘ ” ey

In this situation, thecnﬂtyhmauwmmedwmﬂmﬂumt
perturbed by the cavity. Also, there is no appreciable photon Interaction in the
cavity. Thus, the absorbed dose expressions are:

Du = O o‘ﬂ/P)l = ‘.I(;l’_ %r)- . ’5,

‘ Hen mn‘xAd. Fen
*Note: Asmsectionalozp jo'l —ﬁ-g; (E) dE and

(l)
[P0 D A . T 1o e
‘lwnhuttnomﬁ.wmwm :
) -158 -
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1

“for the médium and o .

d'I‘
Pe ," pdxfc

for the cavity. In this case, the electrg;n fluence is the same in the medium and

the cayity and.so, (¢:{= ¢ec)

' D,/D, = (“‘T)M/(g—a—g) .

Dy/Dg =
where m® is deflined as the relative mass stopping power of the medium to the
“cavity. Figure 6.2 |llustrates the case where m® 18 Ereater than one but this

’

--need not be the case in gmen]

B. Cavity Size Large Rehtwe to ng of Electrons (Fig. 6. 29) e

Wb-ntbecavltydlmennonl are many times hrgerthlnt.henngeoftbe
most mor‘eﬂc electrons prodxcod in the medium, the contribution to tbo absorbed
energy tn the cavity from the region of the medxu.m/cavlty interface 1a ne(ligible
Thus the mergy absorbed (n the etvity wﬂl depeod only on the cavity material.

Bimlln'ly. the energy lbsorbed in the medjum will depend only on the properties

~ of the medium, except in the jmmediate region of the interface.
4

P

lf we consider the dose at points greater then the electron range from tln
interface, we arrive at the fonowing ('bu ex'pr__el,lions: Dy, = PEQ w—/p)u for
the medium and D . = $E _/p) . ‘or the cavity. Assuming the dimensions of -
the medium and cavity are still small enough Do tlnt #E does not change -
appreciably @ o | B ‘

Dyy/D = “‘en/"’u/“‘.en/‘;)c' N
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Figure 6.2 illustrates the case where @;n/p)u is greater than (‘“en/p)c but this
need ot be the case in general. At the interface betweén the medium and the
cavity there will be a dl_scontlnuity in fhe absorbed dose because of t.he,dl'fferénce

In the scattering propei:ties and stopping powers of the two materials. We can

also write the absorbed dosevusmg the electron fluence as -

= pM(1dT
Dy q”e(pdx

=% (G &)

.In general, ¢,M £ ¢ in this situauon even though the pboton ﬂuence is wnperturbed.

C. Cavity Size Comparable to Rnng“g_of_gectmns (Fi_g 6. ZA)
When the cavity size is comparable to the electron range, the first two

" -assumptions ;f snull cavity theory (Section 8. 24) are no longer valid . 'I‘ho

secondary electron spoctrm generated in tha medium (or cavity wn.m u modi-
fied within the cavity, and sooondl.ry electrons gemnted within the cavity by
photon interactions beeomo important. On the other hand, the region of inter-
face between the cavity and the medium uno longernqu;jbleu it was in the
large cavity case. This situation has bom treatod by Burlin through a slight
modification to the Spencer-Attix equation for calculsting mass stopping power
ratios. o | ‘
ﬁhmodﬁjcﬁhntoﬂzetbooryﬁor ﬁn;}.lcavitléshbuedonthe results
of measurements mndeuhgnpurﬂhlplxtéei&npolationchmbertod&ter-
mlnetheeﬂecto(cuﬂychconIouzntlonpermitmncoturlntheonvity

Themodiﬁcaﬂonlllow-thomnlltopp(n‘powerratbﬁormuhwnppmhﬂn

Spencer-wa formuls for small cavmu whue for large cavitiss tt tmoachu o3

themuimglb.or;tionooﬁchtnﬂo moorrootbnumocthnportnnt

fwbn&edmormmmwwotthmodhmnduﬂtym

&
2

- 18T = .

1o e it i

Lo
[P A W,
+ 3

i

!
Iv ;
|
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Y

la large and the valte of A (elécﬁ‘on energy cutoff) is large. For small A .and

well-matched cavities, the correctlon is negljgible o
Thé analytical expression for the mass stopping power ratio developed by )

Burlin-is (ART): '

-

1 (/MG L :

G BN .
*ON G, @A

The factor d li based on the well-verified exponentizl attenuation of eleotrons

Y

and ia given by:
o t t
a=f oK x=1 (1-e
TR AL LR

- where 8 is the effective electron attenuation coefticient and d=1 oorru]iouh to
a cavity lue t npproach!u serc while 7=0 corresponds to a (‘avlty size (Q

=|pptoaoh1n¢inﬂnny
Ullumamulmwmgmntbclbﬂnedmthhmmiamm

~

. use of cg;ty chamber iﬂl‘o_ory lrrecpocﬁve of cavity size, CPE or 8 -ray etnﬂbrhnn

6.4 Measurement of Absorbed Dose (ART, MT and Ref. §

. Abgotbed dose measuremencs using cavity chamber theory can be made |
| under a number of different conditions. These include gas jonization chambers
'uhndwmmhdgumdwmmmm ioninﬁonchamberlcalnrntod
for exposure, nnddovlouotberthanimhat.bnchlmborl. In this section we
‘ﬂﬂbﬂ.ﬂyd&muab»rbdmummmmuwmuu\mmw.
A. Matched and Wall rial
munmmcma\ldmpuﬁmhrnuMnu-mbwmooln
&omrﬁomlymb!pm(lﬁﬂ)mdwtudubwbymlh
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(1958 (ART): |
"In a medium of given composition exposed to a unlform ﬂu.x of
primary radlatlon, the flux of secondary radiation is (1) unlform,
(2) independent of the denslty of the medjum, and (3) independent
of density variations from point-to-point, provided that the Mr-
-a.ctlons of the primary radiation and the secondary radiation with
the atoms of the medium are both lpdependent of density. '’
Thi- means that for a-cavity in which the walls are of the same muterhl as the
cavity gas the mul m;pplng power ratio is unity regardless of the cavity size
or the gas pressure, provided the density (polarizstion) effect is neguﬂble.. In ¥
principle, then, the Bragg-Gray condition that the cavity must be smlll compared

7 wlth the electron rangea can be relaxed.

. In practice, however, it is not easy to exactly maich a cavity wall and gas
in atomlc composltion. It can be done using ethylene in polyeﬂ:ylm or lo_ctylun
in polystyrene for example. Several approximations to l.lr equivalent walls hnn
been made generally using & bakelite/graphite mixture. An exsct match requires
identical mass energy absorption coefficients as well as identical mu..-towm‘

¢ e = AL A V< Sie o m e o s

powers for the wall and gas. Recalling from the discussions in Chapters 2 and = -

3,the dependence on Z and A of iy, /p 18 1n geueral different from %g;r and
consequently matching one will result jn a milmn;:h in the other. Finally, the
density effect u' seldom negligible at energies. ﬂx;ve a few MeV. ‘
I we assume & cavity with perfectly nutobod walls lndgu (e.g-. an air
' cavitywuh;irwalll’tn an air dedium), 5= 1 and the absorbed dose woilld be

- (Eq. (6.4)):

*

D= 100 mE'lOO .me '
vhrcwn&ommﬁborhodporunuohrgo(joulu/cm-ndm}h
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Toer

_ the measured onization per unlit mass In the cavity gas (Cc;ul./kq. If the _
photon field is equal to one roentgen, J=2.58x 107t Coul e and D = 0.87 Rad
for an sir cavity under CPE conditions. o | '\; - .

Now if this same anity is placed in a llzledium‘othér thn‘l:%‘ur‘. bmﬁie‘caﬁty‘ =
wmumwbeﬁaﬁnm&lyemmﬂ?mmmmmr ’
the cavity, the uh.otbed dose measured will be thecd;plorbed dose in the cavily .
wall. To arrive at the absorbed dose in the medium we must apply an aditional
condition. The ion chamber must be calibrated for the onton spectrum existing
in the medium. If It s not, & perturbation correction must be made, * Assuming
the chamber has been calibrated in roentgens, the absorbed dose ratio is:

3!3 (@ E) 0 /Pl

Du - (u,,,/.o)u
THIX " G/,

-

r ‘ ' g
,.."'.?‘."“""u*‘”’m' 8o, thedosetothemediumvﬂlheﬁ S

Dy = 0.87 i[m“/p)"] (rad) : 6.8
MU T Pl
"in'ndnchnmhar repordlmapomevofxm. “
© The mass snergy shsorption coelficlent ratio arises becmiss the aix cavity
measures electrons generated by photon interactions In the air wall while the
abeorbed dose to the modium is delivered by electrons geasrated by photon in-
R L

teractions in the medium.

~

e . =180 -



B. Wall Muterm Dlﬂerent from Cavity Gu

When the cavity wn.ll material is not matched w:lth the, cavity m two sltua-
tions can occur. Either the wa]l can be compond of the irradiated medmm in
which the measurement -is beln‘ ‘made, or the mOdlum wall and gas can be

different nuterh.ll ‘
‘) In the first situation the absorbed dn-e to the medlum is given by

‘D =D. _8 (6.9

where shthemssstoppingpowermhofthemodmmtotbeuﬂtymmd
thadlﬂerenoesbetwom# nnd’ hmvebeonaceonntedﬁorlnthocdonhﬂon

of 8.
m

In the second llhutlon we. miust consider the dlﬂerenoe in plnton interacttonl

botweenthemedn'mnndoavitywaumwdmontothedlfhmcehltopph'power
between the medium andthecavity gas. Thus the absorbed dose to the medium is:

D, = Uon/0)y from Eq. (6
w6

The absorbed dose to the wall is:

- wall :
Thus ’
D W 0‘ /P)u .
M0 B Gy | ©.109
= 161 -




H the cavity gas is afr,

Dy = 0.87X m.:, -7—::/’:: .
wherenlltheterm-mddlnodubdonnd@ /p)wutbomul ener;y
lblorpﬂon coeff!cient for the wall material.

We mut ro-emphulu that the above equations {6.8, 9 ua npply under zll
conditions only when & properly lmh?u the effect of dl-oo?timou{ energy loss
by electrons and the electron energy lp;otrmn and cavity size have been accounted
for (Burlin formulation).
€. Devices ;ather thap lonization Chambers

Although much of the preceding discussion bas referred to the cavity in

~ terms of a gas-filled fonization chamber, cavity theory is gcunl and can be

applied to any cavity material. B is necessary only to insure that the cavity ls K
small relative to the electron range, or apply the modified theory for iurvr
cavities. -For an air cavity at 1 stm pressure a small cavity for 1 uQv photons
wotld be 1 cm or less. A solid or uq.ml cavity should have linear dimensjons
mn.ller than this by the ratio of the densities; that s, a unity douity cavity should
be 10~ cm or lou for the sbove situation.

Wheutheclvitymdltlwanueotthe umomntorul theaboorbeddole

to the medium is
/p)
= en"'M
DM C[———T-—-m p)c} from Eq. (8.8)

Whentheonvitywau&ﬁdmediummdﬁe same material, the absorbed dose . )
to the medium will be given by ' '

Dy = 8D from Eq. (6.9)
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where ms is the lpproprhté mass stopping power ratio of the medium to the
oavity material. If the cavity materfal must be contained in somé material
different from the cavity material or the medium, we must take account of the

differences in photon absorption between the medium and the cavity wall as .~

before .
¥ on/P e a1
DC m —-7% from Eq. (€. 0)
The quantity D c in the'above expressions is the absorbed dose measured in the

cavity material. This, of'course. must be related to some felponle of the
cavlty materis] through an appropriate calibration. ‘ o
When small well-matched cavities can be lchlond the simpler tormuhtbm

for m® can be used. However, the caﬁty size limitation can bo trw.bleagme in.:.

practice for solid dosimeters and low energy photons. Recent work' indicates
t.lnttor TLD materials the'response for energies below 0.2 MeV is very depend-
. ent on the grain size of the 'fL material and thus the more complex formnhtion

~ of m 515 required. At higher energies, of course, a cavity size small with

respect to' the range of secondary electrons is easier to achieve.

€.5 Average Energy Auoé'ulted with the Formation of One lon Pair (W)

To determine th; absorbed dose in & medium u-ing % gas cavity it is neces-
sary to determine the absorbed dose In the gas. Since ionization in the gas is
generally the quantity measured we must know themnmount of energy deposited
in the gas in the production of jonization. The amount of energy lost by aii eleo-
tron by all processes averaged over the entire electron track for each fon pair
formed is denoted by W. The best experimental dotermlnation of W for air to .
date have yielded a value of 33.7 eV/ion pair for electrons of energy greater

than 20 keV.® Below 20 keV, W is expected to be somewhat energy dependent

. -1683 -




but can be umgmed'mt”!‘ie constant for energies greater than 20 keV. The value
of W is Mr than the sctual fonization potential of the gas because some ..
energy is lost in processes other than lonlzatiod, such as excitation. Values ;l
W for other gases and particlea other than electrons are tabulated In ART and _
NBS Handbook 85. | |

The value of W for gas mixtures cmbecnlchhﬁdﬁvmtherehtbnﬂlp.

@ -2 R

i

.wberePimtherehuvepnrﬂllpt“muolthem.

2

-164 -

N




REFERENCES

1. L. H. Gray, Proc. Royal Soc. A122, 647 (1929).
L. H. Gray, Proc. Royal Soc. A158, 578 (1936). 7
3. NCRP Report 27, Stopping Powers for Use with Cavity Chambers, Naticmal

™

Committes on Radiation Protection and Measurements, Natl. Bur. ad.{
(U.8.) Handbook 79 (1961). o |

4. ICRU Report 14, Radistion Dosimetry: X m Hl_ag
Maximum Photon Energies Betwesn 0.8 and 50 MoV, mco-u
sion on Radistion Units snd Measurements (1908).

5. T.E. Burlinand F. x.m.mmam{am;

Nonnbcru-lb lm(mc«n-m— nruuh 19&)

. P H. Auix, numny-guu 49 (1968).
7. P.K.Chamand T. E. Buriim, Health Physics 18, 335 (i970).

8. ICRU Report 106, mn_amgdmn International Commission .
,ummuum Natl. mrad(us)wu

(asea. | | | ;

- MAIN REFERENCES - LT
(ART) rnmwcwmsrmnh(ﬂ)w.
Second Edition, Volume 1. Pwndamentals (Academic Press, New York,

(MT) K. Z. Morgan iad J. E. Turser (eds.), Principles of Radistion Protevtion

(Wiley and Sons, Inc.. New York, 1967). ) R

.~ 186 -
bl .



: APPENDIX- 5
. The nppeadu cont: ns graphs of functions uleml in muku' flux dwsity nd
dou calculstions for vcrious source geometries as dhcuuod in Chlpter 5. ,
&
!'i;nres Al through A LaJhow the exponential lnta‘rnll E, and E, nloq with

-X

e . A.
graphs In Figs. A.20 th oigh A. Mswmmnwoulrylord.h:

for aitas)

’ mintn( self-absorption ! - cylindﬂcnl and phoricnl Bousrces. Pi‘uru A. 35
\\/v

t.hmuchA wshov{mﬂn)plactonhlud iron and watar.. ‘K'Mmrm

plonedin Figs. A. )] throth scmmlorcmmwuﬂmm“

in lron, water, lududconcm
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Figures A. 14 through A19 graph the Bievert M(P functions). The
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elutlc mwlol,r 15- 17

oieotron ruonme (m Scuttarlng Rayleigh)

lnoohoraxt 14-186

=

- 211 -~

~

¥



[
(I

’ 'meh'stlc

14-16

‘
i
v
I

mean square angle of 74-76 '

nuclear potenthl (soe Scattorim Delbruch ) . \

nuclear resonance 15, 17

photon (aee alao Bufldupy  14-18, ze-éz. 129, 139

Rayleigh
Thoxﬁnon

15, 18, 32

17 ’ N ) ' e

Scromlng 54—58. 58 88 72-73

Shqll corrections 46:. - , » ¢

multiple layer 136-137
Bbowgr (iee Cascade shpwén

&x;gld}ng (see also Attenuation and m{mm

s

Sievert integrals 184-189
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