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'ABSTRACT •?•'"' ' -̂  
f • • • ' , - ' • 

^ This monograph comprises a set of notes which was developed to accompany a 
seminar series on the Concepts of Radiation Dosimetry given by the authors at Stan-
ford,University during the Spring.Quarter 1970. It discusses the basic information 

_ required to understand the principles of photon and charged particle dose measure- -
ment from basic particle inter actions, to cavity chamber theory. As health physicists • 
at the Stanford Linear Accelerator Center we are. Interested In the dosimetry of high \ 
energy photons and charged particles, Thus, throughout the text we have emphasized " 
the extension of dosimetry principlefto the high energy situation. We hope that the 
reader will gain some insight to the dosimetry of particles such as plons and muons 
as well.as high energy electrons and photons* Because the audience was composed 
primarily of experienced health physicists, radiationphysicists, nuclear engineers, 
and medical doctors, many of whom hold advanced degrees, the material is presented 
at a level requiring advanced understanding of mathematics njjA physics. 

A detailed development of all the theories Involved is not included because '. 
these have been adequately covered in several texts. We have attempted to discuss 
the pertinent theories and their relationship to dosimetry. What we have tried to do 
is gather together in one place the information necessary for charged particle and 
photon dosimetry, citing appropriate references the reader may consult for.further 
background or a more complete theoretical treatment. We hope tills monograph* . 
will be useful to the health physicist and radiation physicist. . ' \ . 

The material in this monograph was drawn primarily from the following refer- u 

ences: '-
1. FiH. AttlXj.W. C. Roesch, and E. Tochilin, Radiation Dosimetry.' Second Edi

tion, Volume I, Fundamentals (Academic Press, New YorfTM968)i 
2. J. J. Fitzgerald, G. L. Brownellv?and F.J. Mahoney, Mathematical Theory of 

v^Radiatlon Dosimetry (Gordon and Breach, New York, 1967). ' • • 
3. K. Z. Morgan and J. E. Turner,- Principles of Radiation Protection (John Wiley 

<̂ nd Sons, New York, 1967). 
m the text, direct reference to these books will be made using the notation 

(ART), (FBM) and (MT). Additional references are cited at the end of each chapter 
and will be indicated In the text by number. 

- \; • 

•111- • \ 



• • • & : 

ACKNOWLEDGEMENTS. 

,^.; 

K 

Tlte authors gratefully acknowledge the encouragement and support of Dr. 

Richard McCall and Wade Patterson and in particular Professors C.J. Karzmark 

(Radiology), and T.J. Connolly (Nuclear Engineering); of Stanford University, for j , 

sponsoring the seminar. We thank Drf H. DeStaebler for reviewing Chapters 2 and; 
• ' ' " - •': . " . • • ' ' • ' • ' . • • . • " ' • " • ' • - . : ' . ' . / * . ' ' • • ' ' " • 

3 and Dr. Goran Svensson for reviewing Chapter 6. In general, their criticism has 
' - . " • ' ' • ' . " " ' . ' • - ' • • . . • • • ' • • - - • • • • ' . / ' ". ' ; . : . . " " / " ' - • -, " ' 

been very helpful to us. The bubble chamber pictures were provided by Dr. James 

Loos of Experimental Group B at SLAC, and were prepared by G. Ifritzke. Finally 

we thank the 40 or so people who attended the seminars an*contributed to the dis

cussion. 

Stanford Linear Accelerator Center 
Stanford University " 
Stanford, California 
May 1971 

Kenneth R. Kase 
Walter R. Nelson 

/ \ 

; . t 



CONTENTS 

\ -\ 

Chapter 1 . Basic Concepts j ' 

1.1 Introduction \ y • . 

^i.Z\ Dosimetry Terminology 

* 1.3 The Symbol A ' ; , 

1 . 4 Exposure '• •..;,/ ...'..'• 

1.5 Energy Imparted and Energy Transferred 

\ 1.6 Charged Particle Equilibrium ' 

'" . \ References ^_\ ' .' ! ^ fi •'' '-"v;. -

Chapter 2 The Interact ion of E l e c t r o m a g n e t i c Radiat ion ' 
with Matter • . \; W ' •'•', "/ ' '• "^ 

2.1 Introduction 

,2.2 Negligible Processes 

2.3 Minor Processes '\\_.. •? ' 

2.4 Major Processes | 

- 2; 5. Attenuation and Absorption 

• •• References \ 

Chapter^ Charged Particle Interactions 

' i.l Introduction ' 
. " - < • ' • . ' " - . • ' • • • • . . . . 

3.2 Kinematics of the Collision Process 

3.3 Collision Probabilities with Free Electrons 

3.4 Ionization Loss \ 
: 3.5 Restricted Stopping Power 
. 3.6 Compounds ,-

3.7' Gaussian Fluctuations in the Energy Loss ' 
.;'« • °y Collision 

3.8 Landau Fluctuations in the Energy Loss 
by Collision 



3.9 Radiative Processes and Probabilities 

3.10 Radiative Energy Loss and the Radiation Length 

3.11 Comparison of Collision and Radiative Energy ' 
Losses for Electrons ' 

^ , • ' • ^ • • : . 

3.12 Radiation Enj^gy Losses by Heavy Particles 

3.13 Fluctuations in the Energy Loss by Radiation ' 

3;14 Range and Range.Straggling 

3.15 Elastic Scattering of Charged Particles 

3.14 Scaling Laws.for Stopping Power and Range 

References '• " — • 

Energy Distribution in Mattery 

4.1 Introduction 

4.2 ,_.-. Linear Energy Transfer 

4.3 Delta Rays '^ 

4.4 LET Distributions; 

42*5 Event Size 

4.6 'Local Energy Density 

4.7 Conclusions 

References 

Dose Calculations 
I - '. - • • : 

5.1 Introduction 

r 

Page 

53 

58 

59 

• / • ! • 

64 

64 

67 
v 

78 

83 

85. 

85 

86 

88 

91 

93 

99 

102 

103 

103 

103 

104 

105 

106 

111 

\ 

VI 



. y 

Chapter « 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

5.14 

Infinite Slab Source 

Right-Circular Cylinder Source: Infinite-Slab 
Shield, Uniform Activity Distribution 

Spherical Source: Infinite-Slab Shield, 
Uniform Activity Distribution 

Spherical Source: Field Position at Center 
• of Sphere - l . ,; 

Transport of Radiation 

BuildupFactor Corrections to therUnoolllded-
Flux Density Calculations 

Approximating the BjiUdim Factor with Fnraanlaa 

Calculation of Absorbed Dose from 
Radiation 

References 

eat of Radiation Do— -Car** 

6.1 Introduction ; 

6.2 Cavity 8Ue Small Relative to 

6.3 The Effect of Cavity Sise 

6.4 Measurement of Absorbed Dote 

6.5 Average Energy Associated with the Formation 
of One Ion Pair (W) 

' . , • ' • / / 

/ 

Page 

116 

118 

122 

125 
128 

131 

MSB 

127 

144 

146 

14* 

146 

1M 

156 

163 

166 

166 

203 



1.2 Dosimetry Terminology "" 'V 

' 1. Directly Ionizing Particles — charged particles having sufficient kinetic, 

energy to produce ionization by collision. 

• \ t - ' 

2. Indirectly Ionising ParUoles — uncharged particles which can liberate 

ionizing particles or caa initiate a nuclear transformation. 

"Exposure (X) — the quotient of AQ by Am where AQ is the sum of electri

cal charges on all the ioas of one sign produced in air when all the electrons 

liberated by photons in a volume element of air whose mass. Is Am are 

completely stopped in air. 

\ X-AQ/Am - > V '_•, 

The, special unit of exnoswe is the roentgen (R). v . / 

1 l « » . W x i o i 4 C/kg 

Absorbed Dose (D) —' the quotient of A I D by Am where AE_ Is the energy 
• " '- - • ' ' ' " . . ' • - ' ' / , s ^ ' • • • ' - . ' • . . a • 

Imparted by loalziag radiation to the mass Am of matter, in a volume elements 
D r, Alp/Am 

• V / " 

i, . CHAPTER 1 v./ 

.''_ '• ) , . ' "'"'., ' BASIC CONCEPTS '• ' / ' . • . ; ' ; /': -
' • i - '••• • • • • • " ' , ' • . • ' ' . ' . . • • ' . ' - . • • . ' ' ' ' . ' • " " - " " ' . • ' • / ' 

\ ' i - u • " ' i ' - ; • / • : . , • . 

1.1 Introduction 

Before embarking on a study-of radiation dosimetry it is necessary to understand 

the basic concepts and terminology involved. The history of radiation dosimetry i> 

fraught with many, sometimes' confusing, concepts and definitions. We will discuss 

dosimetry Using the concepts, quantities and units defined by the International Com

mission on Radiological Units and Measurements (ICRU) in their 1962 Report 10a, 

"Radiation Quantities and.Units. " The.definitions used in this monograph are repro- v. , 
~ \ • • • " • . ' . . \ , ' • • " • - . / • • .•• - . • • ' . . / 7 -

dueed from ICRU Report 10a In Section 1.2. Following the definitions we discuss ,', 
some of the basic concepts involved In the quantities defined. 

i 

i 



. • - ' '. f . _ . . .• ..r-'i'^f'-""" -~" • . ' . . . • • '•"'"~~~~"-

The special unit of abworbed dose 1B the jrad 

1rad = 100erg/g ' ;. ~ • .„/ 

'5. Energy Imparted {AE-A — the difference between the sum of the energies of 

all the directly and lnmr^tlyiom^^ 

(AE_) and" the Bum of the energfet of all those which have'left it (AET) minus 

the energy equivalent of any increase in rest mass (AE_) that took place in 
' " . ' • ' • "•• • ' - ' — - T ^ ' , • • • • - . ' . - ' " ' " ~ - - • 

nuclear or elementary particle reaction* within the volume. 

thepr 

dose diftributlpo factor ,(M) and other asoasssrT modifying factor*. 

6. BOM Equivalent (BE) - the product of absorbed dose (DJ, quality factor(QF), 

ctor (M") and otker JM 

, The special unit of the dote eqnlvstsej la the retafcdia numerically equal 

tothe doae ia'rad multiplied by the appropriate modifying factor*. 
• / ' : . ' 7 - • ' - ' . • • • ' ' " . : - ' . • • ' . : 

Relative'Biological Effectiveness t»BI) - the JtBE of a particular radiation ; 
- / •' ' } • i '•''• ••"•<'"<•'• g o 

1*. jhe ratio of the absorbed dose of a reference radiation (e .g . , Co -y-raya) 

D to the absorbed dose of the particular radiation (e .g.^ 10TieV protons) 

B_ required to attain the same biological effect (e .g . , 50% oell death). 

( B B D p - B / B p : ^ \ .< 

8. Particle Tluwjoe { # ) - the quotient of AN by Aa where AN is the number of 

particles which eater a. sphere of cross sectional area Aa. 

• - • . ' , / '.'• ' ' • V * A N / A a ' '.[> '•' '• ,". -.\.-;-: '"'">" • 

9. Particle Flux Density (*) - t h e quotient of A* by At where A* is the particle 

fWeoce In Jirae At. ' • •. . . " ' ' • . 
/ " • " ' ' X • • • ' • . • • • ' . ; . • • - n - • ' • . • - - • •• " 

-. /• v'" • i . */«A«/At- ./ • - ' ., : / ' '..• : " 
•/ /*"."- ' ,-'-H, : ' • •' .* -''7- : • . : -f ' . ' '.- -.••• : ,/ 
/ t i ' • • -" ' J . , , ' . . ! - ' . •- .'•-

I , . . - . * r :• • ' •• ' • \ - . . 



- * - r - l ~ — 

* 

10. Energy Fluence (F) — the quotient of AE, by Aa where AE, la the sunt -

the energies, exclusive of reat energies, of all the particles which e«?* 

a sphere of croaa sectional area Aa. v ^ 
• • > • / ' • • • • • . ' . . • * 

If. Energy Flux Density (I) — the quotient of AF by At where AF la the «•*-' 
• ";i iy . .. ,.;- . " / ' .- ..,.;-- ""''"''';• ' V V i;-' > i 

V fluenceiIn the time At. • •• •'•••^/: • ,''• ' . •-'•". 
- ' • • , ' • ' \ _ . — - . ' : •; - / f > x . , • ' • • ' . : . . / • 

• - ' ' ' • • • . " • • ' : • ' • • ' - \ • * • ' / " 1 " : • / • . • • . ' 

12. Kerma (K) — the quotient of. AEj. by Am where AEL. la the aum of the 

Initial kinetic energies of all the charged particles liberated by indirf£: 

[ i o n i z i n g particles in a volume element of the specified material. Am i 

the mass of the matter la tliat volume element. 

*, K -^E-yAm / 

13. l U | i Attenuation Coefficient (p/p) — for a given material^t/p for indir 

ionizing particles la the quotient of dN by the product of p, N and dl whr 

N la the number of partlclea incident normally ta>on a layer of thlcknes 

dl and density P, *°A dN la the number of particle* that experience bite' 
actibo in thla layer. V 

**fp 
« 
14. 

pH"dT V 
Maes Energy Transfer Coefficient QL.Jp) — for a given matertal^/p f 

Indirectly Ionizing particle* U the quotient of d t ^ by the product of Et, 

and dl where E is the aum of the energlee (excmdlnf rest energlea) of 

indirectly Ionizing particles incident normally .upon a layer of thiokneaa 

dl and deneityp, djZL- la the aum of. thekinetic enerj 

mrticlea liberated in this layer; Z - 1* 
the char; 

i I & 
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•15..-, Mass. Energy'Absorption Coefficient (ji /p\—for a given material,/! /p, . 
• ' • — • ' • • " " ' < \ • , " • ' • . • - > , * ' . , • ' . - . • . " ' - ' . . - • 

for indirectlyJonizing particles is (pu_/p) ( 1 - G) whereG Is the proportion .: 

t . of the energy of secondary charged.particlejBjhat: Is", lost to bremsstrahlung -

in the material. , '. '" .jrT ' 

16. Mass Stopping Power (S/p)* — for a given material,S/p for charged particles 
• " • ' • • - • * - • ' . . - . , • ' ' • • ' • • : . ; . . . • • - : . . ' - . ' • • • • \ / • • " 

is the quotient of dE by the product of p and dl where dE Is the average 
- " " ; ' • - , . . - 8 ' , v . . , ' • • . ' - ' " • ' • • . ' / , - V > ' 

energy hist by a charged particle of specified energy in traversing, a path 
length dl, and p is the density of the medium. . x 

It;,- Linear Energy Transfer (LET)* — fdr, charged particles inmedium, LET is 
. s - • •,' ' ~' ,v.' ! ' .: ' " ' . ' ' ' :• 

the quotient of dET by dl where dET is the average energy locally Imparted 
L ' : / ', • • " ' . '• • 9 • • « ' ' 

^ , to the. medium by a charged particle of specified energy traversing a distance 

. ' ; " * ^ U - ; • • - ' / ' • • ' - : > : - A , • . . ' • -

18. Charged Particle Equilibrium (CPE) — CPE exists at a point P centered"in 

a volume V if each charged particle carrying a certain energy Out of V is 

• " -replaced, by another Identical charged particle which carries the same energy 

into V.ytt CPE exists at a point then D = K at that point provided that brems

strahlung production by secondary charged particles is negligible. -

•.""••• 1.3 The Symbol A \-r^''. • '. '": • ' ' " • ' 

Many of the quantities defined; are macroscopic quantifies such as absorbed dose, 

exposure* flutoce, etc. Qn the other hand, quantities such as energy imparted, charge 
•. . ; • •' • " • ; . • • ' . [ ' • " • " ' • ' ! • • • ' • ' • • . • . • * ' - " 
;< • • • ! ' ' - J • . 

*%v. „ . liberated, ffai—ce, etc. may vary greatly from point to point since radiation fields are 
^ • v T ' •• • .••'•' :• -• ' . ; • - ; v . • 

In general act uniform in space. Consequently, these quantities must be determined 

A discussibn of these terms is given in Chapter 3. 



- • ' . - : ' • ' 

foF sufficiently small regions of space or time by some limiting "procedure. We il

lustrate tMs procedure ush^ the quantity "absorbed dose.'' : i 

' Absorbed dose is a measure of energy deposited in a medium divided by the mass 

of the medium.: If we choose a large mass element and measure the energy deposited,.' 

we will obtain a value of E/m), (see Fig. 1.1). Now, if we take a smaller mass ele-

meat and measure the value 'E/m),, in general we find E/m)„ will be lii>ger than / 

E / m ) r When m is large enough to cause significant attenuation of the primary radi

ation (e.g. , x rays)^ the fluence of charged particles in the mass element under con-

sideration Is not uniform. This causes the ratio E/m to increase as ffie size of the . ^ 

- mass m is decreased. >."• _ •" v..._:._ '"'*•' 

Asm is further reduced we will find a regie n in which the charged particle fluence 

is sufficiently uniform that the ratio.E/m will be constant. It is in this region that 

the ratio E/m represents absorbed dose. The .symbolic notation AE/Am is used to 

indicate that the limiting process described wasoarried'outv ' '. 
\ . • *, * . "• 

\ ' * ' •< ' • ' - • - ' , ' 

At the other extreme, m must not be so small that the.energy.deposition is caused -

by a few interactions. - If m is further decreased from the region of constant E/m, we . 

will find that the ratio will diverge. That is, as m gets very small the energy deposi

tion is. determined by whether or not a charged particle interacts within m. Conse

quently, E will be zero for many mass elements and very large for others. These 

fluctuations occur because charged particles lose energy in discrete steps. Hence, 

the limiting process indicated by the Bymbol A also requires, that the mass element . 

m be large enough so that the energy deposition is caused by many particles and many 

interactions. 

~H . Similar discussions may be made for other quantities and it must be realized that 

the quantities defined using the. symbol A are macroscopic qwtiHes In which a limiting 

process as described above has occurred. 

/ 



Energy daoaitjr aa a function of the maaa for which ( 

energy deoalty .ie determined. The horizontal Una ' ' " ' ' » 
obrera the region in which the absorbed doae can .'5. • . 
be eetabllahed In a singlemeasurement. The 
ahaded portion repreaente the range where statie-
tloal fluctuation* are important. (From (ART), -
Chapter 2.) . • • , _ . , \ , ' / . .(' 
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1.4 Exposure f . \ 

The quantity, exposure, as currently defined requires that all the electrons lib

erated by photons In a mass element of air be completely stopped in air. It also re

quires that all me ions (of one sign) produced by these electrons be collected. To 

make any absolute measurement of exposure, therefore, requires use of a free.air 

ionization chamber. This in turn puts an upper limit on the photon energy for which 

absolute exposure measurements are practicable. : This energy limit (a few hundred 

KeV) is determined by the range of the electrons and the ion chamber sixe. ( 

In principle there is no energy limit on the quantity AQ/Am. There is simply a 
' . ' ' --*• ' " ' • ' . - . ' • • ' r : - - : '-• ' A . . . • • ' . ' • . ' ' ' . • . ' • ' - ' ' • • ' : " . ' ' " • 

practical limit on the accuracy with which exposure can be measured as the photon 

",. energy increases. ReMive measurement of exposure can be made at any photon 

energy using air-equivalent cavity chambers (see Chapter 6). The accuracy of these 

measurements depends- on the photon energy and the chamber construction. Accu-

acies of 1-2% can be achieved for photons up to a few MeV. As the photon energy in

creases, the uncertainty in (he measurement increases because of failure to collect 

all the Ions produced by electrons liberated In the mass element. Further uncertainty 

is introduced when there is significant attenuation of the photon field within the range 

of the electrons liberated by those photons. Consequently, the quantity exposure 

as presently defined is practical only for photon fields below a few MeV in energy. 

1,6 Energy Imparted and Energy.Transferred (Absorbed Dose and Kerma) 

To better understand absorbed dose, kerma and charged particle equilibrium, one 

mm*. —derstsnd how the energy balance is made for a mass element exposed to! radi

ation. . Figure l ,2 1 i i schematic d/awing showing 10 photons Inoident on a mass ele

ment. Each in some way involves the movement of energy Into and out of the mass. 

Table 1.1 gives an arbitrary breakdown of the energy entering and leaving the mass 

on charged and uncharged particles. ,. 

• ' . ' - - - r - ' • • ' . " ' - i - , • ' : . , " ' ' • • • 
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TABLE 1.1 

:• 1 
I 

Primary 
y Energy 

._• „ J „ _ „ Secondary Charged 
S e « o n d a r y Particle Energy y Energy . - . . ., 6 + * , We ^ l A , W u < A E L>u <A«R>-

; 2 

• • - ' ' • • ! • "•£•::>•:•. 

j ' • • ' . . * - . -

* ll 

. 3 

0 

0 

; -.'V 

.5 

0 

.5 

0 

0 

0 

3 .5 
I 

' • ' • . . ^ • 
0 r • 0 ' < ' 5 : 0 0 

4 .5 • • - , • • j ' , « . ', - ' 0 ' .2 .5 0 t 
/ 

0 

5 1.0 . . - • 1 ' . . . : ' " • 3 0 .6 •V 0 

6 -;:l.-0 • • - . 5 . j . * 
: !" :'-'. 

0 b 1.0 • \ i 0 

7 1.0 • 5 j .vvS-.*' 
. - v . " •'' • ' P •'.,' • 2 1.0- .5 0 

: . 8 3 . or -1 
! 1.0 'A: .8 0 0 ,-• 0 0 

9 

10. 
• . : • • • * • • • ' 

3 .0 

• • - ' ; . ; i ^ 

• -. 1 I.O -
* 1 . 

1.0 
• 

6 

o 

0 

", i.o 

3.0 

3 .0 

1-0 

0 . 

0 

1-° 

""?. • - IT"' ' " . . • " 1.4 ^ 1.4 10.0 3.0 1.0 J 
( . " • • . - r • ; • • - l ' , ; . - ; - . • ; • . • - : ; \ : , . . . . ' 

The energy entering *nd leaving the maa'a on charged part idea ia denoted fay (AI_) -

, and (AE t )„ reapectively; the energy entering and leaving on uncharged perttclea la de-

noted by (AE_) and (AET ) reapectively; while (AE_) denotea the energy which goea 
tt U la U ; - I T U ,-,-• • _ • ". • 

into .the creation of reet.maaa within the maaa element. The energy Imparted to the 

maaa element (AEjJ la equal to the algebraic aum of all the energy compooeinta, ^ 

;V A E D = < ^ E > c - ( ^ ^ / t 1 • 
Thia la the energy uaed to calculate a>aorbeddiae and for thia example it ia 

A E ^ \ - 1 . 4 - M ^ l b ; b - ^ . 0 r 4 , . 0 - • • ° l M i » y ' •"> ;~^' f" 

If none of. the charged partlclee radiate energy within the mê aey the energy traaaferred 
• • • • • . ' ; . , , ' • . \ . ' ' " , . • " " ' . - J ' 7 . • - • ; '. • • • ' & . • . ' - • ' • - ' . . » • • • - •• 

to charged partible* in the maaa element la determined .•% theaJgebraic nuaof 

--.» V' 

# 



the uncharged particle energy t e r m s and In this example i s : 

A E = 1 0 . 0 ^ 3 . 0 - 1 . 0 = 6 . 0 MeV 
K • 

This i s the energy used to calculate kerma. 

In this example,- the energy entering the m a s s e lement on charged part ic les is. 

exactly balanced by energy leaving on charged part ic les , i . e . , ••• < 

Thus, we say charged particle equilibrium (CPE) exists. Also, since none of the 

secondary charged particles produce bremsstrahlung W '4M t B * a"Lam element, 

A E D = AE • and consequently the absorbed dose will equal the ke 

v .When .the secondary rtirrfri^ffrrTtrltf IITS* inrrtj Tr) lirimrttrahlesig production 

within the mass element, absorbed dose and kerma will not be equal eve* though CPE 

exists. This situation'is Illustrated in Fig. 1.3. In this case, we assume that 

(AE_) - (AE.) = 0 and that there is no energy lost in rest M M Increases (AEmL~ 0. 

Consequently the energy imparted to the mass is: . 

' ' AE»' ^ D ^ E ' ^ - ^ L V ^ 

Whereas the energy transferred to charged part ic les by uncharged part ic les wlthinthe 
* ' ' * ' . • * 

m a s s e lement Is •"",> 
* " . • - < • • ' . - • ' • - . : , • • • ' • • . ' • ' 

A E K = i A E E > u 0

: < A E L ) u r V '.;'•;.:* 

obviously AE ¥ A E V and s o absorbed dose wil l not equal kerroa in this c a s e . This , 

occurs because In AE- , we consider only the 1 energy transferred to charged part ic les 

In the' mass e lement and do not consider how the charged part ic les subsequently lose . 

their energy. Energy imparted (AEjJ on the other band i s a total energy balance 

considering charged and uncharged part ic les . 



' f f . A 
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1.6 Charted Particle Equilibrium 

The concept of charged particle equilibrium deserves a short discussion. If -' 

. each charged particle carrying a certain energy out of a mass element is replaced 

by another Identical charged particle carrying the same energy in, then CPE "is said 

to exist in the mass element. This does hot necessarily require that the number of 

charged particles entering be equal to the-number leaving. It does require, that the 

energy entering on charged particles equal the energy leaving on charged particles. 

CPE will generally exist in a/ uniform medium at points which lie more than the 
' • ' ' / • ' •' .' • • ? : ' i ' ••• V • . '• ' • ' " 

itnum range for the secondary charged particles from the boundaries of the 
" • ' ; - . • • / . . / . - . • ' / • . - • ' • • > , • ' . . . . . / ' . ; 

medium. CPEwlll generally not exist near the interface between two dissimilar 

media. For pun>ot!e* of absorbed dose measurement CPE Is 

We will discuss this in more detail In 
as the appropriate corrections 

Chapter 6 

.*" 
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<'C • • ' • . ' • .' ;. ' CHAPTER 2 •'••••"'.• .• *•_ 

THE IOTEBACTIONOF^El̂ CTRpMAGNETliC RADIATION WTCH MASTER 

2.rl Introduction _*?'• .\ •'.•.'.' : •"_ .' •".",' •'-• '••••'.''•' ."'•.•/ 

Essentially, there are twelve possible processes by which the electromagnetic 
• ' • ' ' " • ' ' ''•-•'-" • - 1 ' • ' " ' ' ' ' 2 

field of a photon may interact with matter. These are classified In Table 2.1, 

Where the major processes are "boxed in," the minor processes (JJ jSt-cbntributlon 

over certain energy Intervals) are "underlined," and the rest are negligible pro-

ceases (note that some processes have been completely omitted because of their ~" 

rare occurrence). ^-\ . 

The symbols t , o% and * refer to cross sections (or coefficients) of the various 
' • • • • • . ' " -V ' , ' . ' " - ' • ' • " 2 

interaction processes. The units of these cross sections can be barns/atom, cm /g 
, ; , _ t - . . ' ' • ,.'-.' : / ' ' • : • * - •• - >r -~y. - - • ' . . , , - - - . - - , _ ~ - : - _ 

or cm and the appropriate units will be clear from the context. The following 
equations illustrate the conversion from one set of units to another 

T(om/D - T(b/atom) ~ x 10-iC?..;- (usually written T /p) (2.1) 
. ' ' ' • v • " r " " 

T(cm"V" r(b/«toin) -^px^lO • (2.2) 

Also 

T p e - T k + T L + 

\ '-,'•••• •, o- p n -«*tr .n)+pi(r*p)+«xr, f )+ • . , * 

are total cross sections for the atomic and nuclear photo'effecU, respectively. 

Elastic scattering refers to the fact that kinetic aasrgj is conserved In the pro-' 

oess.~ When Inelastic scattering occurs, kinetic —a raj is not conserved. 'For ex-

ample, in the case of Compton scattering, some of the — i g j to needed to ovarcome 

the binding energy of the electron to the atom. The rest appears as kinetic energy 

of the photon and electron. If the lcdivi#iMl scattering elements (sUch as electrons 

< . '." - 14- ' .' .•"'. ^ ' -J' 

<»!.-. 
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t I ATOMIC ELECTRONS / 1 Photometric Effect} | -_ Ravleich Scatterine-

, (low energy limit) 

1 Compton SoMterloe f I ATOMIC ELECTRONS / -_ Ravleich Scatterine-

, (low energy limit) 
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* f V \ • ' '•,•'.-'." ' , 
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or nuclebns) are virtually free, they scatter independently of one another — thus the 

term incoherent scattering. Complementary to this', one refers to coherent scat-

tering as a type of scattering in which the individual scattering elements act as a 
> ' • . ' , ' " • • ' • . » • " • ' • ' - ' • • ' • ' " • ' • • * . ' " ' • . ' ' • 

whole.. Incoherent scattering implies inelastic scattering. Coherent scattering • 

implies elastic scattering. •" \. 
" . • ' ' • ' ' • ' . • * ' ' • ' • • ' < > 

•%.i . Negligible Precesses '• . - ' • - . 

A r Elastic.Nuclear,.J9cattering (H-B) / 

• This is regarded as the nuclear analog to very low energy Compton scattering by 

an electron. This seems inconsistent since Compton scattering is an inelastic pro

cess whereas elastic nuclear scattering is in the "elastic" category! A digression 

into Compton scattering is in order at this point. 

First of alt, Compton scattering Is described (quantum mechanically) by the 

Klein-Nishina differential scattering cross section, which reduces to 

'" " , ' • 4 . ': ' " \ ' ' -r. • 
< \ Jfr;^- - ^ V i <l' + cos 2 0)(cm 2/atom -̂ sr) (2.3)' 

' • ' - * , 2 m c • ' .«•' -".v . ' * " 

Where 
2 •-' • '"'• 

mc .= electron rest mass 

8 - angle of scattered photon 

in the limit as hf —-0! But this is equivalent to a classical result obtained by 

Thomson,,, who treated the process as an elastic one in which the free electron vi

brates under the influence of the photon's electric field, and re-emits photon radi

ation of the same frequency (or energy). Because of this historical treatment, low 

energy Compton scattering Is occasionally referred to as Thomson scattering — 

even though the Thomson model itself is inconsistent (that is, elastic scattering 

.implies coherency, bu£ the Thomson model requires the electron to be free!) 

- 1 « - , 



Returning to the proceaa in question (elastic nuclear scattering), we have the 
• • " ' • • & . - ' * - > * * • • * . • > • 

situation of a photon Interacting with a nucleon in such a manner that a photoa is 

re-emitted with the same energy. O M sometimes refer* to this as "Thomson scat

tering from a nucleus" in analogy to the low energy limit of Compton scattering. 
B. Nuclear Resonance Scattering (II-C) 

This effect is a type of inelastic nuclear scattering whereby the nucleus is 

raised to an excited level by absorbing a photoa. The excited nucleus subsequently 

de-excites by emitting a photon of equal or lower energy. -" 

C. Delbruck Scattering (m-B) _̂ , „ 

The phenomenon of the scattering of photons by the Coulomb field of a nucleus 

is called Delbruck scattering (also called nuclear potential scattering), it can be 

thought of as virtual pair production in the field of the. nucleus — that is, pair pro

duction followed by annihilation of the created pair. The process is elastic. 

D. Photomeson Production (IV-A) y 

+ - ' X. Typical reactions,: y + p — x + n 
• • ' J : - ; : - • • • • ' ' • • • + - ' " ' 

•' -Y + P~— * +» +P 
- o + 

7 +P — *. + * + n 

y + 'n — *~ +p 

etc. 

X , 

A 

< - 17 -
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2.3 Minor Processes - .-x- , 

A. JtnyWlgb Scattering (I-B) 

Kayleigh scattering (also called "electron resonance scattering") is an atomic -

process in which the incident photon is absorbed by a (tightly) bound electron. The 

electron Is raised to a higher energy state, and a second photon of the same energy 

as the incident photon is then emitted, with the electron returning to its original state 

(this is not excitation, however)- In effect, the recoil of the-scattered photon Is taken 

up by the atom as a whole with a very small energy transfer; so the photon loses neg

ligible energy ia>on scattering. The process is elastic. 

B. Photonuclear Reactions (IJ-A) 

Analogous to the photoelectric effect for electrons, a nucleus can absorb a photon 

and subsequently emit one or more nucleons — hence, the name "nuclear photoeffect." 

All such, reactions have a threshold photon energy below which the reaction cannot 

occur. .For the (y, n) reaction,' the cross section increases with increasing energy 

(above threshold), reaches a maximum value, and then decreases. This is referred 

to as the giant resonance, and ^attributed to electric dipole absorption of the inci

dent photon. In all cases, the maximum value of the total cross section for all photo-

nuclear reactions is smaller than 5% of the total cross .section, of the, same atom for 

Compton and pair-production interactions. This process is, therefore, not generally -

too Important as a means of energy absorption. However, It can reault in radioactive 

••Clei. 

C. Pair Production UMfbe Field of an Electron (m-A-b) 

This process Is easier to understand after discussing pair production in the field 

of a nucleus. Thus, even though it is a minor effect, It will be discussed later. 

\ • • • • • " : 
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2.4 Major Processes" 

A. Photoelectric Effect (I-A) 

In the atomic photoeffect, a photbtr^dlaappeara and an.electron la ejected from an 

atom. One ahould not visualize this interaction aa occurring between a photon and an 

electron, but rather between a photon and an atom: In fact, a compUto absorption 

type interaction cannot occur between a photon and a free electron sine* linear mo-' 

mentum will not be conserved. 
'• • - ' " • • • • . , • • ' ' \ 

Proof: ' • - £ -

i » m i 

p * momentum of electron ? 
• • • " . • ' . • ' • • / • • • ' 

,mc « rest mass of electron « 0.511 MeV 

T - kinetic energy of electron 

I > total energy of electron 

It » momentum of photon (k- |1E| » h A - h v / c , so that if we work 

/' In c - 1 units, k « hi/> 0) ' 

n i c « 1 units, the energy and momentum of a photon have the same magnitude. 

Hence, 
Conservation of Momentum: t*? 

/ Conservation of Energy: k + m - E . 
. • . / . ' ' • • ' 

Also 

—2 2 2 
l T « p +m (invariance law). 



Hence 

(k + m) 2 - k 2 + m 2 

k 2 + m 2 + 2mk 

This impliM. taak - 0, '.hence either m - 0 or k - 0, which oontradicts the assump

tions that at - me • •" • 0.511 MsV and k > 0. Thus, linear momentum is not conserved. 

Eves: though she awcleas must absorb the momentum, It acquires' very little 

kinetic energy due to its large mass. 

Now clearly, the photoelectric effect can occur only if the incoming photon has 

an energy higher than the binding energy of thtt electron to be removed. We thus have 

a series of jumps In the curve of the absorption coefficient (or cross section), cor- -

responding to the binding energy of the different shells. These energies are given 

approximately by Moseley's law: ' • ' : , " . . 

where Z « atomic number >,'-•• • •/' *.*•. 

tr* screening!constant '"••••< 

n - quantum number of orbit such that n - 1 — K series 

n * 2 — L series, etc. / "•' 

Nets that Moseley's law U essentially the energy of a Bohr orbit, modified by a .' 

screening constant. 

The screening constant is approximately 3 for the K-shell and 5 for the L-shell. 

As an example, we can use Moseley's law to calculate the K and L absorption edgee 

of lead (Z-F 82),, to get: 

.2 

K-edge (n - 1 ) — E - 13.« < 8 2 g 3 * eV - 85 KeV 

L-edge <n « 2)-r-E - 1 3 . 8 < M I 5 > eV - 20 KeV 
* X - \ . . 2 • • : 
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Whereas, the actual values are: 
•>,;•;•: . . v / y v - : . . • • " . ' ; • ' £ ; • • 

"-Kr'-eoWs: '«SyOO&ke#; j 

Lj-sdfe: 15.855 KeV 

.Inmd&i* i I^edge: 15.3106 KeV 

L,-edij^: M.OflKeV ? '.. '"-.•• \ •' . 

We see that the L-*dge actually consists of three different numbers, as required 

by the quantum numbers - ' ••'r-: f . . - - •'', ._ v \ 

n - 2, 1 - ^ ; J = 3/2 (P-state) '. :V>',-.,;..'.; ', .<;.• V*/-; 

"'•; -;.;.":' '• • , • ; ' . . :'."'"•. ;:

:• • y-i/iT^' X'K^•> v > " ' • • " < • \%\ 
• ' " • • • • ^•'• ' : v ' l - o , j « i / 2 . : - < ^ s j t * » * ) - ; : ' ' ; . / " , - ' ( ' - i ; ' : ^ ; ; - . ; ' • > , 

Because a third body (the nucleus) is required for momentum conservation, it 

makes sense that photoelectric absorption should Increase rapidly with the binding 

energy of the electron. That Is, the probability of this interaction Is highest for 

those electrons most tightly bound. About 80% of the inUractlons Involve the K-shell 

electrons. The order of magnitude of the photoelectric atomic-absorption coefficient 

• t e - • - - ' ' - • • : ' : : * . v • ' : • ' V " • ' $ • • - • * - ' • . " . 

!

~Z^(hM)' - low energy ^"- "; 

• - r ~ r " " - • - - < : : ; ' '• ^ W r ^ - — -
~Z8/h>- / high energy-• .. _ . '. V •" : That is, the photoelectric cross section: decree*— wish i—tressing photon energy 

much more' slowly at high photon energies. 

The vacancy created by the ejection o/ an electron from the inner shells Is filled 

by outer electrons falling into it (de-excitation) and this process may be accompanied 

by- ' V : :^ ^ •• ' ;"••' ' ' y y ... . "" :.'. /'. "- .. 

a. emission of fluorescent radiation, or 

b. Auger electron emission • • ' , . , 

c. or both . . ..•'(. 

-JU-r - ; ' i-



• • • • • ( 

The competition between the emission of a K x-ray and the emission of an Auger 

electron Is described by the K fluorescence yield, which is defined as the number 

of K x-ray quanta emitted per vacancy in the K shell. The probability that a K 

x-ray will be emitted is nearly unity in high-Z elements and nearly zero In low-Z 

elements; •--.• . _ 

Now, this brings up an interesting question of whether or not the Auger process 

should be considered as a process whereby a virtual fluorescent x-ray "converts, " 

by means of a photoelectric interaction, before it escapes the atom. Clearly, the 

Auger process, - from the discussion above, decreases In importance as Z incre 

i But, the photoelectric process increases with Z (to Z )! Thus, it appears improb

able that this Is what happens. In addition, the nuclear analog tc the Auger procei 

called "internal conversion" — provides evidence to support the conclusion that the 

conversion electron (or the Auger electron) Is not due to an ''internal photoelectric 

effect." It is observed experimentally that the 0—0 transition proceeds readily 

enough by Internal conversion within the nuclear volume, although the emission of 

photons by the nucleus, in a 0—0 transition, is completely forbidden according to 

quantum.mechanics. . • - ';. 

B. Pair Production/m-A) 

' Pair production Is the mechanism by which a photon is transformed into an 7 

electron-positron pair, also known as "materialization," The principle of conser-

vatlon of momentum and energy prevents this froes oocwrrtng in free space. There 

must be a nucleus or an electron present for this prooees to happen- b> the center-

' of-mass system, the threshold for the materialization process is obviously 2roc = 

1.022 MeV. ' * • . - . " ' • ^ 

••'For the reaction Mj +.W^-^J«3 + U^ +• M^ +Q, it can he shown trosa conser

vation of energy and momentum that the threshold energy for the reaction In the 

. - S3 -
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laboratory syetem ia 

^ ^ K " ^ * ^ 
when 1L ia at rest. In:the-pair production Interaction (y+ M - ^ U * m + at+Q), 

Ml'° 

aothat 

and. 

Thus 

. Q-X--T«) 

_lab 2aWm + M> 
T f l i * • II." •-, 

a. Pair prodaotlon In the field of a nucleus of rasas II: 

• "•:....• —~-'.-~"r7l" M * » . n . 

T ^ s ^ ( i q - 2 m - 1.088 MaV 

b. Pair prodaotion in the field of an electron: . 
' V,. M - m 

T??b« ^ ( m + m) M m - 1 . 0 4 4 MeV ni' in 

•>' 

.V" 

1. In the field of a nucleus (Eg-A-a) 

• The praaenoe of the nucleus guarantees ciuusswatlon of i 

energy transfer to the nucleus. The atomic cross section for pair production ia the 

neighborhood of a sea lens ia proportional to 7r. However, for photon energies above 

20 MeV, one asast nee an "effective" Z in order to aooouat for the soreeeiag of the 

' .. ' . / -IS- .,yA"-^.-^.^ '[)* 
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X$iB the recnnt Ion leejrtli of tti material (the definition of radiation length 

eeeaes ahoet ia a animal'way in deecribiaf the energy loss by an electron due to radi

ative (hrenmatrahlnag) proceeaee —, we will discuss this in Chapter 3). 

The high energy approximation is quite useful for those people who work around 

a high energy electron kpcelerator (W i 100 lisV). Generally, these people know 

the values for the radiation lengths of various materials, but. do not have the absorp

tion coefficients readily available. Just how good the approximation is, is shown in 

table 2.2: (* for 1000IUV} • J 

• ' -f 

, " • / . ' , . , 

TAHLS2.2 
. • - • " • ' 

Material 
* • 

X 0 (g- cm"2) 7 2 -1 
H - ( c « -t ) Kjfiaf-f1) % Difference 

Pb «,40 0.122 0.114 7 

Cu 13.0 ' • ' - • ' • ' O . O t O 0.085 9 

Fe j * . 9 ^ v ©.©SO 0.061 10 

""AC 24.3 0.032 o.ou — 14 

c 43.3 0.018 0^014^ 2t."--' 

HjO W.4 O'̂ Ml —' •"" 0.020 
\ " ' • 1 

The fact that a Quantity, X f l, that Is defined' in terms of a radiative process, caa 

be ased to evaluate a quantity associated with pair production, namely, *_, Is not 

' : ; ' ' - ; 2 4 - > ' •" t. • ' ' '-



coincidental. If one writes the Feynmaa diagrams for the two processes 

Pair Production Brfm%»trohluhg 

time 
• • ( liiMti 

It becoraas apparent that the two processes are idsatioal — —dsr the aaaal rata of 

chascine" the direction, of the arrowhead aad also chaafiaf ike partial* to to aatfr- : 

particle, b other words, the derhratioa of the pair prodaoUoa aad I 

cruss#H* e W i l aaaeatially the same. 

trai (in-A-a 
recoil is absorbed by aa electros, the threshold sasrfy ta the laboratory 

system is 4mc » 2.044 MeV, and there are two eieotroas aadaposttroa 

' appreciable momeatem. la tats case, the reooUiag particle (> 

arable eaergy, so that the process is gepsrslly 

At alga photon eaerglee the cross section for triplet pmaesllaa Is sheet 1/1 

thai for ordlaary pair prodeetioa. Thas, triplet prodantiaa Is ef ae 

treaUiVe to pair prodactioa) eapapt for low-atoamlc-

^ 

* 



> . • 
Examples ii both pair and triplet producUta are shown la UM photographs* 

(Fig, M u d L.2) . Notice also the Comptoa interaction- The curvature of the 
A 
Comptoa 

coefficient eoKributlon do* to 

U being applied) helps identify 

, and therefore must7 account for the; ' 

•Uotroa. Annihilation radiation atsumaa 

(due to the 

t roan the electrons. / . ;&&i-k/- •' 

tly correct in calculating the energy 

absorption fro i pair proawatioa inter 

annnihwiffa of the posfcroa with aa i 

a roU inalogsia to scatteredrsdiatioafla the Compton case and tox: 

nttoa ia the pasteslectrtc case. « juost dosimetry applications, iftoweveiv annihilation 

neglected because" either the Oomptoa effect doralnatea (1.e., pair 

production ia relatively small), dr the fraction of the total pair production absorption 

Ihilatioa la quite snail. That is, ' 

I — * \Wx*tm£\ •/•-

Finally, tae "characteristic" ancle bebreea Urf direction of raotioa of the 

photon and one (or the otherj of toe? electrons (*) ia given by 

m c " : • . . - • ' . . 

Similarly, for the bremastrahlung process, 

| : m o * • ' ' • • • • • ' . . * : . 

• - • . ' v ^ - \ : - . :•:• ~v , : v •• ,... f - .; 

where • is the energy of the electron . 

C. Comptoa Scattering(I-C) \ " * 

When aa incident photon Is Scattered by a looaely bound (or virtually free) electron, 

, the phenomenon ia called Compton scattering. As was indicated earlier, this process 

is an inelastic one to that sores of the Initial kinetic energy of the photon is needed In 

order to overcome the binding energy of tbe'eUctrou Jto the atom, and therefore does 

not appear aa kinetic energy of the products. However, the prcoeee i i treated aa an 

ee-hteh bubble chamber (Stanford Llaeer Accelerator Center). 

• ' " - • • • » ' - . 

> 
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n o . a . i •' •* 
' ' • ' - •• » • ' • • ' " • ' 

"PaW frrodaaUoft ia th* tUld o{ a iwoV— (A aad B). Comptoo interaction (C>. Br«m«=| 
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SJ-f'-

#-: 
An Incident photon (no track) undergo** pair production in the field of an electron 
(triplet) at point A. The poattreaaubaequeallytranafers a large amount of energy 
to an electron at point B. Thla type of iirtc-ractton will be diacuaaed in Chapter 3.' 



elastic one because (this binding energy Is small compared with the photon- energy 

incident. This is a first order approximation and appropriate corrections are some-

times necessary for low energy photons,or high Z materials (PBM, page 190). 

The* Coropton process is described ty the following diagram (in c * 1 units). 

p,E = T * m 

Conservation of momentum: 

Conservation of energy: 

Invariance: 

Hence, 

so that 

or 

k = k' + p 

k + m = E + k' 

_2 2 2 
E » p + m 

£* = <£-JO-(It-£•> + "»* (froiaC. of P.) 

V + k'2 - 2kV co»> + m* 

- (k + m - k')8 

m<k-kV kk'(l -co##) 

(from C. of E.) 

^ - I - ± ( l - « - « <2.e) 



Now, since the right-hand side of this equation has units of reciprocal mass energy, 

we can go back to the "usual" notation by letting 
2 , 

m—»mc J. 
'' \ 

k—hi/ 

k" — nv' 

which leads to the well known result 
A ' - X = ^ ( l - c o s t f ) (2.7) 

or alternately, 

• * - * • - * TfSHSSAy = T J<2-°> 
where a « hp/mc . 

2 is of great practical importance to note that the Compton shift in wavelength, 

In any particular direction, is independent of hv; whereas, the shift in energy is very 

dependant on he. That is , high energy i&otons suffer a large energy change, but low 

energy photons do not. For 0 = 90°, 

2 

1 + mc /he 

so that hv' becomes a maximum when he — • , and therefore 

he' < 0.511 MeV.„ 

The, total differential probability, do/dfl, for a photon to make a Compton collision 

such that the scattered pboton is within a solid angle about theta, is given by the Kleio-

Nishlna formula ^ART, p. 102). Integrating over all angles leads to the total Compton 

cross section used in the mass attenuation coefficient, according to 

<T"ZJ d T T d n (bams/atom) 

where dc/di l is in barns/electron - sr and Z is the atomic number. - • 

- 30 -



The absorption component of the total differential cross section is obtained by 

weighting the total differential cross section by the fraction of energy carried off by 

the electron. That is, 

da& do- E(fl) • > 
U f " d7T ~hV" • 

The total Compton absorption coefficient can be obtained by integration over all 

solid angles as follows: 

i f do- A>d7JEdf l _r -= 
4 * ilTdTl d n 

or 

a hj> . 

Similarly, one can determine the scattering component. When integrated over all 

angles, we can obtain the result: 

<r = <r + v 

2.5 Attenuation and Absorption 

For use in calculating photon attenuation and absorption several macroscopic 

quantities have been developed from the cross sections for the processes discussed 

in this chapter. The ICRU has given official uanctlon to three coefficients (see 

Chapter 1): 

Mass attenuation coefficient 

It/P = pi* + < r + , B r

R +*) „ (2.9) 
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Mass energy transfer coefficient v 

Mass energy absorption coefficient' 

M e,//' = >*k(l-G)/p (2.11) 

2 The unlU of these coefficients are cm /g and the symbols are the following: 

T = photoelectric cross section 

a = total Compton cross section 

r o R = Rayleigh cross section 

K = pair production cross section' 

f = fluorescent x-ray fraction 

G = fraction of energy lost by secondary electrons in bremsstrahlung 

processes.. 

These coefficients will be referred to and uaed in subsequent chapters. 
• / - *p 

Two other coefficients often found in the literature are both catied mass absorp-
\ ' "' Uon coefficients and are approximations to the mass energy absorption coefficient: 

'**"-*(***£ **) , (2-i2) 

* i 
" a b M / P = P 

These coefficients will not be used "In this monograph. Tabulations of the various 
fi 7 R ** 

coefficients can be found in the literature. ' 

• \ 

j 
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f CHAPTER 3 
x • 

CHARGED PARTICLE INTERACTIONS 

\ 
3.1 Introduction 

, • . . \ . m. . 
In the previous chapter we saw that photon interactions in matter resulted in 

the transfer of significant amounts of kinetic energy to electrons. This chapter 
will consider in detail the interactions of charged particles and particularly elec
trons as they move through a medium. Charged particles moving through a medium 

• " . • * • 

interact with the medium basically In three different ways: (1) by collision with an 

atom as a whole, (2) by collision with an electron, and (3) by radiative processes 

(bremsstrahlung). The mode of interaction is largely determined by Die energy of 

the particle and the" distance of closest approach of the particle to the atom with 

which it interacts. , 

A. If the distance of closest approach is large compared with atomic dimensions, 

the atom as a whole reacts to the field of the passing particle. The result Is 

an excitation or ionization of the atom. The coulomb force la the major inter

action force and the passing particle is considered a point charge. These dis

tant encounters are also called soft collisions. 

B. If the distance of closest approach is of the order of atomic dimensions, the in

teraction is between the moving charged particle and one of the atomic electrons. 

This process results In the ejection of an electron from the atom with considerable 

energy and is often described as a knock-on process, or hard collision. In gen

eral, the energy acquired by the secondary electron is large compared with the 

binding energy and the process can be treated as a free electron collision, but 

the intrinsic magnetic moment (spin) of the charged particle must be taken into 

account in the collision probability. Radiative processes can still be ignored but 

if the particles are identical, exchange phenomena occur and become especially 
- 34 -



important when the minimum distance of approach la of the order of the deBroglle 

wavelength, A = h/p. 

C. When the distance of closest approach becomes smaller than the atonic radius, 

the deflection of the particle trajectory in the electric field of the nucleus la 

the moat Important effect. This deflection process results in radiative energy 

losses and the emitted radiation (bremsstnthlung) covers" the entire energy spec

trum up to the maximum kinetic energy of the charged particle. But, quantum 

electrodynamics (QED) demands that 

1. if radiation is emitted, it usually consists of a number of low-energy (soft) 
/ 
! 
\ quanta such that 

1 £ (hv). « T (total KE of particle), and 
1 ' ' • - • ' 

2. once In a while a photon may be emitted with energy cotaparabU to the 

incident-particle energy. ' 

3.2 Kinematics of the Collialon Process* 

We will discuss the collision process In an Intermediate energy region where 

the interaction can be treated as a collision with a free electron. 

Consider an elastic collision between a moving particle of mass M, total snsTgj 

E » T + M and momentum p, and an electron at rest with mass m. The interaction 

The discussion of the oollision kinematics and all subsequent probability formulas 
will be In c - 1 units. Thus, to return to cgs units replace m or M with me* or 
Mo*; respectively, wherever they appear. 
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can ba described by the folloriag figure 

p*E*=T**M 
p.E-T + M 

' M m "^o^fo 

B 
p'.E^T'ifh 

•ITttA* 

Conaervation of Energy: 

E + m = E' •• E" 

Conaervation of Momentum: 

InvmrUnce: 

which lead to 

Hence, 

E ^ - p " 2 * ! ! 2 

(E + m)* - P coa*» 

T , . am IUSSJL 
2 2 p ooa~L 

[m*<p 2Vi«V Aj 2-P 2co*** 
« K. E. of recoil electron. 

Mow, T' la a maximum when 0» 0, so that 

T&la.formula U Identical to Eq- (8) of Bexkas and Berger. 1 

For meson* and protona, M » m i o that two caaea are of latere at; 

1. High Energy Caae: 

For p:»MVm 

we have XL— » T . 



That, is, a high energy.meson or proton can be practically stopped by a hoad-oa 

collision with a free electron. '•• , ' 

2. Low Energy Case: 

For pocMYm 

we have T* * 2m(p/lA2 - 2m 
max , 

" i - 2om 

where 

* • $ 
That is, the maslmum energy transfer for a low energy meson or proton ' 

only on the particle velocity. \ 
1 f< v 

Bnrkaa and Berger point out that If the particle momentum la so great that tat * 2 approximation T V * 2mt) fails, the moving particle also probably cannot be 

as, a point-charge. This implies that form-factor effects will then have to ha iseLaasd. 

R should be noted that even for the moon (the particle closest in m u to the electron) 

MVin * 20,000 MeV. Consequently, for most attainable energies the low ens?fy 

approximation will hold. 

Now for the case of the electron, M » m, so that: -

But, 

so that 

r =» (T + m) * p + m , 

T. ^. m±*a l -T 
max T + 2m 

-ST 



But since the two electrons are indistinguishable after the collision, by convention 

the one with the highest energy Is considered tne primary electron and so 

T «T/2. max • 
t 

V 

3.3 Collision Probabilities with Free Electrons (Knock-on Cross Sections) 

The differential collision probability 4>co l(T. T')dT,dx Is defined as the proba-
-2 hiblity for a charged particle of kinetic energy T, traversing a thickness dx(g- cm ), 

to transfer an energy dT' about T1 to an atomic electron (assumed free). 

Nets: In the notation of FBM, 

' V j t 2 - 1 

was re the H refers to "hard" collisions. 

A. Incident Electrons (Mftlter Cross Section) 

t̂ r.TTdr - »c ^ffi^g [» - t *(ST < 3 4 > 
* probability that either electron is in <tt" about T" 

where S j - *N0<Z/A) r* - 0.150 (Z/A) (cm 2 - g"1) 

A, Z *> atomic weight, number 

N-" Avogadro'a number • 8x atoms/mole 
u -\ 

2 -13 
r. - e /m - 2.82 x io cm - classical radius of electron 

Remark: One caenot distinguish between the primary and secondary electron. 
Therefore, # . must be interpreted as leaving one electron at T' and the other at 

T-T'. All possible cases are accounted for with;0ST'ST/2, so that for electron-

elsotron interactions, T' = T/2. Not* that # j . is. symmetric In both T' and T-T'i max coi 
Figure 3.1 shows an electron interaction la which T' is approxlmataly T/2. 
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B. Incident Positrons (Bhabha Cross Sections) 

For T » m 

t' ,<T,T')dT' = 2 C m - ^ [ l - ^ + ( £ ) ^ <35) 
(T 1) L z ' J 

and 

probability that the electron is in dT' about T' 

probability that the positron is in dT' about T' 

^' o |(T.T')dT' = 2Cm d T ' ^ U . II + (11) 1 < 3 . 6 ) 

so that 

• c o l (T. .T ' )dT'=. [^ o l (T,T ' ) + «>»ol(T,Ti)]clT' (3.7) 

= probability thaUgither the positron or the electron 

is' lndT' about T'. 

C. Heavy Incident Particles of Spin One-Half (e. g. , Protons and Muons) (Bhabba, 

:• Massey and Corben Cross Section) / 

For T»ra ' 

; • • •W. ' * - .^ '^{ - ' , f£ r * i (ArO' p 8 ) 

D: Heavy Incident Particles of Spin Zero ( e . g . , Alpha Particles and Pions) 

(Bhabha Cross Section) 

F o r t » m 

w"w:f#[-' ;i] 
2 (Note: for alpha particles one must multiply by z - 4, since all formulas above. 

assume t = 1). 
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..m 
Rutherford Formula 

When T" » T' (i. e . , distant collisions with little energy transfer). The 
max ' . -

above formula* (3.4, 3 .7 , 3 .8, 3.9) reduce to 

* • c o ] ( T . T < ) d T • = 2 C n , ^ 
') ~7~ <T 

(3.10) 

which Is known as the Rutherford formula (not to be c oaf—ad with the Rutherford 

scattering formula for the same/process - - the elastic scattering of charged particles). 

The above expression gives the collision probability foe all particles and depends 

only on the energy of the secondary electron, T \ and oh the velocity of the primary 

particle. It can be derived rather easily using classical mechanics. 

Consider a charged particle moving past a free electron as indicated below: 

b = impacfparometer 

The momentum transferred to the electron, ]T, is calculated from 

4 p 1 = f F d t (time Integration ova" the force) 

We are only interested In the perpendicular force, since the parallel forces cancel, 

so that „ 
/ 2 . - - • • -

\ L r 2 • 

i , . , • . 

\ 2. <* 
v - z e b '-
" 2 ... .2 ,3/2 

Now, 

so that' 

(x + b T 

X = Vt 

dt = — dx v 
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and therefore 

Ac = 2teZ 

v bv 
i - i i I ze b 
| P l = / , 2 + . 1 3 / 2 

The energy transferred to the electron is 

, mb v 

o r " \ b

2 ' - - « « 4 -
^ mrr' 

2e« so that |2bdb| = ~—sdT' 
, mflTfry 

for a x = 1 charge (incident particle). Now, the probability of a collision with 

impact parameter in db about b in a thickness dx is given by 

. N Z 
F(b)dbdx = 2* bdb - j * - dx = * ^ d T ' d x 

or 

But, 

aad 

2we 4 N n Z 

2 , r Q = e / m 

c--'»of *J 

Tks derivation of Hutherford's formula presented above brings out the physical basis 

for the dependence of $ . on the various factors In the formula: 

1. The factor C expresses the proportionality of the collision probability to 

the electron density. _...: 
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2. The factor 1/p expresses the dependence of the energy transfer on the 

collision time. 
2 

3. The factor 1/(T') expresses the fact that collisions with large Impact 
parameters are more likely than collisions with small impact parameters. 

3.4 Ionization Loss (Energy Loss by Collision) 

So far we have restricted the discussion to collision probabilities of charged 

particles via hard collisions. In the total picture of oharge-particle collisions, 

hard collisions are comparatively rare and do not have much influence upon the 

most probable energy loss. However, this should not be Interpreted to mean that 

they are unimportant, since each hard collision carries away a relatively large 

amount of energy when it does occur. 

The average energy loss per unit path length (also known as the average stopping 

power) from ionization ( and excitation) is given by , 

) .$>) + 2SL) ^ 
'col -* t 'col '-?'« 'col 

where H means "hard" (close) and S means "soft" (distant). Thtacan be written 
T' 

- ) " / T ' *col « " +' • / " " T- * * dT- ( M e V - c m V 1 ) 
'col T* , H ' " ' vmin 

where 

• . =» * . given in the formulas In 3.3. 

S 
* , = collision cross section for soft-collisions (not derived here). 

H = energy transfer above which collisions can be considered hard. 

• - « - , 



Although not absolutely correct, let lis now make the assumption that 

* S . . = * H , = Rutherford formula (Eq. (3.10)) 

'•Hoi v , . c o 1 r yT-,. y VmiJ mln r min 
/T ' . = <__ 2 2 

Now, it can be shown from quantum-mechanics that T'^^/Tf. = (2m v /I) where 

I is the mean excitation energy. Thus, 

*L-?*'(*& in units of c= 1. 

• ' ' • • • ' > 

Although not correct, it does indicate the general features of the theory. (Note: 

Again, this expression holds for z = 1 particle. For particles with charge z, multi-
'<- 2 

ply above (and future) stopping power formulas by x ). 
Now, the soft-collision stopping power, as derived by BaflM, tm 

The derivation of (3.11) will not be presented here baoaw of the ds&Vaky that comes" 

about because of the 'binding of the electrons to the atom. This shuws sp ia the stop

ping power formula as the quantity I. Equation (3.11) sppiiea for elsetroas as well 

as heavy charged particles. -

We pan calculate quite easily the hard-collision term for the case of a heavy • 

(spin zero) particle. That is, (from Eq. (3.9)) ' 

l^-4-d!..;:;;--V. 
and for H <K T' 

max 

2Cm 

m^w -̂'i 
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So that upon Adding the soft and hard terms:. 

& SLr^K^)-^}—2-'"1' 
This relation applies to heavy charged particles (M»m) with energy and charge ful

filling the Born approximation condition 

At this point, certain modifications must be made to the basic formula to.correct 

for various atomic effects. The first of these effects is known as the polarization 

(or density) effect. Up'to this point, we have considered1 the collision process as 

occurring between the charged particle and isolated atoms. This is valid to a great 

extent when the absorbing medium is a gas. When the electron travels in a condensed 

medium, the atoms can be considered Isolated only in the case of close collisions. 

However, for distant collisions we must consider the electrical polarization of the 

medium\ln which the particle moves. The dielectric constant of the medium weakens 

the electric field acting at a distance from the atom, causing a decrease of the energy 

transfer to atoms located far from the particle, and hence a decrease in the mass 

stopping power (soft-collision term). 

Thus, in case of a medium in two phases "of different densities, such as water 

and vapor, the lower density phase has a higher mass stopping power and hence the 

name "density effect" — this effect is appreciable, however, only for relativistic 
3 velocities. The most extensive treatment of this is that of Sternhelmer. 

\ -
Another important effect of the dielectric constant Is the production of Cerenkov 

1 

radiation. This effect accounts for part of the relativistic correction to energy loss 

by distant collisions. The density effect and the Cerenkov light are interrelated, 

both being functions of t 

erally treated together. 

both being functions of the dielectric constant of the medium, and hence, are gen-
3 
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A second smaller correction Is necessary because the atomic electrons will 

contribute less to the stopping power' if the particle velocity Is comparable to the 

velocity of the electron In its orbit. This shell correction can be as much aa 10% 

for low energy heavy charged particles but is less than 1% for electro— of eaergles 

greater than 0.1 MeV and is a maximum of ~10% at an electron energy of about 

2 keV. Consequently, shell corrections are generally ignored for electron stopping 

powers. 

Considering all of these corrections, the final stopping power formula for a 

singly-charged particle heavier than an electron is 

where 
3 

5 = density effect correction "• 
3 J 

U = shell correction term -

Equation (3.13) is equivalent to Eq. (1) of Barkas and Berger. 

The overall picture., then, is as follows: 

1. The Initial behavior of the ionization loss, given by Eq. (3.13), Is that it 

starts decreasing proportional to fT. 

2. The logarithmic term containing the factor 1/(1 - p) causes a slow Increase 

in the relaUvUtic region (as the maximum effective' impact parameter in

creases). The point at which the slope of dT/dx changes is known as mini

mum ionization. It occurs approximately at T . ~3M. ('•''•" 

3. The increase tends to flatten out Into a plateau as the polarization effects 

N become increasingly more significant. This plateau is of the order of 

2 M e V - c m 2 - g _ 1 . 
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Finally, one can go through a similar analyala for incident electron* and poei-
S 2 

trona. In particular, the aoft collision formula • „ . . aa given by Bethe, la still 
correct.. One need only to use the proper hard collision formula to obtain: 

7 

where 

F"(T) - 1 -1? + [ T 2 / 8 - (2v > I) In 2]/( T + l ) 2 (3.1J5) 

for electrons and 

F + ( T ) = 21n2 - f j \ J + - ^ + - i ^ - j + — * — J (3.16) 
1 2 L T + Z (r+2) 2 ( 7 + 2 ) ^ 

for positrons and where 

T • T/m 
3 5 = density effect correction 

Stopping power values using Eq. (3.14) have been published by Berger and 

Seltzer. " * ' ' 

3.5 Heatricted Stopping Power (LET) 

/ For some application* the energy deposited by a charged particle in a region of 

specified dimension* about Its track ia of intereat. The baaic stopping power formula 

ia used but we must exclude the energy escaping from the region of intereat in the 

form of fast knock-on electrons (dblta raya). The expression for the restricted 

mean colllaion loss for electrons and positrons (LET.) Is: 

LV,A)-^ | lnp^± | i ] + FVA>-O (3.17) 

for electrons 

F ~ ( T , A ) - - 1 - / S 2 + ln[( T - A)A]+T/(T - A) 

+ [A 2 /2 + (2T + 1) ln(l - A/T)]7(T + l ) 2 (3.18) 
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sod for positrons 

r V A> - 1*TA> - , / f [r • A - ' ^ f ^ (T + I H T + * ) * - < * % 
L T + 2 <r + 2) 2 * 

. ( r * l H T * » ) A 4 - T A a / > * A V 4 V ( 3 W ) 

(T + 2 ) 3 J 

In this formulation A is the kinetic energy of the delta ray which Just escapes the 

region of interest. For,an electron of energy r passing through matter the maxi

mum energy transferred to delta rays is T / 2 . By Inserting A - T/2 in the above 

equation for L (T, A) it can easily be shown that 

L-(r.r/2)-g) 
'col 'col 

which is also called LETa for unrestricted stopping power). 

3.6 Compounds 

Often one needs to know the stopping power of compounds rather than pure 

elements. Stopping power can be calculated to a first approximation using Braggs 

additlvity rule: 

iST r , *T; 
* " J J ^ J 

where «. is the weight fraction of element J. 
J 

Since the Bragg additivity rule does not take into account the change of the 

electronic configuration in going from an element to a compound some error will 

be involved in the calculation. These errors will normally be of the order of a few 

percent and will be most serious for low energies. 

3.7 Gaussian Fluctuations in the Energy Loss by Collision 

Particles of a given kind and of a given energy do not all lose exactly the same 

amount of energy in traversing a given thickness of material. The actual energy 

loss is a statistical phenomenon and fluctuates around the average value as calculated 
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.above. Only heavy charged particles will be Considered bere since high energy 

electrons lose energy'substantially by radiative collisions. , 

Let i»(T., T, x)dT represent the probability Chat a particle of initial energy T Q 

-2 has an energy in dT about .T after traversing < thin knees of x(g - era ) of matter. 

Rossi gives the following equation for w(T f T, x): 

wfT^T.x + dx) - w(T 0.T,x) - -w(T^\x)f S>co, (T.T'HtT 

+ dx wfT^T + T'.xle^jOr+T'.T'JdT' (3.20) 

where 

•> c o l (T.T')»0 for T > T ,

> r j ( «J»d w(T 0 ,T,x)=0 for T > T Q . 

With the following assumptions: 
X- k c o l - d ? L " / T ' ^ ^ T T d T - constant 

'col •'o 

2" T a * T 0 " ^col ' a v e r * « e energy •* * ^ < 

3 - • c o l ( T + T ' T ' > * * c o l ( T - T , ) = # c o l ( T , ) o n , y 

4. CD(T T + T', x) varies only slightly so that one can expand in a power series 

of T" about T, and neglect terms beyond second order. 

One obtains 

9w i 9{jy', 1 2 oui (3.21) 

where 

p 2 « y (W#0{J(T,T'.)dT' 

To solve this, we introduce the Fourier transform pair 

-iaT oT(x, a) • —=r- / «(x,T)e~ dT 
V 2 * J-m 

w(x, T) = —=• .'/"ui(x, a) e l a T d a 

4» 



where we have temporarily dropped the T. for convenience. The Fourier, transform 

of Eq. <3.21) la: 

1 2 2 
** kcol w _ 2 p a u 

.". w<x,a) = w(0,o) exp J ( l a k ^ - j p a ) xI 

Now. 

fa-(O.T) - 0(TQ- T) (i .e. . »UifJe incident parUole of energy T^ 

aothat 

Therefore, 

where 

,-toTo 

T a = T 0 " x k o o l 

And, 

?<*(*, T) * - J = / ST(x, a ) e t a T do 

da 

where we have completed the eqoare^ 

- 5 0 -



Now, this Integral oan be accomplished by choosing the rectangular contour 

1 y 

-R + i (T -T a ) > \ R + i ( T - T a ) 

P2* , 

-VI . 
: i 

- ' 1 ' 

- R R 

By Cauchy's theorem, the integral around Oils closed path is xero because the inte-

grand is analytic at every point within and on C. As R becomes very large, the 1JW= 

grals along the vertical parts are seen to approach rero, and it follows thai 

UCT-T^/p x 

exp 

where 

H««we 

" i * r KT-TJ'] 

e ' ^ d u 
p x -• 

[FT \ UT-VY 

w(T 0 , t ,x>-
- ( T - T , * 2 / * 2 * 

/ » p * i 
(S. 
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Therefore, when all of the above conditions are fulfilled, the distribution function 

u> at the depth x is a Gaussian function of T with a maximum at T and having a 

half-width of 

o r= p yx 

The most probable energy is defined as the value of TJor which the function a;(T0, T, 

is a maximum. We see that this occurs at T = T , a s expected. . 
H - ' ^ 

Now, using the <t> . formula for spin zero particles, Eq. (3.9), (the other 
formulas could have been used as well); ,we have, * 

TL "" 
2 

P • £r? •>,.*,= ̂  I ~ ( l V & - =£-(,-i) 
From experiment, the conditions for the validity of the Gaussian solution can be 

expressed by Baying, thai 

- T' « <r « T (or T„ - T ) 
max a v 0 a' 

so that 

2Cmx 
P2T r max 

rt-v)-«('-M»' 
In other words, we have'a Gaussian distribution provided that 

„ 2Cmx 
02Tr 

7 max 

is large. 

* 2 2 
The expreaaion for p contains the factor (T 1) , whereas the expression for \p\ 
contains the factor T'. Therefore, distant collisions are much leas important in 
the computation of p 2 than they are in the computation of k ., and we assume that 
* c o l ~ * c o l f o r •^VAlues of T' down to T' = 0. 
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For thin absorbers (1. e . , small x) and/or high energies (so that T' is 
max 

large), G is not a large quantity and one cannot consider the fluctuations as Gaussian. 

3.8 Landau Fluctuations In the Energy Loss by Collision 

When G is not large, one cannot replace the lntegro-dlfferentlal Eq. (3.20) by 

the partial differential Eq. (3.21), and the determination of u becomes a.difficult 

mathematical task. Using Laplace transforms, Landau has obtained a solution of • 

the integro- differential equation that is valid when G Is less than about 0. 05. A "-"> 

complete solution has been given by Symon. The most probable energy loss, € , 

is obtained from the most probable energy, T , according to 

e = T - T = ^ * P 0 lp *<£&•'-" (3.23) 

where ] Is a function of the parameter G and of the particle velocity p\ and where 8 

is the density effect'correction. For high energy particles traversing a thin absorber 

( i . e \ , G SO. 05) > 

J—0.37 

Now, since the probability of collision decreases with increasing energy trans

fer, that is, 

* « * (T-) 2 ' j 

the energy-loss distribution is asymmetrical with a long tall on the high-energy 

side,, corresponding to infrequent collisions with large energy transfer. This is 

called the Landau distribution. ': 

3.9 Radiative Processes and Probabilities &. ' 

The treatment of electron energy loss by radiative photon emission (brems-

strahlung) is influenced by the distance from the nucleus at which the radiative loss 

occurs. Radiative energy loss is caused by an acceleration (generally in the form 
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of a change in direction) of the charged particle under the influence of the electric 

field of a nearby nucleus. If the distance of approach is large compared with the 
-13 —8 

nuclear radius ( > 10 cm) but small compared with the atomic radius (< 10 cm), 

the field can be considered that of a point charge Ze at the center of the nucleus. On" 

the other hand, if the distance of approach is of the order of the atomic radius, or 

larger, the screening of the field of the nucleus by the atomic electrons must be 

considered. One might consider a third process whereby the distance of approach 

Is of the order of the nuclear radius. As It turns out, in practice radiative pro-

cesses take place at distances far from the nucleus so that we do not need to con

sider this. • ' " " ' . 
8 According to the theory developed by Bethe and Heltler (and summarized by 

Rossi ) based on the Fermi-Thomas atomic modelthe Influence of screening on a 

radiative process depends on the recoil momentum of the atom in the process. The 

effect of screening on a radiative process In which an electron of initial total energy' 

E(= T + m) produces a photon of energy hi> is measured by the quantity. 

y- 1 M E ^ n T ) Z " 1 / 3 < 3 -*> 

It is seen that y is an explicit function of the electron "energy. When the energy E 

is small, y Is large and the screening may be neglected. When the electron energy 

is large, y is small and the screening is nearly complete. Since the probability, 

$ JT.hv) d(W)6x for an electron of kinetic energy T to produce a photon in d(hv) 
-2 about iw in traversing dx(g-cm ) is dependent on the screening effect, no single 

expression can be written for this probability. The radiation probability will be 

given here for two cases, no screening and complete screening with the restriction "̂  

that E » m . 
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I 

No screening^y >> 1) 

^<T.W,*, - *.%*$ S& [. • (f f -1 f ] 
(om 2 -g *) (3.25) 

• A 

Complete screening (7 = 0) 

*'^M^ = ̂ Jrl^ jf •(ff-ff] 
X [In 183 Z " l / 3 ] + I ^ J (cm2-?"1) ' (3.26) 

/ / 

Note: E',= E - hy 

E 4 T + m ^ T 

a = fine structure constant = 1A37 

n = refers to "nucleus,?1 

These probabilities are derived using the Born approximation which is valid 

only for elements where Z/137 « 1 . For elements of high Z it can be shown that 

the Born approximation error Is proportional to (Z/137) . The absolute erroc*can 
-r; 

be determined only by measurement. Experimentally it has Leen found that brems-

strahlung production from high'Z materials is of the order of 5 to 10% higher than 

predicted by the theory. 

Radiation energy loss by charged particles is also possible in the field of the 

atomic electrons (again, however, we only consider incident electrons). If the 

electron energy is such that screening may be neglected (and considering all of the 

electrons of the atom together), the probability of radiative energy loss is given by 
< s 

I * e - — * n 

Trad Z v r a d ' 
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' v •> / 

i <• / 

Therefore, the total probability is : 

fW^-iw-^itf •'*%[*&•% . 2 - 1 . (cm -g ) 
(3.27) 

For complete screening (and considering all of the electrons of the atom together), 

1- E' ,. 2 - 1 , 
+ 9 l < c m " 8 > (3.28) 

Neglecting tho*l/9/{iE'/E) termithe ratio of ^ d ^ r a d *s proportional to l / Z . The 

following table gives some comparisions: 

I . Table 3.1 

z 1 10 92 

• r a d ^ r a d j 1.40 0.129 0.0122 

i?(MeV) nuclei 87. 40. IS. 3 

*?(MeV) electrdhs 490. 105. 24. 

(17 -"energy required to obtain 90% of asymptotic value of <t> ,.) 

It id. obvious that radiation energy losses in the field of electrons a re important 

only for very high energy electrons in low Z materials. We can therefore write ' 

«*&*>- [*EJd* <J\*»*i 
$*™4iep ![^(*)2-f*j[-^ z- i / 34f]| <"'••> 

where* 

«-««/»id) 
The term ( for most materials is a small correction. The latest estimates indicate 
0.88 <{• <1.04 for materials between Pb and Mg. Therefore f = 1 Is good to a first 
approximation. * 
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FIG. 3.2 
Br*msatrahlttng- The Incident photoa beam direction is indicated by thtaMurrow. 
Tb* Comptoa Interaction at A produces an electron which loses a large fractkm 
of ita ooergy byradiatloo at B. The bremsstrahlung photon probably undergoes 
a Compton interaction at C. 
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Radiative energy loss by an electron is clearly showii in Pig. 3. 2. The sudden 

increase in curvature of the incident electron path (under the influence of a mag

netic field) indicates a large energy loss. The bremsstrahlung photon emitted does 

not leave a track but apparently makes a Compton interaction. 

3.10 Radiative Energy Loss and the Radiation Length 

The radiative energy loss of an electron passing through matter can be calcu

lated from the probabilities stated in the previous section. Thus the energy lost 

by.radiation is: 

g ) =l-/" h*.* JT.hWdfto/HMeV-cm 2 -*- 1 ) . 

If we neglect radiation in the field of electrons ( i . e . , • „ . • = $_„«)» w e ft6* f ° r 

-1 /3 ' 
the case of no screening (m«E«X37 mZ \ 

§) = 4 « J z 2 r f E t a ( f > i ) ( M . V - . „ V . P.** 
-1 /3 and for complete ccreenlng ( E » 1 3 7 m Z ) 

g ) = 4 « -g 2* r2

0 T [ ln(183Z- l / 3 ) + i ] (MeV-cm^g" 1 ) (3.31) 

Note: T =e E. 

It is convenient at this point to introduce the concept of radiation length. From 

Eq. (3,31) above It can be seen that at high energies 

f =-Kdx / ' ,. 

(we have now included the minus-sign to Indicate IOBB). Thus: 

T(x) _ -Kx ' 
. T(0) - e . ! " 

•^*+^ 
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where K is a constant for any given absorber. Consequently, the radiative energy 

loss will decrease exponentially with distance In the absorber- The. distance over 

which the incident electron kinetic energy is reduced by a factor l / e (due to radi

ative losses only) is defined as a radiation length and Is denoted by X. . * Hence 

when: 

T(x)/T(0)= e" 1 

Kx = 1 

and '. ' 

in the Bethe-Heitler formulation then (from Eq. (3.31)), 

i = 4 a - j f Z 2 r2

0 [ln(183 Z _ 1 / 3 ) + A j ( c m ^ g - 1 ) . (3.32) 

y^lt can be seen that in the energy region where the concept of radiation length is 

valid (energy losses due primarily to radiative processes), 1/X n is proportional to -
2 Z and is independent of energy. 

5 - 7 

H we include the effect of atomic electrons and a correction for the Born ap-
i 

praximation we get:' 

N„ 
j 4a-^Z(Z+l)rJln(183Z" 1 / 3 ) 2 _^ 

'•i* °M¥ 
(em -g *) (3.33) 

3,11 Comparison of Collision and Radiative Energy Losses for Electrons. 

Comparison of the energy loss equations for collision processes with those for 

the radiative processes shows first that while collision energy loss increases with 

* 9 
Dovzhenko and Pomanskll derive, In accordance with current theoretical, and 
experimental ideas, values for the radiation-lengths and the critical energies of 
common materials. 
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2 Z, radiative energy loss increases with Z . Secondly, collision losses Increase 

with InE (for T > m) while radiative losses increase with' E. Therefore at high 

energies, the radiation energy loss predominates. As the electron energy de-
- ' - / • ' - ' • " , . > 

creases, collision energy losses become significant until at a certain energy the , 

two are equal. Below this energy collision losses predominate. Thia energy la 

called the critical energy, « 0 -

Thia critical energy can be approximated by 

v (:rf]hr) M e V . < 3 M> 
The ratio of radiative to collision energy loss is given approximately by (FBM): 

(dT/dx) . T Z 

(dT/dx) c ( j l 800 ( d , d & ) 

It is instructive also to consider the behavior ot the fractional energy loss per 

radiation length for both processes (see Fig. 3.3). 

For collision energy losses: 

J . dT | _ ln_E . , 

- E ^Lr E Z ' . 
where ' 

J t=x/X„ - ' 
'SX. 

For radiative energy losses: f 

at low energies {y »1) 
u 

1 dT\ 
" E d t i . rad 

. , (2E 1\ 

ln(183Z~ 1 / 3 ) + -~ 

••• at high energies (y « 0) 

1 4T\ T 
d t 7rad ' E . 

\ 
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This shows that at very high energies ( > 1 GeV) where virtually all the energy 

losses are due to radiative processes the fractionar energy loss per radiation length 

is independent of absorbing material and particle energy, and in fact is almost 

identical to l a s shown in Fig. 3.3. Thus: 

• -mr *= • - . d t 

which leads to 

Ttofl , - . _ . - / * 

as we would expect. 

It is apparent from Fife. 3.3 that the deacrtpUoa of radiation phenomena is only 

slightly dependent, on atomic number wfce* tkiekaeeeef are measured in radiation 

lengths, and this dependence becomes ISM proaoasjced with Increasing energy. Now, 

we have demonstrated in Chapter 2, by means of the Fejromaa diagram, that pair 

production is the photon interaction that la complementary to bremsstrahlung. 

Therefore, if in analytic shower theory the approximation ia made that only pair 

production and bremsstrahlung Interactions are important, One can expect that the 

longitudinal development of an electromagnetic cascade shower will be essentially 

Z-independent whenever the' distance is expressed in radiation length units. This 

high energy approximation is commonly referred to as Approximation A in- shower 

theory. . » ^ 

3.12 Radiation Energy Losses by Heavy Particles J" 

Without going into the details of heavy particle radiation loss probabilities, a 

classical treatment of the radiation loss process will show why these, losses are' 

generally negligible for heavy charged particles. Consider a particle of charge e, 

mass M and velocity P moving past a nucleus of charge Ze, and let (1 - P) « 1 

(i .e. , p «1). K we consider the nucleus a point charge and assume"its mass is 
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' < 

large compared with M, we can neglect any motion of the nucleus during the lnter-
• 4t 

actions. In the proximity of the nucleus the moving particle will be acted upon by ... 

a force '- _j • ' 

b (1-P 2 ) / 

where b is the impact parameter. Hence the particle will undergo a maximum ac-

celeratlon 

F A «2 Zt, 1 

v -• 

According to classical electrodynamics this acceleration will cause the particle to 

radiate energy where the energy radiated per unit time is given bf'^' 

2e 2 2 - 2 2 
~£- a p e a _ , 

' * 2 From this one can see that the energy radiated-will-be proportional to a and hence 
the differential radiation probability ^ ' 

* r a d < T ' l u ' ) d ( h , ' > " ~ T ~ 

• 2 2 ' Now substituting r. = e /m (classical radius of electron) we see that 

^.WW^offl 
This shows clearly that radiation energy losses are inversely,proportional to the 

square of the particle mass. 

Consequently the radiative energy loss by any particle of mass M will be less 
^ * 2 

than that of an electron by a factor of (m/M) . 
k ' • • 

This is what we would have expected, however, since the same relationship 
appears In the complementary process, for photons — namely, • pair production. We 
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see that for muons,. the next closest mass to the electron, that 

roOO *rad, 
* \ = A \ x /0-511 Mevf _ ' 1. 
*rad^, radje, V 106 MeV / "40 ,0 e 

so that for dosimetry purposes, we can neglect radiation loseea by heavy charged 

particles'. 

3.13 Fluctuations in the Energy Loss by Radiation 

Up to this point we have assumed that the radiative energy loss is contintious 

as an electron passes through an absorber. Consequently the formulas given 

(Eqs. (3.30) and (3.31)) are for average energy loss by radiation. However, the 

probability is significant that an electron loses a large fraction of its energy in a 

single radiative process. Therefore, we expect to find a distribution about the 

average for radiative energy loss Just as we did for ionization loss. The corre

sponding probability function Is: 

W(T0,T,t)dT=^ fjgjgji 

where 

0 

This distribution is significant when the radiative energy loss process predominates 

(i .e. , T ><Q). In this energy region other processes become significant, namely 

cascade shower production. Consequently, an average radiative stopping power is 

*no longer valid. A detailed treatment of radiative, energy loss fluctuations will 

not be undertaken at this point. Analytic shower theory is discussed in detail in 

the text by Rossi. 

3.14 Range and Range Straggling 

Since heavy charged particles or low energy electrons lose energy more or 

less continuously as they move through an absorber, they have a definite range. 
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This range can be calculated knowing the rate of energy loss. Consequent]]), the 

mean range »R. of a particle of kinetic energy T Is defined by. 

R.(T)= / dT/(-dT/dx) 
w •'n ( 

where - —v—)i» given by the appropriate stopping power formula. This formula 

Ignores mutliple scattering. 

Now, the rate of energy loss la not strictly continuous but includes some statis

tical fluctuations as discussed previously.- Therefore, there will be a distribution 

of ranges about the' mean corresponding to the statistical distribution of energy loss. 

Since the energy loss process ia Gaussian for thick absorbers, the range distribu

tloa Is also Gaussian. The probability P(R)dR of a particle with an initial energy 
3 T having a range between R and R + dR is given by 

P(R>dB = 
ryji rap 

(»-V da (3.36) 

where 

« R - R o ) \ v = / " p t H K R - R / d R 

2 The quantity <(R - R )̂ > la generally obtained from measurements of the number 

of particles penetrating to a given distance. Because of the Gaussian nature of the 

distribution the relative number-distance curve is as shown in Pig. 3.4: 

N 

Distance R 0 R e 

/ 

FIG. 3.4 
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The point R. where the curve of N has one-half its maximum value is also the 

point at which the curve has its maximum slope, - l/bySir.- By constructing a tan

gent to the curve at this point and extrapolating to the R-axis intersection one ob-

taias the point R known as the extrapolated range. Th- relationship between R 
V - 6 

and the m—.n range Rg is given by the equation for the tangent line: 

(y 2 - y ; ) = m(x2 - x x) 

1/2 - 0= -\fvfix (R 0'- Rp 
or 

«e-«0=-^=V 
where S Is defined as the straggling parameter and 

The percentage straggling Is defined as 

100 » / " « « - y 2 > a v 

1006 
R„ 

R o 

The percentage straggling decreases slowly as the initial particle energy increases 

until a minimum is reached at T/M =2.5. It may be recalled that this Is the same 

region at which the minimum is reached in the stopping power curve. Beyond this 

minimum, < again increases reflecting the influence of the (1-P) term, ft turns 

out that c also increases slowly with Z, varying about 25% from beryllium to lead. 

This treatment of particle range Is not applicable to Ugh energy electrons where 

the predominant energy losses result from the production of bremsstrahlung. When 

th* electron energy is above the critical energy for the absorbing material, one 

•hoald MM a mean rate of energy loss due to collisions and bremsstrahlung in the 
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above definition of range. For energies much larger than the critical energy, 

the concept of electron range is meaningless because of cascade shower production. 

3.15 Elastic Scattering of Charged Particles 

When a charged particle passes in the neighborhood of a nucleus, it undergoes 

a change in direction, referred to as scattering. Because of the relatively small 

probability that a photon is emitted with energy comparable to the kinetic energy 

of the charged particle, the scattering process Is generally considered to be an 
mi 

elastic one. In addition we assume that the nucleus is very much heavier than the 

incident particle and thus does not acquire significant kinetic energy. 

We define the differential scattering probability as follows: 
JT(9)du dx = probability that a charged particle of momentum p and velocity 

-2 P, traversing a thickness dx(g-cm ), undergoes a collision 

which dsfflects the trajectory of the particle into the solid angle 

du about 9 (from Its original direction). 

Various formulas have been derived for .z(0)dw dx, which depends on the nature 

of the medium as well as tike charge and spin of the particle. If we neglect the 

shielding of a point charge, Ze, by the atomic electrons, and if we use the Born 

approximation, we can obtain the following expressions for heavy singly charged 
5 particles (c - 1 units). 

A: Spin Zero Particles (e.g., alpha particles and plons) 

where 

sin (9/2) 

N f l = Avogadro's number ' 

m = mass of electron 
2 s 

r- = e /m = classical electron radius 
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Z = atomic number 

A = atomic weight 
2 2 

Note: for alpha-particles, multiply, by t = (2, =4 
B. Spin One-Half Particles (e.g., protona and muons) 

4 U A U\pp / B l u * ( # / 2 ) " " - . _ 

This formula Is called the Mott scattering formula for heavy particles. 

C. Electron Scattering ' 

Mott derived the elastic scattering cross section for electron scattering 

from nuclei of charge Ze by employing the relativistlc Diraic theory with the Born 

approximation. By expanding Mott's exact formula in powers of aZ, McKinley and 

>e«hbach1 2 obtained > > 

Z 2 ,2 / m \ dw S ^ - K T ««*)-! •in (0/2) 

x [l - ^atn 2(»/2) + ir/3aZ(l- sin(0/2» sin(0/2)] (cm 2 -g - 1 ) (3.39) 

where a = 1/137 = fine structure constant. 

Note: The above formula la valid only for high velocities (fi ~ 1) and for rather low 

Z materials (a Z £ 0.2—-Z£27) 

D- Rutherford Scattering Formula 

For small deflections, sin{0/2) ~ 0/2, and we can neglect the spin terms, so 

that all formulas above become 

r u , ^ = 4K 0 ^ 4 (§) H ( c m V 1 ) (3-40, 
• v 

This equation, as well as the previous ones, are not defined at $ = 0.* 

E. Derivation of the Rutherford Scattering Formula Using the Born Approximation 
13 The basic formula for the Born approximation is given by 

£ t b = 2 4 2 l<K'|Ul*>|2da (cm2/atom) (3.41) 
4* n v 

*Note: We will see shortly that B > 6^ (Eq. (3.43)) due to electron screening. 



where p = particle momentum = Vk 

v = particle velocity 

and 

< k ' | u | k > = / r expC-ik ' -r]U(r)exp[ik-r jo^r 
"allspace 

= matrix element between the initial state. (E) and final state (£•). 

(Essentially, the Born approximation comes from Fermi's Oolden Rule No. 2 with 
the approximations: 

1) i ^ - e -

2) V f ~ e £• 
plane wave incident 

plane wave out 

3) H = Hamiltonian of the interaction = U(r) only 

4) Fixed point scattering center.) 

Now, the scattering process is described by the diagrams. 

ASYMPTOTES 

6/2 17*7*1 



ao that k=k' (i. e.', elastic scattering) and q = |k - F | = 2fc sin (fl/2). Let 

and 

(k -js 7) • J = q • r = qrji 

where 
t _' - x 

H o cos $ (q, r) • COB fi 
and 

Furthermore 

- l / 3 2 • S ' 
r = r Z /or = radlua of atom (FenniTThomae model '' 

d Sr = r 2 am fi dr dfi df - 2rr* dr djjp 

(neglecting; the sign and assuming azimuthal symmetry). 80 that 

<Hu|k> = / e ^ ^ U<r> d 3r < 

< ^ Z e * / / ^ e ^ r 2 d r * 
"0 -1 r 

• J o 

where x • qr and f = (qr,,)7 . Now, one can integrate by parte tw. ce to obtain 

y e"^x ain x dx - - | -^~j\( |ooe x + t aln x) e"*XJ t l + f V J , 0 
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' Therefore, 
4» Ze 2 

And from Eq. {3.41} 

<k'|u|k> = ±g* * j 
q l+f t r^ 

fedW=-fel<k'|ulk>|2do, 
4 i II v 

Now. 
\ 

P2 _ j | i i z V _ 

p »Hk»nA (de BrogUe wavelength) 

so that 

0 - V ( c - luniU) 
2 , r 0 - e / m (0 = 1 units) 

ine 9. by ••. 

e i , « 2 Z 1 / 3 X / r 0 

q r m - [ 2 ] t sin (6/3)] 
r Z _ 1 / 3 

r o z 

2 
• a 

2 

' " ' • i 
sin (fl/2) 

Therefore, ^ 

dw j . . _ 1 Jt _2 / m \ dw 

^ 

as---4* Mi*) p ^ T J 7 i ] i 

for small ancles. 
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And, 

N 0 do- _, ... ,_,„_ 2 JZ (0) da = -j— T - do> = probability per g - cm 

4 N zf r

2 / » V <*<" 
* 0 A 0 

which la a form of the Rutherford scattering formula 

unta fo 
14,15 

The 6. term account* for the screening of the electric field of the nucleus 

by the outer electrons. 

At this.point, a few general remarks are in order. First of all, when a 

charged particle penetrates an absorbing medium, moat of the scattering Inter-

actions lead to very small deflections. Small net deflections are generally the 

result of a large number of very small deflectioaa; whereas, large net deflec

tions are the result of a single large-angle scatter plua a number Qf very small 

deflections. Because of this fact, one refers to the small-angle Mattering as 

multiple scattering and the large-angle scattering is called single scattering. 

The intermediate caae la known aa plural scattering. 

Secondly, one can compute the scattering probability In the field of the 

atomic electrons to obtain 

Zr* ,2 „„»„ < s ^i ( a ) .* . 
9 

Hence, even though collisions with atomic electrona are responsible for almost 

all of the energy loss, their contribution to scattering is fairly amall (10% for 

Z= 10, l%for Z =82fc. 
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It should be noted that the actual process is complicated by the fact that -/. 

the scattering from atomic electrons Is inelastic whereas the above formula is 

for an elastic process. Furthermore, It can only apply to heavy charged particles 

since electron-electron interactions must account for. exchange effect* (I.e., iden

tical particles require one to invoke the Paull exclusion principle). .The net re-
2 * • • 

suit is the same since Z is usually replaced by Z(Z + 1) in the cross sections 

given so far (similar to the corrections made la the radiativo probabilities). 

Finally. ̂ e expressions that have bee* presented have been derived under 

the assumption of a point charge, Ze.,, The finite size of the nucleus, as well 

as the screening of Its field by the atomic electrons, limit the validity of the 

results to a certain range of angular deflections. The effect of screening has 
14 15 

been studied both by Goudsmlt and Saundeirson and by Mollere,. According 
, to Rossi, the screening of the electric field of the nucleus by the outer electrons 

v . • ' v ' ' - • - • > 

does not Mppr(r*tr<Wli~<- nffifrnfr H»n ™n**i—•* 

i 1 = r a Z l / S ( m / p ) - ~ « 2 - Z l / 3 X/r0 (3.43) 

This quantity shows up in the Ooudsmtt and Saunderson calculation and In the 

derivation above as follows (for small angles): 
\ 

\ 2 2 
=-(0)dw='" Z _ - 2 / m \ dw i , , Z_ ,2 (_m \ dw 

4 N 0 A Mp7) (6K9\f 

Note that jz(8) dw no longer diverges as 0—*-0. 
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In order to account for the finite size of the nucleus, Williams finds that 

the range of validity of the formulas for Z"(fl)dw Is limited (for large angieB) by 

0 2 ? =28O A ~ 1 / 3 ( m / p ) (3.44) 

We will make trae of theoo llnilta In the nsjtt ccciion. 

F. .The Mean Square Angle of Scattering 
-2 Assume that a charged particle traverses a medium of finite thiokness x(g-cm ). 

The value of (ff^ at x + dx equals the value of < # ^ a t x plus tpe mean square angle 

d<0 2> =fd2 ="(0)dwdx _ • 
6 * 

d«6 _ # 

of scattering irirdx which Is 

This may be rewritten as; 

dx 

where 

£•* f*2 spy** 
2 

\0 A l0VpT) » H A t ! ( 5 1 ^ M/6 
1 

= 8'NoT- ro(il) W i > 

= W l N o T r S S ) 2 l n f 1 9 6 ( Z / A , 1 / 6 z " 1 / 3 ] 

where we have assumed that .. 

a. JE"Wduj given by the Rutherford scattering formula (3.40), 

b. the charged particle Undergoes a large number of very small angle col

lisions, so that sin 9J.~ 6, ' 

c ="(»)= Ofor »<Sl or 6 ^62, 

d. 9. and 0„ given by Eqs. (3.43) and (3.44), respectively. 

:.-• Now, the coefficient 196 ( Z / A ) 1 ' 6 in the logarithm varies from!75 to 169 for 

A = 2Z (low Z) and A = 2.5 Z (high Z) respectively. Furthermore, from the J 
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definition of the radiation length (see Sec. 3.10), 

^ = 4 « ^ Z 2 r ; i n [ l 8 3 Z " 1 / S ] ( o m V 1 ) 

so that we can, to a good approximation, reexpress 9 in units of reciprocal radi

ation lengths, to obtain 

<3.46) 

where E 
8 

is defined by 

E 
s =(¥) 1 / 2 ™ = 21.2 MeV 

Thus, 

d<02> = m* (square radians) 

where dx is now expressed in radiation lengths. 

If the scattering layer is sufficiently thin so that energy loss can be neglected, 
2 

then 9 is constant, and we find that 

where pfi is in MeV/c, x is radiation lengths, and 9 is in radians. For high 
rms 

energy electrons, 

p^ = ^ 2 E = ^ 2 ( T + na)arT 

to a very good approximation. We then find that 

"rms T ( 3 - * 8 ' 

Often it is more convenient to consider the projected angle, 9 rather than the total 
5 (space) angle 9. It can be shown that 
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so that 

15 Jx. 
' vP 

(3.50) * / r m s 

G. Fermi-Eyges Theory of Multiple Scattering with Energy Loss 

The analytical treatment of this process is very difficult unless one makes 

extensive approximations. A review of the various approaches has been given by 
17 Zerby and Keller. One of the most widely used computations is attributed to 

Fermt and Eyges, and is also called Gaussian scattering. We will briefly discuss 

this treatment since the results are quite often used in shielding calculations arouad 

high energy accelerators. " 

The basic equation is the Fermi diffusion equation (FOE): 

0F(x,y,0J 
9x y ay „2 2 (3.51) 

where 

W = 2#?/E o 

and where F(x, y, 0 )dy d0 = number of particles at x having lateral displacement 
y * > ' . . . J 

(y, dy) and traveling at an angle (6 , d<M 

Beam^ 

.-_!L-,^lflr 
|y 

. • A A . 

UtlAt 

The derivation of this equation is given, for example, by Barkas. 19 
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Eyges solves this equation (with energy loss included) by the method of 

Fourier transforms, with the assumption that p,p, and hence W, are functions of 

x — that is, the fact that a particle at x has traveled a somewhat greater distance 

than x, due to the deviations caused by scattering, la neglected (a good approxi

mation for high energy particles). The final result of Eyges' mathematics Is 

4T^B 

«!*,,-2y *„ A, V ^ 1 

il "y_L 
4B (3.52) 

where 

B(x) = A ^ - A x 

•'o vr<n m (3.53) 

CI) 

V» • / 

(*-*?) *? 

Now, if we Integrate over 0 , we obtain the lateral distribution — independent of 

angle: 

H(x ,y)dy=/ F(x,y,0 v)d0 dy 
JJJ y y 

dy 

Similarly, the angular distribution —Irrespective of displacement — is: 

"* - G<*. tfyWtfy = / F(x. y, tfy)dy d*y 

o 1 - e - y » d e 

2yCS^ y 

Thus, we get Gaussian distributions for G and H as anticipated. 

<3.54) 

(3.55) 
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The mean square projected angle of scattering Is defined by L 

, < ^ > = y ? G ( x > V d 6 , =2A o (x) = 2 ^ - ^ -

If we assume that the scattering medium is thick enough to consider the scattering 

to be essentially multiple, but thin enough to neglect energy loss, we have 

W = 2p/J/E„ = constant s 
and therefore > 

</>=2x/W 2 

.. y •• 

(Vrms ^ T 

as before (see Eq. (3.50). 

A- more complete treatment of monltiple scattering, which' allows for plural and 
IS 21 

single scattering as well, has been done by Moliere, and Scott, and is beyond 
the present discussion. 

3.16 Sealing Laws for Stopping Power and Range 

As we have,shown in Section 3.4, the unrestricted mass stopping power for a 

heavy charged particle of mass M, charge z, and velocity p traveling in a medium 

of atomic number Z, atomic weight A, and density p is of the form 

p S ) «(x)<* 2 f0 .D>(MeV-cm 2 -g-V (3«») 

where 

'M-'~°K^-H 
and where the specific dependence on density is now indicated. !><• tve s*rtic lee, 

1 and 2, of different charge but moving with the same Telocity In a ftvaa saedinm, 
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we have 

9 "*' c

2

o 1 - I T * - J • <*•«) 
a i ' 

" ^ ' C O I 
p dx/ 

er 
Independent of their Individual masses. 

Now, to a first approximation die logarithmic term Is a( weak function of I. 

Hence for a charged particle of velocity P traveling In two different media, a and b 

we have 

1 dT\* (ZX 
col _ » .- . - . 

W. <*L 
H V;Q frartb3!T aoonras &ei 

Then 

col 

A 2 

Thus, to a good approximation the only difference in the shielding power of various 

materials is due to 'Stair doenMca. This suggests that absorber thicknesses be 
2 ' • ' " • ' 

measured In g/cm . 
The range of a heavy charged particle is given by 

dT 
-dT/dr) , H(cm)- f T ^ 

0 
Now, 

where 

T - (y - 1)M 

r - ( i -A- 1 / 2 

' " - . T O . -



aothat . v 
A f (? MPdfl 

pZr o FgSB^ 
or 

**($<fe) ^O- 1 ) < 3 6 0 > 
Therefore, for two different partioles, 1 and 2, traveling with the same.velocity in 

a given medium, we have that 

li (Hi\(^i\ 
R2 -\iij\zj 

(3.61) 

And If we make the reasonably assumption that F(£Q, I) depends only weakly on I, 

then for the same particle traveling In two different media, a and b, we have 

and with the further approximation that Z/A » 1/2, we have 

jja 
«b 

R a (3.82) 

as we have previously Indicated. 

Finally, there/is another convenient way to scale the unrestricted stopping 

power for heavy particles having the same charge. Consider Eq. (3.13) in the 

approximate form * 

J»-" ?"•[£&] 
From the relativistlc equations 

E = yl* = T + K 

and 
y 2 - l / l - /? 2 

- 8 0 -
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so that Eq. (3.63) becomes 

1 IT „ 4Cm(li+l) . r/2m\/T VT , \] 
, P*T i . / i . + a \ b[(—MMXM + 2JJ 

t which suggests that the stopping power curve for different particles of the same z 

will be essentially the same when plotted against the ratio T/M. This is illustrated 

in Fig, 3.5 using the stopping power data of Barkas and Berger. Notice that the 

minimum occurs at about T/M = 3, as previously indicated in Section 3.4. 
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ENERGY DISTRIBUTION IN MATTER 
^ , ' ' ' „ '.' ' 

4.1 Introduction ' / 

The quantity "absorbed doso" as defined by the ICRU (see Section l?2t items 

4 and 5) is a macroscopic concept like other physical quantities such as tempera-

ture and pressure. It is useful because it specifies in a single number the eaergy 

concentration near the point of Interest. However, it is obvious because of the. dif

ferences in biological responses to equal absorbed doses of different radiations 

that local energy densities and microscopic distributions are important in some 

instances. For some radiations the local energy densities can be significantly dif

ferent from the absorbed,dose. (See Fig. 1.1. j 

. The local energy density is the quotient E/m where E is the energy deposited 

in a mass,element m. Bta symbol is Z and it has units of ergs/g. The difference 

between Z and the absorbed dose D(= AE_/Ain) comes about as one shrinks the 

mass element about the point of interest. When the mass element becomes very 

small the energy losses of the charged particles passing through m are no longer 

averaged out and in facbZ will be zero in the majority of instances, when Z is 

not zero, moreover, it can be very much larger than D. These great-fluctuations 

in Z come about because energy is lost by charged particles In discrete steps. 

Thus the local,energy density in a small mass element will depend on the number 

of charged particles traversing the mass and the amount of energy .each happens 

,_ to lose during the traversal. ., 
: • - ' • - ! - ^ 

In this chapter we will discuss linear energy transfer (LET), LET distributions 

and energy density distributions. Although these processes are microscopic'and 

somewhat peripheral to the calculation and measurement of absorbed dose, they 



are important In understanding tbe energy loss process and the relationships be

tween absorbed dote and radiation effects. 

4 .2 Linear Energy Transfer 

; We have previously discussed (Chapters 2 and 3) the interactions of charged 

and uncharged particles with an absorbing medium. The deposition of energy in a 

medium is through the interactions of charged particles with the atoms of the ab

sorber and the average rate of energy loss is given by the stopping power formula 

appropriate for the charged particle of interest. At low energies stopping power 

is an inverse function of the square of the particle velocity. Thus it is obvious 

"- that as the particle slows down, the rate of energy loss Increases. Consequently 

a large amount of energy can be deposited in a small mass element. Some of the 

knock-on electrons set in motion through the charged particle interactions can 

have signiiicant kinetic energy, however, and deposit some of this energy outside 

the mass element about the point of interest. This is called "delta ray" production. 

The collision probability is given by (see Chapter 3) 

where 
., - . -}, 

z is the charge of the moving particle 

0 is the particle velocity (c = 1 units) a / - * 

T' Is the energy transferred in the collision. 

Consequently the probability for a collision to occur is higher for a slow particle 

transferring small amounts of energy in each collision. From Table 4.1 It is ob

vious that, based on velocity the interaction probability for a given energy Is much 

greater for a proton or alpha particle than for an electron. Therefore, the a-

particle or proton has a much greater collision density for a given energy than an 

electron. " • • "*.' •. _ 
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Table 4.1 

? 
Particle 

Energy (MeV) * e" p a 

1 

10 

1, 000 

10,000 

.9 

•1.0 

1.0 

1.0 

1.0 

.002 

.02 

.17 

.75 

.99 

.0004 

.004 

.06 

.36 

. . . 

Now consider the energy transferred in a single collision (T'). For the elec
tron T' = T/2 while for the heavy particles T' *2m ( r / ( l - n ) . From 

max max 

Table 4.2 we see, based on the maximum energy transferred, that the interaction 

probability again Is much greater for the heavy particles than for the electron. 

Table 4.2 

Tmax <*«*>-

Energy (MeV) e~ P a 

1 .5 .002 .0004 

10 5.0 .02 ''•> .004 

100 50.0 .2 .065 

1,000 500.0 3 .0 .55 

10,000 5,000.0 M.O 9 .0 
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As an example, for particles of energy 1. MeV the collision probabilities would 

be in the approximate ratio: 

" Afi «*P . - »« _ 1 1 ft7 1 f t 1 0 

V , : 9 , . 9 . = 1:10 :10 col col col 

The points to be made are that for a given kinetic energy T, 

1) Heavy particles are more likely to Interact than are electrons. 

2) The energy transferred per interaction is much less for heavy particles. 

Consequently, 6-ray production is much less and the local energy deposi

tion is much greater. 

The linear energy transfer (LET) concept is a description of the rate of energy 

loss from the standpoint of the absorber. As such it considers only the energy 

"locally imparted" to the absorber. It is different from stopping power in that LET 

refers to the average rate of energy deposited in a limited volume whereas stopping 

power refers to the average rate of energy lost no matter where in the absorber It' 

is deposited. * Thus in the LET concept an upper limit is placed on the discrete 

energy losses beyond which the losses are no longer considered local. As was 

pointed out in Section 3.5, we can take this upper limit as TL__ and calculate 

LET„ which is equal to the stopping power. Conversely we can also calculate a 

restricted stopping power corresponding to a maximum energy transfer less than 

T' 

4 .3 Delta Rays 

As we have discussed in Chapter 3, the principal mode of charged particle 

energy loss Is through collisions for all particles except high energy electrons. 

These collisions can be classified into two types depending on the Impact parameter. 

x 
The term stopping power will imply unrestricted stopping power asd corresponds 
anmertcally to LET — . 

- 88 -
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Distant (or soft) collisions are most probable and result in small energy transfers. 

Near (or hard) collisions on the other hand can transfer a large amount of energy 

to the secondary electron. The amount of energy transferred is governed by the 

collision kinematics discussed in Chapter 3. When the secondary electron has a 

kinetic energy that is large enough to cause ionization and form its own 'track, " it 

is called a "delta ray" (8-ray). This energy limit is about 100 eV. 

Biological effects of radiation are generally considered dependent upon the 

deposition of energy in microscopic volumes generally estimated to be less than 1 

nm in diameter (MT, Ch. 11). In tissue this distance corresponds to the range of 

a 6 keV electron. Hence, If a charged particle produces a ft-ray. having an energy 

greater than about 10 keV, the energy cannot be considered 'locally imparted." 

Customarily LET calculations have excluded energy associated with secondary 

particles above a given cutoff energy mA. * The o-rays with energy in excess of 

mA are then treated as separate particles. The value for mA depends to a large 

extent on the size of the mass element being considered in the microscopic energy 

distribution. Figure 4.1 shows the variation in LET depending on the value chosen 

for mA for electrons and positrons. It mA is chosen equal to I*",., the value ob- -• 

tained is called LET— and is numerically equal to the stopping power. For heavy 

particles the difference between the stopping power (LET„) and LET. is small for 

particle energies less than M (where U is the rest mass energy of the particle). 

Since there is Incomplete knowledge of the rate of energy loss of electrons 

having energies below a few keV (the process can no longer be treated as a collision 

between "free" electrons) only LET— can be calculated to any significant degree of 

accuracy. In addition, the choice of the value A is rather arbitrary. Consequently 

T~ : 
The LET formula (Eq. 3-17) is in terms of r = T/m, thus A is in units of m. 
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only LET hag significant meaning in dosimetry applications. Therefore, for 

purposes of radiation protection the quality factor (QF) is related to LETW only. 

; • ' i 

4.4 LET Distributions (ART. Ch. 2) 

Linear energy tranaier ia the average rate of energy deposition by a particle 
of a particular energy. The application of LET to dosimetry is complicated by the 

fact that all charged particlea traversing a mass element exposed to a particular 

radiation will not have the same energy (even if the incident radiation la mono
id .. 

energetic). This energy spectrum of charged particles will lead to a LET distri

bution in the absorbing medium. A knowledge of the LET distribution can lead to 

an understanding of how the microscopic energy distribution varies with the incident 

radiation. The LET distributions can be expressed in several different ways. 

One method is to define the fraction of particle track length T(L) at a given 

LET, L, per unit LET Interval. Hence, T(L)dL expresses the relative amount of 

track in the LET interval between L and <L 4- dL). 

A second method Is to define the fraction of dose delivered D(L) at a given LET, 

L, per unit LET interval. Then, D(L)dL expresses the relative absorbed dose de

livered in the LET Interval between L and (L + dL). 

Related to the second method is the definition of the energy dissipated N<L)L dL 

by electrons per unit volume in the LET Interval between L and L + dL, where 

. N(L) = -yCTUdL/dT)' 1 ( c m - 2 - L E T - 1 ) (4.1) 

The function y(T) ia the electron fluence at energy T per energy interval resulting 

from the absorption of a given dose of X or y radiation. The term (dL/dT)" is 

derived from the formula for electron LET (Eq. (3.17) and (3.18)). The negative . 

aign arises because dL/dT is negative since L ia a decreasing function of energy. . 
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It can be seen from the definitions that the three expressions are Interrelated. 

Thus, 

C ""NCDLdL 
•^min 

Also, If one assumes that the total track length laid down in a volume of unit mass 

within the absorbing medium is K, then the length of track between L and L + dL is 

KT(L)dL. Multiplying this by L yields an energy representation and since we are 

considering a volume of unit mass, it also represents dose. Therefore, 

LKT(L)dL«=D(L)dL. (4.3) 

This leads to a discussion of average values of LET. Since T(L) Is a fractional 

track length, 

'max. r 
L m i n 

LTflOdL^Ly (4.4) 

tfc; track average LET. Now from Eq. (4.3) we have; 
c -

r L m a x 

(4.5) 
L D(L)dL 

". v min 1 
K = —- = K — 

/ "^LT^XTL H 1 

L m i n 
(No'.i: Since D(L) Is defined as a fraction, y D(L)dL = K) TMs leads to 

r X M - i l & l . (4.6> 

We can also find the dose average LET 
L 

/
max 

LD(L)dL (4.7) 
L m i n 
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And the number average LET 

f™** LN(L)dL ; 

'L_ / • " M f J W o X 
mln frf 

l ' r 

These average values of LET can be used to determine such quantities as effective 

inactivation cross sections (cr) and effective BBS (R J under the assumption that 

er and R are proportional to LET. For example, let us assume that RBE is a 

function of LET that can be expanded in a power series, i. e., 

r(L) = r 0 + r t L + r 2 L 2 + . . . (4.9) 
and 

r max 
R e = J D(L) r(L>dL (4.10) 

L min 

Then 

R e -fhmMX r 0 D(L)dL + / L m f t x

 r iLD(L)dL + / J ' m a 5 t r2L2D(L)dL + . . . 
min mln min 

R e = t 0 + r l l : D + r 2 S + ' ' ' ( 4 ' 1 1 > 

where L Q and L D are the first and second moments of D(L). 

4.5 Event Size 

. At this pointy It Is useful to briefly discuss the concept of event size Y defined 
2 by Rossi as the energy E deposited in a spherical volume of diameter d divided 

by d; that is, 

Y = E / d (*"> 

In the idealized case of straight particle tracks having uniform LET, Y has a con

stant value in spheres of different sizes. Actually, because of track curvature and 

&-ray production, Y is generally not constant. This variation in Y expresses the 
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general inadequacy of specifying local energy deposition in terms of LET... The 

event size Y has a certain relationship to the LET and to the local energy density 

which will be discussed in Section 4 .6 . _ 

If we consider a path length x through a spherical volume of diameter d tra

versed by particles of uniform LET, L, then the energy deposited in the volume 

E = Lx " 
y 

and 

Y = L(x/d) . (4.13) 

Hence, 

Y „ = L (4.14) 
max i / 

4.6 Local Energy Density (Z) (ART) 

Local energy density is the quantify of interest in the discussion of radiation 

effects on an absorbing medium. It is directly related to LET and event size Y as 

defined in Section 4.5. It also has a special relationship to absorbed dose. 

If we consider an absorber of unit density material, an increment AZ of local 

energy density (ergs/g) is related toY(keV/fcm) andd(jim). When a single event of 

mlz* Y occurs in a sphere of diameter d, the energy deposited is Yd in a volume 

equal to (1/6) xd 3, Thus, 
Yd A . 6 x l Q - 9 e r g / k e V \ / i \ 

J 7 ? \ 10" Ucm 3/Mm 3 / (lg/cm3/ 
AZ« 

6 

AZ =• SOeOfY/d2) (erg/g). , ( * • » ) 

ft should be noted that if the radiation Is of high LET and d is small, AZ will 

represent a very appreciable local energy concentration. Figure 3.2 shows the 

maximum local energy density, AZ. ins ljim sphere of tissue traversed by electron* 

or protons of various energise assuming L « LETj. These curves have been cal

culated from Eq. (4.14) sad (4.18) which give AZ - 3M0 L for x - d - 1pm. 
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To compare the Incratr nt«J local energy density rate for the traversal of a 

•ingle particle with absorb* 1 doae rate, consider the following situation. Particles 

(e~ or p) with energy of 1 M V are incident on tissue. The absorbed dose rate is; 

R = l'Rad/hr. We consider vtissue sobers ofd-1 umand 1stmA- 6 IteV. Nowfor 

the electron. LET6 = 0. Ufc V/ftm (using Fig. 4.1 and LET, = 0.19 keV/fcm).3 For 

toe proton LET. = LET. » i 3 keV/iuu . Uaing &e*e numbers we can cainulate toe 

maximum AZ from Eq. <4.3i >) and (4.14) and aubsequenUy determine the rate of '„* 

energy deposition. This is i i>ne in Table. 4.3. . -

Table 4.3 

Comparison of Eoeiy / Deposition Rata with Absorbed Dose Bate "x—' 

Particle R 
(erg/g-sec) 

AZ 
(erg/g) 

Particle Vel. 
(cm/sec) 

Time to 
Traverse 

Lum 
(SWA 

AZ/t 
(eig/g-esc) 

'. e" 

P 

2.8 x 10" 2 

2.8 x 10" 2 

430 

9.2 x 10 4 

1.86 x l O 1 0 

1.38 x 10* 

3 . 5 * ft"15 

7 . 2 X J 0 " 1 4 

17 1 .1X10 

1.3 x l O 1 * 

Mote- R - 1 rad/hour, Particle Energy - 1 HeV. 

Since AZ ropToaanta the energy deposition from a single particle, it is obvious that 

the local energy deposition can be much larger than the macroscopic absorbed dose 

and the local energy deposition rata ran be astronomical compared with the absorbed 

dose rate. 

The energy density distribution is used to determine the frequency with which 

any event .resulting In a particular AZ will occur. Now, we can define the fraction 

of dost delivered at an enetgy density AZ as D(AZ) so that for each rad of absorbed 

dose 10OD(AZ) eig/g are delivered at an energy density AZ per unit A£4nterval. 

Tana, the frequency of occurrence of events resulting in an energy density AZ per 

9«-



rad p e r unit AZ Is '-• ••'•' . * : ^ ' 

:y f ( A Z ) = i 2 2 ^ A Z i H • • ; ( 4 . 1 6 ) 

We can also express the frequency of energy increments AZ'in term's of a probability 

of occurrence of an increment AZ, P(AZ) where: 

r < A Z ) r _ » p A ? _ i _ _ _ ^ 7 ) 

f m**P(AZ)AZd(AZ) C„ 

So, 
•I 

t 

*{f(AZ)= 1 0 0 - j g £1^21 ^ (4.18) ^3 -r ^^ i>(A2)A"2ci(A2) 

The frequency of eveats of all size* is given by integration of f(AZ): r - v ; • 
•^flAZXKAZ)- - ^ £^2_± „ (4.19) 

- j 0 ^"PtAZyAZdCAZ) / 

T' ^— (for 1 rad of absorbed dose) 
AZ 

The quantity P(AZ) Is the probability that an individual energy loss AZ will occur. 

The probability of finding an energy density Z at a specific point Is denoted by P(Z) 

which, also is the relative frequency with which Z will be found in a large number 

of randomly selected spherical volumes in the irradiated medium. When the ab- . 

sorbad dose D is very low, the value of Z is much less than the mean value of AZ. 

The spherical volumes under consideration will be traversed only once or not at 

all by a charged particle. Thus, Z is due to single events and P(Z) is proportional 

to P(AZ). On the other hand, when D Is Urge, Z is caused by many Individual 

traversal* each of which deposit an increment AZ. 

The distribution P(Z) is an extremely complex function:of the three variables 

Z, d, and D and as such does not have a simple analytical expression. It can be 

lb - • - , ' . 



menured in certain cases by simulating tbcrsmall {~ljim) diameter tissue sphere 

with "i spherical volume of tissue equivalent gas. The gas,volume diameter and 

pre»£ ire are adjusted to properly simulate the unit,density tissue sphere of inter

est. Vh'us, if the gas volume diameter Is 10 cm and the unit density sphere to be 
-4 -5 3 

Simula ed is 1 pm (10 cm), the gas density must be 10 g/cm . 

Dei >ite measurement and calculations] difficulties some general'features of 

the Z dĴ 'ritMiltcLL': con te? dfccussed. First, wo will consider the behavior of P(Z) 

as a function of d (the diameter of the sphere of interest). If d is large (or the 

order of millimeters), Z is always very nearly equal to D ( i . e . , the mass element 

Is large enc igh to average out the individual variations in the locally deposited 

energy). Coriequently, the curve of P(Z) as a function of Z will take the shape of 

a Gaussian dlqtribution of narrow width about Z = D. As d is made smaller, the 

individual fluctuations in Z become more important and the width of the distribution 

will increase a&Ltough the mean value of Z will remain equal to D. (This assumes 

that D is high ent jjh to ensure a Gaussian distribution as discussed below.) 

The behavior A P(Z) as a function of absorbed dose D shows that P(Z) is again 

Gaussian as long u , D U large enough to ensure that the locally deposited energy 

Z is due to many eveats. This requires higher doses of high LET radiation than 

low LET radiation because the energy loss process la more uniform along the path 

of low LET radiations. The magnitude of the individual energy density increments 

AZ depends on the'length of the charged'particle path through the sphere of Interest. 

FromRj. (4.15) 

AZ « 3OS0 (Y/d 2 ) 

and since 

Y - Mx/dJ 

from (4.13), 

AZ - 3060 H V d 3 ) . <4.*0) 

- » 8 •;-• - , . 



Hence, AZ alao depend* directly on the LET of the particle. Thus, although P(Z) 

la Gauaaian {or large value* of D, it becomes akewed aa D becomes smaller and 

the Individual increment* AZ become more important. In fact, for low doaea P(Z) 

approacbea P(AZ) which la highly skewed becauae of the high probability of AZ being 

zero and the fact that when an interaction doaa take place AZ will be very large com

pared with D. Some typical distribution* are shown In Figs. 4.3 to 4.6.* The 

analytical detail* of these distributions-were discussed in Sections 3.7 and 3.8. 

Since distribution* in local energy denaity are intimately related to distribution* 

in collision energy' lose, they will be affected in the same way and exhibit either 

a Gauaaian or Landau type of distribution. 

4.7 Conclusion* 

When an absorbing medium ia irradiated, the energy denaity ia alwaya non

uniform on a microscopic scale. Although the concepts, analytical treatment, and 

measurements involved are difficult, considerable progreaa baa been made toward 

batter definition and understanding of local energy denalty. More work needs to be 

doaa particularly in the area of applicability, ft appaara at thia point that kaowtedga 

of the detailed distributions of LET and energy density might be moat important la 

radiobiological research and radiation therapy. On the other band; the forawlaUon 

of present radiation protection recommendations and in particular,, the definition 

of the done equivalent make a measure meat of the donedietribution in LET impor

tant whenever exposure to high-LET radiation occur*. These measurements are 

difficult at present primarily becauae of the complex and cumbersome equipment 

required. v 

Prom (ART). Chapter 2. 
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CHAPTEH 5 ^ 

D06E CALCULAT10W8 

5.1 Introduction 

In the previous sections we have staked la detail the Interactions of photons 

and electrons as they pass through an absorbing • • ! • • • , k this section we will 

develop the basic formulas for the calculation of nutation flux density and absorbed 

dose rate from external gamma radiation sources of various geometries. A deter

mination of the absorbed dose requires a knowledge of the dose rata which in turn 

requires a knowledge of the source energy, the flux density and the rate of absorp

tion of the radiation per unit path length about the point of interest. The flux density 

depends on the radiation source. We shall discuss gamma ray sources first, then 

will develop formulas for calculating the particle flux density for various sources, 

and finally will present the calculation of absorbed dose rate and dose. 

572 Sources 

Badiation sources can be characterized by their strength and their geometry. 

In our discussion we will be concerned primarily with photons and four source 

geometries with the following source strengths: 

1) Point source 8 (photons sec ^ 

2) Line source 8. (photons cm" -sec ) 
-2 -L 

3) Area source S (photons cm -sec ^ 

4) Volume source Sy (photons cm" -secj ) 

To determine energy flux, density we must multiply the source strength by the 

photon energy. In general, the source will not be monoenergetlo, and consequently 

the source strength will be a function of energy. In our treatment we will develop 

the formulas for particle flux density for various source geometries. Since this is 
- 103 -
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a purely geometric treatment, the source energy does not affect the formulation. 

We will point out the quantities in the formulas which are energy dependent and 

which would require an integration (or sum over discrete energies) in the case of 

a source that is not monoenergetic. 

Flux Density <-
I 

general pattern to be followed In the development of the flux density tor-

be to derive the expression for flux density at a point assuming a uniform 

urce,distribution and neglecting^ (1) Attenuation, (2) buildup, and (J) self 

absorption. We will then extend each development to include nonuniform source 

distribution, attenuation, buildup, and self absorption as appropriate. 

The distribution of activity in a radioactive source is generally considered 

uniform unless otherwise specified. One case where the source distribution Is 

not uniform is a nuclear reactor core, another is a pipeline carrying a short

lived radioactive Isotope. Therefore, we will introduce calculations involving 

certain nonuniform source distributions. 

Attenuation, of course, becomes an important parameter when absorbers are 

introduced between the source and the point of interest. Attenuation is generally 

energy dependent and any terms in which the attenuation coefficient appears will 

have to be included in the integration over energy for sources which are not 

monoenergetic. Buildup also becomes important when absorbers are present 

between the source and the point of interest. A detailed discussion of buildup 

is included later In Section 5.12. Buildup is also generally a function of energy 

and must be treated as such for any sources that are aot nsonoenergetic. 

Self absorption may be important in the consideration of volume sources 

particularly when the source dimensions are of the same order of magnitude as 

/the photon mean free path in the material. Since this is an absorption process, 

it too Is energy dependent. 

- 104 -



5.4 Point isotropic Source 

irtmt 

Although radiation sourcea have finite dimensions, they arc often sufficiently 

small compared with the distance from the point of measurement to the soarce that 

the source may be treated as a point. The assumption of a point Isotropic source 

implies that the source distribution is uniform and photon absorption in the source 

may be neglected. The photon flux density at point P Is by definition the number of 

photons crossing the area A per unit time. Thus, 

* - S / A r 

In spherical coordinates 

A. 
.2* 

V = / f rdflr sin#d# 
r "'o "'o 

4*T 

Thus 

4*r 
(5.1) 

If an absorber is interposed between 8 sad P we must account for the photon attenua

tion. Thus 

, . 0 ,-nt 
4rr 

(»•*) 

where ft is the appropriate mass attenuation coefficient and t is the absorber thlolin— 

in | / cm 

105 



Buildup can be acccunted for by ainply multiplying Eq. (5.2) by the appropriate 

buildup factor B, co that 

4 = - ^ j Be"*11 <5.3) 
Arc 

The various forma of B are discussed la Section 5.13. 

5. Z, Line Sourea , 

The formula for the flux denaity at a point P from a line aource of length L 

depeade oa the location of P with respect to the line. Three point*, a* indicated 

In the following diagrams, will be considered. 

*»>*»» 

At P, the differential flux denaity from the line source element dy is given by 

Z 4»r 

Prom the diagram :,l eaa be seen £hat 

r » h sec# 

y = h tan* 

dy - h »ec 2 * d# 

MM 



Thus 

t 

Similarly for Pj 

4* / 
If.! li aac # 

- ^ P « 
,- it*r*T* 

(5.4) 

• i - i ^ ^ *^F - 5& <I««I - i«tr> (5.5) 

Par tk« aibattion wbara tha point of iataraat P„ ia on the axis of tfe* U M aoozc* 

nl 

r 
1: 

\t*TA11 
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S /.ill 
*3 = IT" 

y 

S 

Now if we consider the situation in which absorbers have been added between 

the source and the point of interest we find that the integral in the case of P, 

becomes " 

where t. sec 6 is the thickness of the f absorber along the line from dy to P„. This 

integral can be put into the form of the Slevert integral F(0,pt) (see Appendix for 

graphs of F(0,pt}) '""^— 

H 

A similar equation can be derived for $ . . 

i 
Furthermore. Eq. (5.«) becomes 

\ " Wi <*.»> '3 4*nl 
• • - < - ' 

Now, If we further include buildup, the form of the flux density equation will dapwad 

oa the aatare of the form chosen to represent the buildup. For example, if we 

choose a linear representation for buildup 

B j * ! +or(E)j».r 
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where 

then, for a single absorb 

The integral in general must be. evaluated numerically. Similar equations can be 
• • • \ •• . 

written for points P, and P_. ,> , • ^ 

We. can now consider the case of a nonuniform source, distribution. For example, 

consider the situation of a pipeline transporting a liquid containing a'shor£-lived 

radioisotope and tne point of observation is P„. (See previous figure.) In this case, 
^ W - B i X ^ V * where ^ 

K = X/v 

v = flow velocity (in negative y-direction on diagram.) 
s o = V / v : .^ . ' . 
Afl«= activity in the pipe at y = y 2 . 

H we assume that there is no attenuation or'Jxiildup, then 

which can be integrated numerically. 
• ' . '• r4 . • '' %, 

We can consider self absorption in the source in the case of P," This would * 
-u (y-l) , \~' 

lnf^oduce a term e " in the differential flux density so that 
. :-.- . :' s^ fu ^Jx:**: •'' . , ... r • 

1 ? • • • - . . . • • • • • : - v 

• • ' • , ' ' tf$ ' • - f ' -
- . * . - " ' • • • v 

- ' - - iofl- ' ' ' ' ' • • . . • • •:••'"-



where u is the linear attenuation coefficient of the source material. By a change 

of variables "• 
S L "s l / ' B l • ' * * , 

• . . i 

where E„ is an exponential Integral (see Appendix for graphs of EJ. 

The question often arises as to when a line source can ^approximated by a 

point source. In the simplest geometrical situation we have (from Eq. (5.4)), 

• *2='**%<l««M«il> 
For small angles the approximation Can|0f= \d\ can be made. In the case where 

1̂ 1 = |0 2l, tan |« | = tan \»^ = L/2h; and so, |»:J + |»J = L/h in the small angle 

approximation. Thus ^ 
^ L 

4 : .. •, 
4rh2 

which Is the equation for a point source with 8=8-1*. 

The small angle approximation is good to about 10% for 6 < 30°. Since 

tan30^ = 0.56. a line source can be treated as a point source for values of L/h < 1.2 

(or, when the separation distance h is greater than the length of the line L). 

- not- .&." , v "" /'-:.. 



5.6 Are* Source 

We now consider a source uniformly distributed oyer » plane as shown in the 

figure. The differential flux density at P is 

d ? 
SAdA 

4*P T 

where, 

dA = rdrd* 

b = a + r - 2rdoos0 
2 2 2 2 .2 2 p = h + b = h + d + r - 2 r d cos 8 

Then the flux density at point P la liven by 

.2* 
4 w Jd J0 h 2 + i * r 1 - Srd cos • 

- • - - » * 

We can do the integration over 9 by reeJixinf the Integral Is of the form 

(5.13) 

£ d» IT 
l + acos# * ^ . . 1 ' 

(a* < i> 

- I l l 



Therefore 

rdr 
A

 8A A . 

If we now let x = r , we have 

« 8A / * » * 
4 Jo v V + 2(ta* - d i !)x + (h 2 + d 2)^ 

V Rj + h 2 - d 2 + 7 ( R J + h 2 - d 2 ) 2 + 4 A 2 

4 l n «u2 2h 

In the special case of P, on the axis of the disc, d = 0. Hence,. 

*-H*9 •' 

(5.14) 

(5.16) 

If there la absorbing material between the source and the point of'ineaaurement, 

this can be taken into account aa before by including a term e ' ' \ In tbe dif

ferential flux density equation. Now seep = p/h, so that - ~ , 
8 . 

d>«= —K e 
4»p 

(p/h) p i ^ 
dA 

The Integral of this equation la quite complicated and will not be diacuased here. 

R Is solved and the flux density equation given in Rockwall (p. ,394) for the two 

cases of 

d 2 < R j + h 2 and d ^ H ^ - h 2 . 

If we treat the case of P . on the axis of the disc, the equation aimplifles to: 

• i " T / 
a / . ? • A " * 

h + r 
rdr 

and seep •= p/h as before. X we now substitute y - (£p:tp)/h, the integral becomes 

which is Just the difference of two exponential Integrals (see appendix for graphs of E^. 

•S t * 

^ 1 1 2 - """• -



So that 

• i " " r [ B i a i , , i t i > " E i c ? 1 i t i w A i ) ] < 5 - 1 6 ) 

For an infinite plane aoorce, seo0,-—•, to that 

, ; • i - T - E i < ^ i t i > -

At this poist, we-oaa account for buildup (or scattering) in each of DM absorbers. 

Using the exponential approximation for buildup (MT) 
-a.pt seel a^ptsecp 

B « Ae + <1 - A) e 

we arrive at 

• i - T " AfE^a + ajfcit] - E j t l + t f ^ t aeopj] 

+ (1 - AjfpE^l + a2)Mt] - E x [(1 + a2)Mt sec f j ] J (5.17) 

Here we have simplified the expression by considering only a single absorber of 

thickness t, and we have taken the point of observation at P., on the axis of the disc. 

We can also consider the linear representation of buildup 

B - 1 + a »it seel 

in which case the flux density at Pj la 

In this case it is obvious that the scattered radiation simply adds the exponential 

terms into the equation for flux density. In the previous expression the contribution 

from scatter is included in the exponential integrals and la not explicitly Isolated. 

The treatment of flux density from a disc source can be extended to include the 

case of a nonuniform source distribution. We will consider a two dimensional 
2 2 1/2 Gaussian radial distribution (o- « <r = <r, r » (x +y ) ). For simplicity we will 

consider only the flux density at P a distance h above the position of maximum 

source strength. We will take the source to be infinite in extent'and assume no 

113 
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attenuation. Then 

r +h 

S> 
2, 2 

8A •-/• e ^ L r d r 

We can reduce this integral to one of known form by two substitutions. Let 

r «<rx 

d r . A d x 

which gives '< . e . 

* i = ~r / . A A 

Now let 

Bo that 

0 x+(h Ar) 

. 2 / 2 u « x + h /o* 

du= dx 

h /o-

There la some point from the disc beyond which the disc may be treated as a 
2 v-> '' 

point source 8 = S. »R-. The point source equation is then 

. 8 A , R 0 SA "5 
4Th* * h :-

K we uhoose the point P,, we are interested In the distance h for which the approxi

mation 
8 . H? " - ^ J - o + H 

'-• ' • • • • V 

(from Eq. (8.16) holds. Thus '/ 

T -m 
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r7 - 1 - e 

This tpproxlMtlQD is food to irttUa 10% when R^/h2 < 0.20 (or RQ/h < 0.45). Thus 

a disc source may be treated as a point source for fa > 2.2 R. (or when the separation 

distance h is greater than the sovroe diameter 2RJ. 

5.7 Infinite Slab Source 

The logical extension of the infinite area source is the infinite slab source. 

We now consider an area of infinite extent but of a finite thickness. In this case ; 

self absorption in the source material must be considered from the beginning. We 

can derive the flux density by a simple extension of the area source by writing the 

differential flux density from an Infinite area element located at a distance x within 

the slab. 

From Eq. (5.16) (extended to an infinite plane) -
Sv 

d* = -y- E^ [at + Mg(h - x)] dx 

Here 8L.dx = 8 . , h is now the slab thickness, and n is the linear attenuation coef

ficient of the source material. We also consider attenuation in a single absorber 

positioned between the slab and the observation point (but we neglect buildup). By 

integratlng over x, we have 

t^-fj Ejjyt+M.fh-xtfdx. '* x 

SobstitisUnf y > pt + jig(h - x) we get 
Mt+M«h 

* • > t 
• j W * - . 

"I 

• • \ -

••* i i a . | -

/ 



Realizing that 

this becomes 

We have aaaumed alao that 8„ la constant through tha slab. 

It la instructive to derive this result from the basic gaooMtxy. 

(5.21) 

From the figure we see that the differential flux density at P ie 
S^ -(r-asecflu • t . ' 

4tr 

In spherical coordinates 

dV - r sin4d0d£dr 
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So the flux density is given by t ( 

, • si J» -.r/2 -(a*,)™** > H^«*~* g +V«**] 
W o 0 ^asec# r 

'-TJ0 - s ~ e f w 

. • f s ''o " -

Now if we substitute y = pteecfl in the first integral and y> (pt + u h)sec# In the 

second integral we obtain 

* - sr'i 4 1/ *r * _ *•*'+«»•*•'/ T - *• 
**• ( «$rt y z ' - W g n y* 

So — 

which is identical to Eq. (5.21). 

.Tlie properties of ^(x) are such that as x — «•, E_(x) —0 and as x —0, E«<x} —-1, 

so that for a alab source of infinite thickness (h-—«•), E ^ t + u h)—Oand 

mmllarly If there is no absorber between the slab source and P, then >»t» 0 and 

therefore 

From this it follows that the primary photon flex density at the surface of an infinitely 

thick alab souroe of Infinite extent is 

• I 
(that la, jtt - 0 and|t h—>»). * •' 

1 :>: - 1 1 7 - - -



Up to this point we have not considered buildup. This can be taken into account 

by Inserting any of the accepted representations for buildup into the differential flux 

density equation and carrying out the Integration. This becomes quite complicated 

and we will simply write the result assuming the linear buildup representation (KT) 

B «1 + a, u (r - aseu0) + a 2>itsec0 

*V 

Namely, 

• * ^T { ( 1 + °i> [V**-- V * + V& 
+ ot2Mt E ^ t ) - (a 2pt + a ^ h ) Ej(ut + ugh)) (5. »*) 

Expressions can also be derived assuming that the source varies with distance In 
• • ' • « . i 

the slab. Expressions for different types of source variations are given In Rockwell 
and will not be discussed here. 

5.8 Right-Circular Cyllpdw Source: Infinite-Slab Shield. Uniform Activity 

Distribution 

R, 
i ^ -n 

HZ 

- ^ L 

l*\f 
s 

/ 

&~'v* & 

&17 

/ 
y'Bt 

y 

r 

, • l » » l t 
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The alab absorber la parallel to the cylinder axla. The r airce atrength per 

unit volume, &,, la conatant. The, exact solution of this problem la very lengthy 

awl la not generally uaed. , What la uaually done (TBaf) Ir to approximate the cyl

inder by a line aource of atrength S. » 'HjSy which la positioned within the cylinder 

to correctly account for self abeorption. There is no clmple expression for 

Z - Z<R.t a, b), the self absorption dlatance; however, by empirically fitting the 
3 

approximate method to the exact calculations, only three curves for Z plus the 

F(0, b) curves (that la, the Sievert integrals) for Line sources are needed In order 

to aolve eylinder-etob problems. The three cu^ea needed to obtain Z are given 

in the Appendix and are used as follows: 

CASE: a /S 0 > 10 

Uae figure A.20 (see Appendix) andu Rfl to obtain u Z, wherep (cm" j is the 

macroscopic aource attenuation coefficient. Then obtain b_ from 

where 
1 b. =EM,t, (5.28) 

1 

Finally, obtain the flax density at P x from 

8, R 2 

and at P 2 from , 

iUR 2 * 
^ * 2 = ^ T 1 ) C F W 2 . V - F ^ I - V ] - <6S0> 
using the F-functyosa which are plotted in the Appendix. These estimates of the flax 

density are auppcjedly good to ± 10%, * provided a/R > 10. 
h • - • • ' . - • , - ° 

* * 
Note: Pror ided that the correct buildup factors have been included.' 

. : * ' . . : . • 



SASt- • / « 0 < 10 

Use Figs. A.21 and A.22 in conjunction with each other to obtalnp. Z. That 

Is, knowing RA I a, and u , find m from the first graph; knowing a/R and b,, find 

fi Z/m from the second graph; then multiply these together to obtain u Z . Finally, 

follow the recipe above to obtain <f>. This approximation will be good to + 40% and 

- 5 % . • • ' \ 

Other formulas are given for cylinders viewed exterior on end, and Interior 

CFBM). _ " 

Example: 

Consider a cylindrical tank containing radioactive water uniformly distributed 

throughout. The field positron is P. with *. * 4>» and the distance is restricted to 

\ 
with 

R„! < a < 70.0 Inches <, 

1) RQ ^ 5.5 inches 

2) h= 14.0 inches / 

3) no shielding or buildup 

4) self absorption In the water 

and 

5) the radioactive source consists mainly of 0.5.11 MeV photons with 

(i -0.092 cm" (the total attenuation coefficient for water). 

The normalized flux density Is obtained from Eq. (5.29), and Is 

2 /̂SyRj a + Z 

where we have dropped the subscript on theta, and where 

tan0 = h/2(aA* Z) < , 

Using Figs. A. 14, 20, 21, and 22, we obUin I'able 5.1. 

'*' \ - 120 - '?; • 



Table 5.1 

. , 
a<cm) >^o. »',<*+.9o>- m <l/mV<sZ X Z(om) tan« 9°' F(9, b 2) 2*'<«v$-

5.5 14.0. , 1.00 2.56 0.58 1.47 0.85 9 . 2 0.767 39.4 3.6 XlO"1 A.'6 xlO" 2 

10. 0 25.4 1.82 3.62 0.71 1.24 0.88 9 . 6 0.507 26.8 1.85X10"1 5.3 XlO"3 

2*0.0 50.8 3 . 6 4 ; 5,97 0.92 0.98 . 0.9O 9 .8 0.293 17.4 1.2 x l G - 1 2.0,XliD~ 3 

•W'i 68.6 
* 

4.90 7.59 1.12 0.86 0.96 "10.4 0.226 12.7 8.4 X10~ 2

X "1.07X10" 3 

35 .-0 88.9 ,6.37 .9.48 l-*9, 0.76 1.13 12.3 -0.176 10:0 5.6. XVQ~2 5.5 xlO" 4 ' 

45.0 J..M4.0 8.18 11.80 1.78 P. 63 1.12 12.2 0.141 8.0 
\ 

6.9 

4.4 x i o " 2 3.4 XlO"4 

55.0 140. 0 10 .00, - -' , v - 0.68 •". r.i p>121 

8.0 
\ 

6.9 
6.0 x i o " 2 •*.'4ljf* 

•82.0 158.tr, 11.30 • • ' - ' ' ' . ~ * 0.68 7 . 4 0.108 6 . 4 a.3r x i o " 2 
W-.4 3 . 2 XlO * 

'7p:s-.. 178.0?: " 12.70 .-' - . 0.68 [ . 7.4 0.096 
» . . • „ . . . 
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."£"' •:•'• ' The data in Table 5. I. are plotted In-Fig., 5.1 where they are compared with . -

_ experimental data that .was obtained as follows!" "'• ~ • 

i • . A tank, having the above dimensions, was filled with water taken.from a SLAC* 

^ beam dump that had been operating for several hours, with a high energy (E > 10 GeVV 

electron beant at a steady ipower level of 30 kty. The tank was returned to the labora-
• /IS \ 

tory and allowed to sit until the dominant activity ( . O, T. /„ = 2 minutes) had decayed 

" away. The dominant activity was then C which is a positron emitter (therefore, 

0.511 MeV annihilation quanta) With a half life of 20 minutes. Measurements were 

quickly made (over a few minutes), as a function of distance from the tank, using a 

GM counter . The data are plotted in Fig. 5. i_ (normalized ut a = 20 inches). The 

comparison is reasonably good'considering that buildup was excluded from the cal-, 

culation and the GM counter probably "doesn't correctly ndieasure the photon, flux . 

density. . - - " - - >• 
. ' - . •- . . * ' * , ' ' s * ^ 

/ 5 ,9 Spherical Source: Inflnite^Slab Shield, Uniform Activity Distribution 

Stanford Linear Accelerator Center. 
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FIG. 5.1 

Radiation at various distances frqm a right circular cylindrical aource. 
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The following discussion holds only for a shield perpendicular to the radial 

vector from the sphere center to P. Again, as in the case of the cylinder above, 

the exact calculation is lengthy.. The solution is approximated by replacing the 

sphere by an appropriately located disk source of radius R 0 (that is, the sphere I 

radius), which has a source strength per unit area ,- | 

The self absorption distance, Z, 'is obtained by empirical fitting, using the exact 

calculations. Figures A.23 and A.24 can be used to obtain Z as follows: 

CASE: a/H Q < 1 

Use Pig. A. 23 with u (a + R J to obtain Z/R 0 , and brace, Z. Then calculate 

° 2 f r o m - ' " 7 

where 

b 2 = b l + " . Z 

, - ^ . • • • 

Finally, calculate the flux density from 

• * - ' | a v B 0 [ E 1 ( l ^ ) - E 1 ( h 2 ' f l e o ' » ) ] (5.31) 

Range of Accuracy: -20% to + 50%. 

CASE: a/R Q > 1 

Use Fig- A.24 with/* R f l to obtain/i Z, and then follow the above recipe to 

obtain <£. Range of accuracy: -5% to + 15%. 

Example: ° T 

Consider a sphere containing radioactive water uniformly distributed throughout 

and with no shield between source and detector. Take 

R = 7.0 inches 

3.5 < a < 70.0 Inches 
- 1 • *' 

JA = 0. 092 cm (0.511 MeV photons in water) 
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The normalized flux density is obtained frbm Eq. (5.31) and is 

*0 = ^ V E l ( b 2 w e c *> H/ZSy. 

where 

•and 

b 2 = " s Z 

tatnfl = i^ / (a + Z) / 

Using Figs. A.23, A.24, and A.2, we obtain Table 5.2. ' } - • 

The data in Table 5.2 are plotted in Fig. 5.2 where they are compared with ^ 

experimental data that was obtained In a manner similar to that described In Section 

5.8, but using a hemispherical tank. The data were normalized to the calculation;' 

at a = 4 inches. " • •; • 
2 > 

A point source, corresponding to <p~ 1/a , is plotted as the straight line in '• 
Fig. 5.2. ' . • ' („ 

5.10 Spherical Source: Field Position at Center of Sphere ' 4 

Z • .'.-.' ' ' _...:.. .LV. 

I74 7A74 
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Tables. 2 

«<ln) a(cm) a /R„ 0,(»-KRo> z / R o V*«* Zjcm) tan 9 «(°) bgiecff *ts> EjfbjSeoff) 
.. 3 * / 2 S v H 0 

3 . 5 * . 8 9 0 .5 2 . 4 6 0.598 0 .98 10 .6 
1 

.0 .912 r 4 
1.33 0 .22689 0.12933 9 .8 X lCf Z 

7 .0 17 .80 1 . 0 . - - 1.01 11 .0 0.618 3 1 . 6 1.19 0'. 21574 0.16094 '.' 5 .5 X 1 0 " 2 

14 .0 3 5 . 5 0 2 . 0 - 1.01 11. 0 0.383 2 0 . 9 1.08 0.21574 0. 19216 2 ' ;4x 10" 2 
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2 8 . 0 7 1 . 0 0 4 . 0 - '- V i 1, 01 1 1 . 0 0.217 12 .3 1 .03 0 . 2 1 5 7 4 t 0.20867" ' 7 . 1 X 10" 3 
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Radiation at various diatanoM from a hemlapharioal aouroe. 
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(5.32) 

This submersion situation is applicable to finding the dose rate in a radioactive cloud 

or in a body of contaminated water. By symmetry, the uncolllded flux from a hemi

sphere (that is, no buildup) is exactly one-half of this. 

5.11 Transport of Radiation , 

The roost thorough description of a radiation field (gamma, neutron, moon, etc.). 

consists in specifying at each point'the number of particles'per unit time going in each 

direction in each energy interval. We can define the number flux density by 

<p(r, E,ft)dEdn =. number of particles at 7, with energy In dE about E and within 

the element of solid angle about fl (unit vector direction), 

which cross in unit time a differential element of area whose 

normal is in the direction A. 

We also can define an energy flux density by 

I(r'>E,A)=E<Mr,E,A) (5.33)' ^ 

which gives the energy carried by particles rather than their number. 

The equation that governs the transport of particles through matter, assuming 

that equilibrium in time has been established, is given by 

V;h <Mr,E.<lb+M<*»(r'.E,A) 

= 'JJ<l>(r,E',&')ntrffa'—ti, E'~E)d£'dfV + s(r,E,A) (5.34) 
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t;e n = attenuation (or interaction) coefficient 

s(7, E, 12) = source number density '. • 
' • . i _ 

= number of particles created per unit time at r which move in the 
*> 

• • ' direction ll per unit solid angle with energy in dE about E. 
a = number of scatterers per unit volume at r 

- " 3 • 

= ZN-p/A electrons/cm "for photons 

oiA'Hft.E*—E) = differential cross section for scattering from W to ft and from 

„£' toE. ' \ , • ^ 

Equation (5.34) is Boltzmann's integro-differential equation for the number flux 

density under time-equilibrium conditions. Multiplying through by E and using Eq. 

(5.33) we obtain 

V • A l(r, E, A) + ul(r, E, A) 
=ffl(T,E',hl)noih>—A,E' — E)E|£-dA» + S(r,E,A) 1(5.35) 

where S = E s which is the energy flux density form of the steady-state Boltzmann 

transport equation. 

Now, for the case of photons, the differential scattering cross section is obtained 

: from the Klein-Nlshina formula and from the kinematic equations relating energy and 

angle for. Compton scattering of photons from free electrons (see Section 2.4c). A 

modified form of Eq. (5.35) is the basis for all calculations in gamma-radiation 

dosimetry. Because of its basic complexity, however, the transport equation is, 

never solved in closed form in practical cases. The greatest use of the transport 

equation arises in estimating buildup'factors that are applied to the results of calcu

lations based on the uncollided-flux approximation — such as the source geometry 

computations that were carried out In Sections 5.4 through 5.10. 

It is the Compton interaction process that makes calculations (and sometimes 

experiments) so prohibitively difficult. To appreciate tills folly, 1st us assume that 
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oW—tipS'—"E) equals zero in Eq. (5.35). In other words, we will make the unr 

collided (or unscattered) flux approximation; that Is, no Compton scattering back 

into tiie point detector, although Cooiptoa scattering oitf c&a im considered in the 

attenuation coefficient, if so desired. Equation (5.35) becomes 

r V- Al(?,E,A)+jiI<r,E,ft) = S(r\E,A) ; (5.36) 
v- which is a linear inhomogeneous partial differential equation. 

As an example of the solution, of this equation, let us calculate the energy flux 

density, I(r, E), for a monoenergetio isotropic point source located at r « 0. In this 

case, 

A S(r,E,A)=0 f o r | r | > 0 

t -•- h = r t - (5.37) 

and 

^^i-^TilnT^^^TiLi < 6 - 3 8 > 
r 

so that Eq. (5.36) reduces to 

- 3 | j ( r 2 I ) + j » I = Q , r . > 0 (5.39) 
s' r 

which has the solution 
r e-M(E)r 2 

Hr,E)=^—^—- (MeV/cm - s e c ) . (5.40) 
r ' ' " • 

where C is a constant of integration. If we let C = SE/4x, we obtain: 

<M - ^ ^ v (5.41) 

4rr 

which is similar to Eq. (5.2) of Section 5.4. It should be pointed out that in the 

derivations that were made in Sections 5.4 through 5.10. we used the point-source 

formula (5.2) as a starting point rather than Eq. (5.38). In effect, we made a linear 

superposition of isotropic point sources, which was valid since Eq. (5.36) is s 

linear partial differential equation. 
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5.12, Buildup Factor Corrections to the Uncollided-Flux Density Calculations \ 

Because the uncollided flux density approximation neglects photons that undergo 

Compton scattering-in interactions, such quantities a s exposure r a t e , absorbed dose 

ra te and flux density (number ana energy) a r e underestimated in uncollided flux den

sity calculations. T h e degree of underestimation depends on several A c t o r s , the 

most important being the energy of the pr imary photons and the distance (fir) from 

source- to-detector . Is o rder to correct for Compton scattering into .the'detector, 

one introduces the concept of buildap. For each physical quantity of interest , one 

can define a buildup factor. Thus, we hare: *• ' • •• 
•>. / • ' . ' ' " • • . Y 

Number Flux Density Buildup Factor * '•'• 

' ••>^-ft$8gk / , : (5̂ 2) 
Energy Flux Density Buildup Factor n / 

' . . . • • ' ' ' • • *i 

Absorbed Dose Buildup Factor 
- • • ^ • ' - ' ' " ' " : ' : < 

rM_<E) fen**' -
B

a<*> = inrm r— ^• 4*) 
/ 

" M < E > -en I n ( r , E ) d E p ° 
where the zero subscript indicates the uncollided flux density (number or energy). 

Generally, B a is defined using ft Jp instead of n Jp, where ,, ^ 

a n d ' ' / : . '" ' : . ' , ' • '' ; . • ' • ' ' • " 

,« a /p. A [T + * • £ + < ] . (6.4«>. 

as we have seen in Section 2 . 5 . However, even though the two coefficients are 
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approximately the same (except for high energies), Eq. (5.44) is the correct 

definition for B. . a 
6 

The exposure-dose buildup factor, B , is defined" to be 

, r w fit 

s B*'r(r), (5.47) 

where p /p) . (E) la the absorption coefficient for sir (that is , the detector is assumed 

to be an ideal air-wall ionization chamber). Goldstein and Wllkins call this simply 

the dose buildup factor. 

In order to calculate the buildup factors above, It is necessary to know £(r, E) 

or I(r, E). The question may then be raised about the need for buildup factors and 

uaeoUlded flux densities if one must solve the exact problem anyhow. It turns out 

that the Boltxmann transport equation can be solved only for relatively simple 

geometries; however, one can improve on the uncolllded flux density or dose rate 
. • --- i 

estimates for more complex configurations by using these approximate buildup 

factors. s ^ 

Several techniques have been developed in order to find solutions to the Boltzmann 

. transport equation (5.35, or modifications of it), and we shall briefly discuss some 
9 

of these techniques in the' following paragraphs. -

a. The "Straight-ahead" Approximation Method 

Basic assumptions are: v 

1. Infinite homogeneous absorbing medium 

2. Neglect angular change in direction of photon; but,' account for photon 

energy losses. . 
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The second assumption is motivated by the fact that at high energies,' 
. . ' • , - . ' . ' .'fe •' 

Compton scatterings are predominately at small angles. This is seen, for 

example, in Fig. 4!5of(FBM). The results of this approximation are 

* quite poor (especially for low-Z materials) and may be off by several orders 

of magnitude. 
'" *' f' 

b. : Method of Successive ScatteringB 

In this technique, one makes use of the fact that the unscattered flux density 

is easily obtained. The unscattered flux density and the scattering cross .' 

,. section give the collision density (interactions/cm sec) for first scattering. 

- By treating such scattering collisions aB new Bources, the flux of singly-
r • • • N 

scattered photons can be found. A more detailed description of this technique 
is given by Goldstein. 

' • ' - > 

c. Monte Carlo Method 

In this technique, each photon interaction is chosen at random from the given 

probability distribution for that type of process (such as absorption, scat

tering, etc..). One simply follows a sufficiently large number of photons 

through the medium, keeping record of their histories. The technique be

comes prohibitive for deep penetrations due primarily to the length of time 

needed to perform the large number of calculations. The present generation 

of computers has alleviated this difficulty to some extent; however, modifi

cations (approximations) of the basic Monte Carlo technique are generally 

necessary in order to make such calculations feasible. This Is especially 

true for electromagnetic cascade shower calculations. The greatest asset' 

of the Monte Carlo calculation lies in the fact that It can be applied essen

tially to any geometry. The Monte Carlo technique, however, does not 

solve the Boltzmann transport equation itself. 
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Method of Moments 

This technique, which was originated by Spemer and Fano, is a semi- v 

numerical method for solving the Boltzmaan transport equation. Except for 

distances significantly less than one mean free path frcm the source, the 

technique yields results of high accuracy for point and plane isotropic sources 

in infinite absorbing media. Tha bacfc ohortcomitoc ot this tectaJque is 

governed by the above restrictions. In such cases, the method of successive 

scatterings and the Monte Carlo technique are superior. The authority on 

this subject is Goldstein and Wilkins who plot the exposure-dose buildup 

factor {dose buildup factor in their nomenclature) and the absorbed-dose 

buildup factor (energy-absorption buildup factor in their nomenclature) as a 

function of the relaxation length, /ir, for eight different media and for an 

energy range from 0.5 to 10 MeV. Some of their curves have been repro

duced in the Appendix (Figs. A. 25 through A. 30). 

The buildup factors of Goldstein and Wilkins are the ones most notably used 

the fields of dosimetry and health physics. A few precautionary remarks, are 

order: 

1. The exposure-dose buildup factor, B , (commonly called,the dose build-

- up factor) is quite often mistaken as the quantity to be used for absorbed 

dose calculations, whereas one should really use the absorbed dose 

buildup factor, B , defined by Eq. (5.44) (the energy absorption buildup 

factor in Goldstein and Wilkins nomenclature) • 

2. Goldstein and Wilkins used u Jp in their calculations (Eq, (5.46)), 

whereas, to be precise they should have used u Ip (Eq. (5.45)). The 

difference is probably negligible but should be checked for each indi

vidual situation. 

V l 3 4 -
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3. It should be reiterated that these calculations are for point and plane 
' • • • ' / 

Isotropic sources In infinite absorbing media. 

•. • N i 

5.13 Approximating the Buildup Factor with Formulas i 

As we have aeen In previous sections, various equations can' represent build

up factors. The most attractive representation, referred to as the Taylor for

mula, is given by - ° ) 

B(E 0,ur)= £ J A n e » (&.48> 
n=l 

where E_ is the primary-photon energy and ft Is the associated linear attenuation 

coefficient, fa practice, only two terms are required to fit the Goldstein-Wilkins 

data to within 5% for the point Isotropic source in an infinite medium. We have, 

therefore, 

B(E0,ur) = Aj e + A^ B e (5.4^ 

where 

A 2 = 1-Aj 

and where A., a - and «_ are functions of E. for any given medium. One has to 

decide on B_, B , or B when choosing the parameters A,, a , and a . . These 

quantities are plotted In the Appendix (see Figs. A. 31 through A.3e). 

The wisdom of fitting the Goldstein-Wtlidna data to a sum of exponentials lies 

In the fact5that one can, in many cases, replace the uncollided flux densIty^equa

tion by a sum of N terms (usually two), each Identical in form to the uncollided-

flux density equation but with fictitious attenuation, coefficients.given by ^(l+a_) 

and with weighting factors given by A . For example, the energy flux density, I, 

for a finite-line source in an Infinite medium (with 9 =9 =6) is given by the 

- 135 -



uncollided-flux density equation 

S E 

where b = pa •, " 

a = source-to-detector distance 

and by the energy flux density with buildup equation 

S E N 
I = - £ r I^An F<'-V 

where 

b n = f . ( l + a n ) a 

Thus, the preceding calculations (Sections 5.4 through 5.10) for the uncollid%i-

flux density can be taken over merely"by inw*ls?3 eh® above changes In the attenu

ation coefficient and weighting factor. Other formulas for approximating the 

buildup factor are given in (MT) and have been Illustrated in Sections 5.5, 5.6 

and 5.7. 

In actual practice, one is faced with the problem of determining the buildup 

for a source-slab configuration, whereas the buildup: factors discussed above are 

for sources in an infinite medium. An approximation, most often used is simply 

to use the infinite medium buildup factors for such geometries. .Comparisons 

with such calculations are readily found in the literature and are generally quite 

reasonable — at least for radiation protection applications. 

When shielding consists of multiple layer^, the problem of-arriving at a— 

highly accurate buildup factor becomes especially difficult. The crux of the 

problem of selecting a good buildup factor for such shielding arrangements lies 

in the fact that the flux incident on second and subsequent shielding layers is 

generally far different from that incident on the first layer. Therefore a product 
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of buildup factors, one for each successive layer, la quite artificial unless the 

buildup factor for each layer is choaen on the basic of the eaargy flax lac id—t 

oa that layer. Sinbe the energy flux on each layer beyuad the first awy be quite 

complax, the problem of generating a buildup factor 1c tadosi ajritdahli. At 

the priaaat time no generally acceptable method of haadUag aW arables* Is 

available. However, several empirical tecamrnies tor obtalaiag a buildup factor 

have been suggested. They should probably be thought of as rules of thumb 

generally yielding only rather rough predictions about flux and dose. Some of 

them are: _̂ — ..,.—^ ^ - -

1. For a light material followed by a heavy material, only the buildup 

factor for the heavy material should be used. 

2. For a heavy material followed by a light material, the product of the 

buildup factors is used (in the case of more than two slabs, this 

technique can be used but may yield a very conservative answer (I.e., 

flux and dose predictions on the high side)). -

3. For a series of layers, the buildup factors entering into a product 

buildup factor may each be weighted according to the number of relax

ation lengths of each shield material present. 

4. The actual shield may be replaced by an equivalent shield of simple 

composition. "Equivalent" is used here in the sense of virtually 

identical in regard to gamma-penetration properties. (FBM) ; 

5.W Calculation of Absorbed Dose From Gamma Radiation 

We have now reached a point where we can fully appreciate the complexity 

of and some of the difficulties associated with gamma ray dosimetry. The basic 

cause of the difficulties is the fact that not all gamma ray interactions are purely 

absorptive. This fact oomblned with various source geometries gives rise to the 
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complex nature of gamma ray absorbed dose calculations. It is because of these 

complexities that an absolutely accurate calculation of absorbed dose in an object 

exposed to gamma radiation Is Virtually impossible. 

Any object inserted into a radiation field will perturb that field by absorbing 

and scattering the gamma rays and electrons. We can,, as a first approximation, 

assume that the object does not perturb the field and calculate the absorbed dose 

based on the calculated gamma ray flux density at the point when the object is 

not present. Assuming we have considered absorption and scattering in the flux 

density calculation, this approximation will generally be adequate when applied 

to small objects such as ion chambers or dosimeters used in dose measurement. 

The approximation is generally not adequate when one is interested in calculating 

the absorbed dose at some depth in a massive object such as a man. m this situa

tion, attenuation and buildup should be considered since man is more than one 

mean free path thick (for hp < 10 MeV). f 

to this section we will discuss the equations necessary to calculate the gamma ' 

ray absorbed dose at a point assuming we have determined the flux.density at that 

point bysome nvethod such as those detailed in 5.4 through 5.10. Consider, as 

a review. fljfijjliwrtng concepts and definitions that have been presented earlier: 

AbaodlwB'Bfloac — Absorbed dose (D) ia the energy Imparted per unit 

mass of an absorber. 

- Energy Imparted — Energy imparted Is the sum of all energy entering 

a mass element on charged and uncharged particles minus the energy 

leaving the mass element on charged and uncharged particles minus the 

energy converted to rest mass In the mass element. 

Mass Attenuation Coefficient — The mass attenuation coefficient meas

ures the number of photons interacting (through any process) in passing 
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through an absorbing medium. 

The mass attenuation coefficient is generally used in the exponential 

•'" when calculating the reduction in flux density of photons passing 

through an absorbing material (see Section 2.5). 

Mass Energy Absorption Coefficient — The mass energy absorption 

coefficient measures the amount of energy deposited in a medium by 

photons interacting in the medium (see Section 2.5). 

»•«»•-i[rd-;«r4*«(l-^)]ci-C9 . 
to principle, the calculation of absorbed dose is rather simple. One deter

mines the photon flux density at the point of interest, multiplies by the energy 

of the photons to get the energy flux density and then by the mass energy absorp

tion coefficient to determine how much of the energy is actually deposited at the 

point of Interest. Finally, applying the appropriate constants to convert the 

units to rads and multiplying by the time during which the photon flux density 

was present yields the absorbed dose. Mathematically 

D(rads) = 1.6 x 10"8 flcm"2 sec"1) E(MeV) -£& (cm 8 i f 1 ) t(sec) (5*50) 
r 

In actual practice, however, the calculation of absorbed dose is generally very 

difficult and the beat we can hope to do is obtain a reasonable approximation. 

We saw, in the sections above, how complex the calculation of the flux density 

becomes in all but the most simple geometrical situations. The addition of 

attenuators which introduce the need for scattering corrections compound the 

complexity. Scattering corrections using buildup factors are at best gross 
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approximations, particularly since the buildup factors by nature of their deter

mination are strictly applicable only in Infinite media. 

We must, in addition, account for the energy spectrum of the photons since 

in general the .source will not be monoenergetic, and even if it is there will be an 
t 

energy distribution after the photons have traversed an attenuating medium. In 

general, the energy dependence of the flux density, attenuation and energy absorp

tion coefficients, and buildup factors are not easily written in an analytical form. 

Consequently, we are left with choosing an average or effective energy for the 

photons in our calculation and thus Introducing another approximation. 

Also, in calculating the absorbed dose by means of Eq. (5.50), we are 

assuming charged particle equilibrium at the point of interest, since the mass 

energy absorption coefficient treats only the energy deposited by photon Inter

actions in the mass element at the point of interest. If charged particle equilib

rium does not exist, we must somehow calculate the difference between energy 

entering and leaving the mass element on charged particles. 

Finally, we must account for the fact that the flux density, sad consequently 

the dose rate, may not be constant in time. If the source is a single radionuclide, 

the time variation of the flux density is determined by the half-life of the nuclide 

and is easily handled. However, radiation sources are seldom so sin pie and.If 

the source Is a combination of several radionuclides, fission products, .or an 

operating reactor or accelerator, the treatment of the time variation of flux 

density (or dose rate) is rather complex. 

An approximate formula that is often used to calculate the "dose" rate at 

1 foot from a point isotropic gamma ray source is 

R = 6CE 
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where C is the source activity in curies and E is the gamma rajr snetgj M MeV. 

The quantity that is actually calculated by means of this sanation is sat «*a*a«re 

rate In roentgens/bour. There are certain limitations to the MM of this formats 

which should be understood, and the following derivation Is useful in pointing put 

these limitations. :" 

The flux density at 1 foot from a point Isotropic source assuming no attenua

tion is 

W ^ = 3.7 x 1 0 1 0 fr-sec^-Ci'1) 3.6x 10 3 (sec-hr' 1) C ( C | ) 

4» (30.5 cm) . 

,10 „ ... _ - 2 L J_-1 1.16 x 10 C (y-cm -hr 

In the energy region 0.07 < E < 2 MeV the mass energy absorption coefficient 

for air is 

u /p - 2.7 x 10"2 c m 2 - g _ 1 (± 15%) 
GD 

We will see that 1R =87 erg/g in air. Hence, 

a = l-16x 10 1 0C(y-cm~ 2-hr"S 2.7 x 10~ 2(cm 2-g~S 1.6 x 10~6(erg-MeV^S j v M < V ) 
~~': 87 (erg-g^-R'S 

or 

- R(roentgensAr) at 6 CE , (5.51) 

where C is the activity in Curies and E is the photon energy In MeV. Thus, in 

the energy range 0.07 < E < 2.0 MeV this formula can be expected to give the 

exposure rate (to within — 20*5̂  at 1 foot from a point isotropic gamma source, 

assuming no attenuation or buildup. 

The relationship between exposure and absorbed dose Is another important 

concept1. The importance of the relationship will become more evident la 

Chapter 6 when we discuss dose measurements. What is generally measured is 
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exposure and an understanding of the relationship of exposure to absorbed dose 

is necessary. 

If we make use of the terms already defined: • 

Particle Fluence * 
Energy Fluence \ • F 

Absorbed Dose D 

Exposure 

Mass Energy Absorption Coefficient 

X 

Mass Stopping Power V dT 
ff dx 

we can develop certain relationships between them in the calculation of absorbed 

dose. First, we introduce the quantity, W. W is the energy required to produce 

one ion pair in air and has a measured value of 34 eV/i.p. for most radiations 

and energies of Interest. Using this quantity we can calculate the absorbed dose 

in air exposed to 1R under charged particle equilibrium. '• 

D = 2-58 x lO^rfC-fcg'S 34feV-lp"S l . ( x 10~ 1 2 (erg-eV~S 
1.6 x 10" l f t(C-ip"S 1 x 10S (g-kg"1) l x 10 2 (erg-g"1-rnd"1) 

» 0.87 rad 

In general then, the absorbed dose in air is given by 

D(rad) =0.87 X (roentgen) (5.52) 

.. Now, if we have a monoenergetic photon beam of energy E, the energy 

fluence is F = e>£- .With E measured in ergs the absorbed dose at a point In air 

will be given by 

D(rad) = 0 / 100>*E(u^/pL^ =* «• W X(roentgen) (5.53) 

from above. "-
tt'r 

- .141 -

t 



' ? . " ' " j j . ; , -• . •• 

If the beam of photona has a spectrum with a maximum energy E . then the 

absorbed dose is given by 

D(rad) = l | o / , n * < E ) ( ^ ) » l r E d E '<*•** 

-2 -1 
where 0(E] now has the units cm MeV 

If thefi e iedium involved is not air and charged particle equilibrium exists, 

then the dose to the medium is 

^ e n 7 ^ 

.> < n M»-°- w x-5vjtw ( 5 - 5 5 ) 

where X Is exposure In roentgen. . s 

Up to BOW?we tww f̂M*̂ f<*̂ -rr̂  P-VS^T" "n i*r̂  ^^icLo tasHdeat ©a tho saciiiusii 
• ' / ' f t ! 

of interest. If the particles axe charged particles with a fluence per unit energy 

interval #<E) entering a volume of cross section area dA and depth df, the dose 

' E m " - " ' 
l . « x l 0 " 8 r g£(E)*(E) dAdidE 

D ( r a d ) = _ pdAdi — " 

1.6X1Q- 6 r m dT jg(E)*(E) dE (5.56) 

where the stopping power, dT/dx, haajpfejutits MeV-g -em . 

V 
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CHAPTER & 

MEASUREMENT OF RADtATBON DOSE - CAVITY-CHAMBER THEORY 

6.1 Introduction 

To measure absorbed dose (energy absorbed per unit mass).in a medium 

exposed to ionizing radiation one must-introduce into the medium a radiation 

sensitive device. Normally, this device will constitute a discontinuity in the 

medium since it generally differs from the medium la atomic number and density. 

Because of these differences we know from the previous chapters that it will have 

different properties with regard to absorption of energy from ionizing radiations. 

This radiation sensitive device can be a gas, liquid, or solid and will be referred 

to as a cavity. 
r 

Consider this cavity situated In a medium permeated by a spatially uniform 

flux density of photons (<$>). At any- point within this medium (at a depth equal to 

or greater than the maximum secondary electron range*), charged particle 

equillbrium^wJllbe^61osely approximated and the photon flux density will give 

rise to a spatially uniform electron flux density <<M. By considering a finite 

exposure time t and defining fluence <P = <pt (or 0 = <p t) we can determine the 

absorbed dose to the medium** (M): 

D M = * E ^ e n ^ J M -

This'ban also be written, using the electron fluence 

DM " * e l p d x / . 
(IS) 

Note: secondary electrons are those electrons produced by photons; knock-on 
electrons from these secondary electrons will be called fi-rays. 

We assume throughout this discussion that G=0, so that ft /p =j»„/p. 
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\ 
where it is understood that 

and - ^ 

How, if we introduce a cavity into this medium, the absorbed dose to the 

cavity will in general be different from the absorbed dose to the medium. The 

relationship between the dose to the cavity and the dose to the medium depends 

on the cavity material and the cavity size, m general, we will assume the cavity 

material is different from the medium. Concerning cavity alze, there are three 

situations. 

.1. Cavity dimensions small compared with the electron range. 

2. Cavity dlmeasitsns large compared with the electron range. 

3, Cavity dimensions of the order of the electron range. 

The first situation was assumed in the development of the Bragg-Gray theory. 

However, later theories by Laurence, Spencer and Attlx, Burch, and Burlin 

have allowed the extension of the Bragg-Gray theory to situations 2 and 3. 

6-2 Cavity Bite Small Relative to Range of Electrons 
A Baaic Assumptions 

The requirements underlying the statement that the cavity ai*e is small 

relative to the range of the electrons imply the following assumptions (ART): 

1. The secondary electron spectrum generated in the medium by the 

primary photon flux density is not modified by the presence of the 

cavity material. 
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2. Photon interactions which generate secondary electrons In the cavity 

can be neglected. 

3. The primary photon fluence in the region from which secondary elec


trons can enter the cavity Is spatially uniform. This implies that the 

.secondary electron fluence ( * ) la also uniform. 

B. Bragg-Gray Cavity Theory 

We assume, as Gray did, that the introduction of a gas-filled cavity Into 

a homogeneous medium does not change the electron spectrum that is present 

in the medium. In other words, 

^e e e 

where <t> is the electron fluence (which could have basa written as a differential 

d* /dEas welt). 

Consider now, two geometrically identical volume elements — to make it 

easier (but less general), two cubes — one a small cavity in an Irradiated 

medium and the other a solid element of the uniformly irradiated medium. Let 

the respective linear dimensions of the two volume elements be in the ratio s:l, 

where* 

g i (MeV/cm) 

df| c(MeV/cm) 

so that the volume elements are related by 

8VC = s 3 « V M 

Let SE be the amount of caergy lost by one electron in crossing the volume, fiA 

be the croBS-sectlonal area of an element and 6"N be the number of electrons 

s la called the stopping power ratio. 
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crossing the volume. Then, 

'«t - f)c • 

- « • Q* • 1 

This leads to 6E r = 8E M . Also 

S N C = * e 6 A C = * e 8 2 

6 N M = * e * & A M = *e 

2 which leads to 5N„ = a *N,,- Hence, if E denotes the energy lost per unit 

volume, we have 

SN C 6 E C 

v*-C " o V c • 
fi2 S N M 6 E M 

fl3fiVM 
But 

- _ S N M 8 E M 
v**M « V M 

so that 

v E C = s v E

M 

That is, the energy lost (per cm3) by electrons in the cavity is l / s times thai 

lost in the medium. The basic assumption here is that 0 (or d 0 /d£) is 

unchanged — in other words, the cavity is small relative to the range of the 

electrons and the electron energy loss is continuous. 

Now, we have seen (Chapter 1) that the energy Imparted to matter by elec

trons in the mass element Am Is 

, A E D - ^ c V < A E L>c + ^ u ' <**!>« " <***>« 
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(here c = charged particle, u = uncharged particle) and ttiat under charged particle 

equilibrium conditions 

^ c ^ i A , 
by definition. Thus 

) = A E K 
' / v 

j 

so that the energy imparted (i. e., lost) by the secondary electrons in a volume 
(mass) element in the medium is equal to the energy lost by the photons through 

interactions within that volume (inane) element (assuming G = 0; that la, brems-

strahlung production is negligible). 

We can now state Gray's principle of equivalence from the above two state-

meats: 

'The energy lost per unit volume by electrons in the cavity is 1/s 

times me energy lost by y-rays per unit volume of the solid. " (ART) 

To complete the derivation of tiso Bragg-Gray relation,, we must aov make a 

further assumption, as Gray did, that energy lost by the electrons in crossing 

the volume is equal to the energy deposited in the volume for both cavity and 

medium. In other words, energy does not leave the volume in the form of a-rays 

without being replaced by an equivalent amount of energy'entering. 

Now, if J is the ionization per unit volutne of gas, and If the average energy 

dissipated in the gas per ion pair formed, W, is independent of energy, we can 

calculate the energy absorbed per unit volume of the solid by 

v ^ ' v V * / <«•» 

which Is called the Bragg-Gray formula. , 
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It is more common to use the energy absorption per unit maaa in the solid, 

E k . , and the Ionization per unit mass in the gas, J, which comes about from m M . m • 
the above equation as follows, where them denotes mass: 

m B M P M = - W m ^ C 

But, we let ,. ^ 
1 dT\ 

_ Pdx/M 
m s Jdf\ («.3) 

pHxVc 
to get ••• , 

m M m m ^ 

C. Extensions of the Bragg-Gray Theory 

In addition to the assumptions stated above, Gray also concluded that the 

stopping power ratio waa 'almost Independent of the essrgy of the electrons ". 

m reality, it is not and Laurence (1937) modified the Bragg-Gffay theory to 

account for the energy dependence of the stopping power ratio (ART). By 

assuming a continuous energy loss model for electrons traversing a medium 

( l di*h—i 

0dx/M ** C I > E ( ' •••• *°* 

reciprocal of the maaa stopping power of the medium). Under these conditions. 

Laurence derived an expreaaion for the mass stopping power ratio of the medium 

to the cavity gaa (subscripts Z and G, respectively): 

i ( Z / A ) Q r. \ *a ,. ( 2 7 5 ^ [ + W ^ + dz< To>] «•••» 
at this equation, b-(TJ and d_(T-) are fun ottos* of the initial electron energy 

and have been tabulated in NBA Handbook 79 . 3 m addition b„(T0) dependa to a 

small extent on the ionlxatlon potentials (L, and LJ. The function d^TJ accounts 

for the denaity (polarization) effect. 
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The inherent assumption in the Bragg-Gray theory that the electron energy 

loss is continuous is also not strictly correct. In 1955, Spencer and Attix and 

in an independent paper, Burch, published theories to account for the discrete 

energy losses by electrons (ART). The Spencer-Attlx theory limited the stopping 

power ratio to energy losses below an arbitrary energy limit A. m practioe, A 

is taken to be the energy of an electron which will Just cross the cavity. Con

sequently, A is not only energy dependent but also dependent pa the oavtty site 

(or gas pressure). Burch used the same model as Gray but n defined Ma vetaaM 

element dimensions to exclude the energy leaving the volume on s -rays «r avasna-

strahlung. The extreme difficulties involved in this formulation have atwva*ft»s1 

any numerical sbliit'ica to the theory. 

Spencer and Attix were able to derive an approximate expnaasaa ler fee 

ratio of the total electron flux density to the primary electron flax dsasaty at as 

energy T for electrons of initial energy TQ . This expression J»_<T-,T)J la 

easily obtained numerically and is used to calculate the fast elaetroa apnotta 

The result is that Spencer and Attix were able to derive an analytical expression 

tor the mass stopping power ratio taking into account both the Mergy dependence 

and the fact that the electrons do not'lose energy continuously. The formula 

is given in the same form as the Laurence formula In NBS Handbook 79 : 

1 < Z / A>Q I \ \ 

ii" 

Again, the functions C-CTQ, A) and d

2 (T_) are tabulated. The cavity size de

pendence enters through c z (T Q , A) while d z(TQ) is identical to the dz<TQ) in the 

Laurence equation. 
i 
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These modifications to the basic Bragg-Gfray stopping power ratio are im-

' portant for certain situations, in particularr when charged particle equilibrium 

does not exist. This situation may arise at the interface between the medium 
/ 

and the cavity or when the primary photons have energies greater than a few MeV. 

When this occurs, there will be an imbalance between the energy entering the 

volume and the energy leaving the volume on charged particles. Hence, the 

Bragg-Gray assumption that ths energy lost in the volume by secondary electrons 

is equal to the energy lost by photons through interactions In the volume is no 

longer valid. That is: 

< - K)« - «l • K). - Kl - K); 

However, the result y E c ^ E y or identically AJg£ = ~ AE* Is still Valid. That 

is, the energy imparted to the cavity is related to the energy Imparted to the' 

medium by 1/s. Since the absorbed dose Is defined in terms of energy imparted 

It will still be measured properly by the cavity provided the correct value is 

chosen for s . 

In general, in the energy region where CPE can not be assumed, we can also 

not assume 8-ray equilibrium. Consequently, the energy lost In the cavity is 

not necessarily equal to the energy deposited in the cavity. This U the situation 

the Spencer-Attix theory attempts to take into account by choosing a limit on the 

amount of energy lost which can still be considered locally deposited. In fact, 

what Is done Is to use a restricted stopping power ratio in place of s . The 

* ' 
. The symbol A in this formulation is defined in Chapter 1 and is not the same 
as tne A in the Spencer-Attix equation (*. e) for s. 
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energy restriction Is based on the cavity size. Thus we can write: 

E w = A s W J 
m M m m * ,» 

* • * 

At higher energies, the secondary electrons may also lose energy by brems-

straalung production, m this case, the energy lost Is most certainly not deposited 

locally. Consequently; one must realize that the correct stopping power to use is 

the collision chopping power. This will differ greatly from total stopping power 

" (i .e. , collision plus radiation loss) at high energies. 

The effect of the Spencer-Attlx mortifications is shown in Fig. 6.1. It Is 

"obvious that the consideration of cavity sixe is important only for grossly mis- -

matched media such as lead and air. to a weU-aHehed system, o-ray equilib

rium may exist and tea Laurence formulation for stopping power may be adequate. 

Whereas the Spencer-Attlx formulation must be used, when the system is sig

nificantly mismatched. 

6.3 The Effect of Cavity S l s e 4 , 5 

We have discussed to detail the theoretical development for absorbed dose -

measurements using a small cavity. The qualitative effect of cavity sise is , 

shown in Fig. 6.2. •* 

A. Small Cavity (Fig. 6,2B> V £ > 

In this situation, the cavity is small enough that the electron fluence is not 

perturbed by the cavity. Also, there is no appreciable photon interaction in the 

cavity. Thus, the absorbed dose expressions are: 

*Note: As in Section 6.1 #E — - / ™ * * ^ P E - * * (E) dE and 
A I dT „ f^TUMX d # e < 1 ) 1 dT,_. .?_ — . , , . ,. , „ , 

V E V 0 -dE-pS ( K> d i :- 1*-o.M/v*•« /'^c• , , dmr"• 
. average values taken over the appropriate ausi'gj spectrum. 
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' for the medium and 

for the cavity. In this case, the electron fluence is the same in the medium and 

0 = 4> I 

D M / D c = (p£)i/(pdi;)c c 

M C m. 

where s is defined as the relative mass stopping power of the medium to the m 
cavity. Figure 6.2 illustrates the case where s is greater than one but this 

-need not be the case in general. 

B. Cavity Site Large Relative to Range of Electrons (Fig. 6.2C) e 

When* the cavity dimensions are many times larger than the range of the 

most energetic electrons produced in the medium, the contribution to the absorbed 

energy in the cavity from the region of the medium/cavity interface is negligible. 

Thus the energy absorbed la the cavity will depend only on the cavity material. 

Similarly, the energy absorbed in the medium will depend only on the properties 

of the medium, except in the immediate region of the interface. 

" If we consider the dose at points greater then the electron range from the 

interface, we arrive at the following dose expressions: D u =• •EO^/p) , , tor -- J* en M 
the medium and D_ = $E(p. /p) 'or the cavity. Assuming the dimensions of 

the medium and cavity are still small enough so that +E does not change -

appreciably 
& > . , • ' • 

V D C = *en^ V^en'V 
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Figure 6.2 Illustrates the case where (tfl/pJw 1* greater than (u /p) 0 but this 
en M on \_» 

need not be the case in general. At the Interface between the medium and the 

cavity there will be a discontinuity in the absorbed dose because of the difference 

In the scattering properties and stopping powers of the two materials. We can 

also write the absorbed dose using the electron fluence as 
= . M / l d J \ 

M *e \p dx/M 

D C = 0 e ( p s ) c 

In general, {<fP In this situation even though the photon fluence is unperturbed. 
®_ 6 - , J • '._v 

C. Cavity Size Comparable to Range of Electrons (Fig. 6.2A) 

When the cavity size is comparable to the electron range, the first two 

assumptions of small cavity theory (Section 6.2A) are no longer valid. The 

secondary electron spectrum generated in the medium (or cavity wall) is modi

fied within the cavity, and secondary electrons generated within the cavity by 

photon interactions become important. On the other hand, the region of Inter

face between the cavity and the medium is no longer negligible as It was in the 

large cavity case. This situation has been treated by Burlin through a slight 

modification to the Spencer-Attix equation for calculating mass stopping power 

ratios. 

This modification to the theory for small cavities is based on the results 

of measurements made using a parallel plate extrapolation chamber to deter

mine the effect of cavity size on ionization per unit mass of air in the cavity. 

The modification allows the mass •topping (lower ratio formula to approach the 

Spencer-Attix formula for small cavities while for large cavities it approaches " 

the mass energy absorption coefficient ratio. The correction is most important 
" j 

when the difference between the atomic numbers of the medium and cavity gas 
",? • *-' ' 
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ie large and the value of A (electron energy cutoff) is Urge. For small A and 

well-matched cavities, the correction is negligible. 

The'analytical expression for the mas8 stopping power ratio developed by 

Burlln is (ART): 

M1^L^V^^7^iJ ( 6 7 ) 

The factor d is based on the well-verified exponential attenuation of electrons 

and is given by: 

d = fX e _ < t e dx / / * dx = ± (1 - e-*> 
J0 0 ™w 

where p is the effective electron attenuation coefficient and d*l corresponds to 

a cavity slxe (t) approaching aero while «M) corresponds to a cavity sise (t) 

approaching infinity. 

Using the mass stopping power ratio calculated in this manner allows the 

use of cavity chamber theory irrespective of cavity size, CPE or A -ray equilibrium. 

6.4 Measurement of Absorbed Dose (ART, MT and Ref. 6) 

. Absorbed dose measurements using cavity chamber theory can be made 

under a number of different conditions. These include gaa ionization chambers 

with and without matched gas and wall material, ionization chambers calibrated 

for exposure, and devices Other than ionization chambers. In this section we 

will briefly discuss absorbed dose measurements under these various conditions. 

A. Matched qas and Wall Material 

This is a special case and ita particular usefulness arises because of a 

theorem rigorously proved by Fano (lf64) and stated as follows by Failla 



(1956) (ART): ' 

"In a medium of given composition exposed to a uniform flux of 

primary radiation, the flux of secondary radiation la (1) uniform, 

(2) independent of the density of the medium, and (3) independent 

of density variations from point-to-point, provided that the inter

actions of the primary radiation and the secondary radiation with 

the atoms of the medium are both independent of density. " 

This means that for a cavity in which the walls are of the same material as the 

cavity gas the mass stopping power ratio is unity regardless of the cavity siae 

or the gas pressure, provided the density (polarization) effect is negligible. In 7 

principle, then, the Bragg-Gray condition that the cavity must be small compared 

with the electron ranges can be relaxed. 

m practice, however, it is not easy to exactly match a cavity wall and gas 

In atomic composition. It can be done using ethylene In polyethylene or acetylene 

in polystyrene for example. Several approximations to air equivalent walls have 

been made generally using a bakellte/graphlte mixture. An exact match requires 

identical mass energy absorption coefficients as well as Identical mass, stopping 
J " 

powers for the wall and gas. Recalling from the discussions in Chapters 2 and •::'' 
3,the dependence on Z and A of ft //> la in general different from - j e and 

o * 

consequently matching one will result in a mismatch in the other. Finally, the 

density effect is seldom negligible at energies above a few MeV. 

If we assume a cavity with perfectly matched walU and gas (e.g., an air 

cavity with air walls in an air medium), i « l and the absorbed dose wo&d be 

(Eq. («.4)): 
D - 100 E - 100 W J m m 

where W U the energy absorbed per unit charge (Joulee/Coul) and J Is 
m 
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the measured ionization per unit mass in the cavity gas (Coul/kg). If the 

photon field is equal to one roentgen, ^J = 2.58 x 1 0 - 4 C o u V k g and D = 0.87 Rad 

for an sir cartty under CPE conditions. 

Now if this same cavity i* placed in a medium other than air., bat the cavity 

wall la thick enough to ensure that only electrons originating in the wall enter 

the cavity, the abaorbed doae measured will be the absorbed doae in the cavity 

wall. To arrive at the absorbed doae in the medium we must apply an additional 

condition. The ion chamber must be calibrated for the photon spectrum existing 

in the medium. If it im not, a perturbation correction must be made. Assuming 

the chamber has been calibrated in roentgens, the absorbed doae ratio Is: 

or 

D ate <**» .* ^en/Watt 

DM _ fre>>M 
OTx = (£~£Tate 

since (wE) j | = (^^^^ • So, the dose to the medium will be 

<*.8> 

when the chamber records an exposure of X roentgens. 

The mass energy absorption coefficient ratio arises because the air oavity 

measures electrons generated by photon Interactions in the air wall while the 

abaorbed dose to the medium is delivered by electrons geoeraled by photon in-

teractiona in the medium. 
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B. Wall Material Different from Cavity Qaa 

When, the cavity wall material Is not matched with the,cavity gas, two situa-

tions can occur. Either the wall can be composed of the Irradiated medium in 

which the measurement-is being made, or the medium, wall and gas can be 

different materials. 

m the first situation the absorbed dose to the medium is given by: 

M/l dT\ 
DM * f (p 5*)M 

= c/iajv 
e \pdx /c 

D C * 

D M = D C m' <«•» 

where s Is the mass stopping power ratio of the medium to the cavity gas and m 
"M C 

the differences between 0 and * have been accounted for in the calculation 
of a. 

m 

In the second situation we must consider the difference in photon interactions 

between the medlirm and cavity wall in addition to the difference in stopping power 

between the medium and the cavity gas. Thus the absorbed dose to the medium is: 

The absorbed dose to the wall Is: 

.wall 

Thus 

' V ^ C m ' c i r l t y from Eq. <«.9> 
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If the cavity gas la air, 

M m air (Mm/p)yj, 

•here all the terms are defined as before and (PM4»)w ** ***• """^ :'«Wfy 

absorption coefficient for the waif material. 

We must re-emphasise that the above equations {6,8, 9, 10) apply under all 

conditions only when m » properly Includes the effect of discontinuous energy loss 

by electrons and the electron energy spectrum and cavity site have been accounted 

for (fiurlin formulation). 

C. Devicea other than loaiaatton Chatnbera 

Although much of the preceding discussion has referred to the cavity In 

* terms of a gas-filled ionization chamber, cavity theory, is general and can be 

applied to any cavity material. It is necessary only to insure that the cavity is 

small relative to the electron range, or apply the modified theory (or larger 

cavities. -For an air cavity at 1 atm pressure a small cavity for 1 MeV photons 

would be 1 cm or less. A solid or liquid cavity should have linear dimensions 

smaller than this by the ratio of the densities; that is, a unity density cavity should 
r - 3 

be 10 cm or lees for the above situation. 

When the cavity and its wall are of the same material, the absorbed dose 

to the medium is 

D M = D C 
•W^l f l 
OW^c 

from Eq. (6.8) 

When the cavity wall oad medium are of the same material, the absorbed dose 

to the medium will be given by 

D M = m* D C £ r o m Eq' ( 6 * 9 ) 
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where 8 la the appropriate mass stopping power ratio of the medium to the m 
cavity material. B the cavity material must be contained Is some material 

different from the cavity material or the medium, we must take account of the 

differences in photon absorption between the medium and the cavity wall aa . : 

before s •' ' 

en^'M 
Xen /P)w 

D M = D C m f i -Wlf£ fromKq. («.10) 

The quantity D in the' above expressions is the absorbed dose measured in the 

cavity material. This, of course, must be related to some response of the 

cavity material throafn an appropriate calibration. 

When small well-matched cavities can be achieved, the simpler formulation* 

for _ s can be used. However, the cavity size limitation can be troubleaome in m 
7 

practice for solid dosimeters and tow energy photons. Recent work indicates 

that for TLD materials the response for energies below 0.2 IteV is very depend

ent on the grain size of the TL material and thus the more complex formulation 

of s is required. At higher energies, of course, a cavity else email with 

respect to- the range of secondary electrons is easier to achieve. 

6.5 Average Energy Associated with the Formation of One Ion Pair (W\ 

To determine the absorbed dose in a medium using a gas cavity it is neces

sary to determine the absorbed dose In the gas. Since ionization in the gas is 

generally the quantity measured we must know the amount of energy deposited 

in the gas in the production of ionization. The amount of energy lost by ah elec

tron by all processes averaged over the entire electron track for each ion pair 

formed la denoted by W. The beat experimental determination of W for sir to 

date have yielded a value of 33.7 eV/fon pair for electrons of energy greater 

than 20 keV. Below 20 keV, W la expected to be somewhat energy dependent' 
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but can be assumed tolbe constant for energies greater than 20 keV. The value 

of W is greater than the actual ionization, potential of the gaa because some 

energy is lost in processes other than ionization, such as excitation. Values of 

W for other gases and particles other than electrons are tabulated in ART aad 

NBS Handbook 86. 8 

The value of W for gas mixtures can be calculated from the relationship 

where P. are the relative partial pressures of the gasea. 
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APPENDIX 

The appendix coot- as graphs of functions useful in making flux density and 

dose calculations for vcrious source geometries as discussed in Chapter S. 

Figares A. 1 through A. 3 show the exponentisJ integrals E. and E, along with 

e ' x . Figures A. 14 through A. 19 graph the Sievert integrals (F functions) • The 

graphs in Figs. A. 20 tt -ough A. 24 show the parameters necessary for deter

mining self-absorption ' -. cylindrical and spherical sources. Figures A. 85 

.through A. 30 show famili ,p factors In lead, iron and water.- Tte Mff^cto:^ ' 

plotted in Figs. A.31 through A.M are required for calculating buildup factors 

in Iron, water, lead and concrete. 
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FIG. A.21 
Self-abaorptlon diatance, Z, of a cylinder for a/RA < 10. 
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• . ' .-" SUBJECT INDEX 

A ' • -

Absorbed dose 1, 5, 7-12, 85, 91-92, 94, 96-101, 103, 131, 134. 

145-164 \ ; 

Absorption coefficient 21, 26, 31-32, 131-132 

. Absorption edge 20-21 

Air equivalent 159 

Alpha particle (see Charged particle*, heavy) \ 

Annihilation radiation 26 

Approximation A (of shower theory) 61 , 

Area Source 103, 111-115, 124, 134^135 

Attenuation 104-105, 108, 112, 115, 119, 138-139 

Attenuation coefficient 3, 30-32; 104-105. 110, 115, 119-120. 124, 
x 135-136, 138-139 

Auger electron 21-22. 

Average energy per ion pair (see W) . ' - ' ' ' ) . 

B 

Bhabha cross sections 40 

Boltzmann transport equation 129-130, 132-134 ', 

method of moments 134 

method of successive scatterings 133-134 

Monte Carlo method 133-134 

straight ahead approximation 132-133 

Born approximation 45, 55, 59, 67-72 . '. 

Bragg's additivtty rule 48 

Bragg-Gray principle 146-150, 15» _ 
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Bremsstrahlung 24-26, 34-35, 53-64, 149, IS 1, 153 , \ 

Buildup 104. 106. 108, 113, 118, 129. 131-140, 195-206 

multiple layers 136-137 

Burch theory 151 

Biirliu theory 157-158,- 162 

£ • • • ' • ' • • . 

Cascade shower,'electron-photon 61, tig£h$l, 133 

Cavity chambers 7 

cavity and wall material different 153, 157-163 

devices other than ionization chambers 158, 162-163 

matched walls and cavity 153, 158-160, 162-163 

theory 145-164 

Bragg-Gray 146-163, 159 

Bureh 146, 151 

Burlin 146, 157-158, 162 

intermediate cavity 146, 155, 157-159 

large cavity 146, 155-159, 163 

Lawrence 146, 150, 153-154 

small cavity 146-159, 163 

Spencer-Attlx 146, 151-154, 157 

stopping power ratio 147, 150-156 " 

Cerenkov radiation 45 

Characteristic angle, pair production and hremsstrahlung 26 

pharged particle equilibrium (CPE) 4, 7-12, 140, 142-143, 145, 149-150, 

; 152,,, 158, 160 
, i -

Charged particle interactions 34-84 
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Charged particles, heavy 

absorbed dose 143 

radiation loss 61-64 

' scattering , 67-78 . 

stopping power 44, 89 

Coefficients (see Absorption, Attenuation, Energy absorption, Energy transfer 

coefficients) "5 

Collision 

hard 34, "38-47, 86-89 .,.•• / 

kinematics 35-38 

loss (see Energy loss, collision) • '"; 

probability 38-43, 86, 88 

soft 34, 43-45, 47, 89 • - ^ ' ' y 

stopping power (see Stopping power) 

Compton effect 14-17, 26-32, 57-58, 129-131, 133 ' 

Critical energy 59-60, 66-67 

Cross section < 

Bhabha 40 

Lnactivatlon 93 

Massey-Corbin 40 

Miller 38 

photon 14,32 

Cutoff energy (see also LET) 151, 158 

Cylindrical source 103, 118-122 
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\ 
D 
~ \ 

A (macroscopic averaging) 4-6, 152 

Deltas-ays 47-48, 86-91, 145, 149, 151-153, 158 

Density effect (Bee Polarization effect 

Disc source (see Area source) 

Dose (see Absorbed dose, Dose equivalent, Exposure) 

Dose equivalent 2 

Dose distribution factor 2 

.E 

Electrons 

absorbed dose 143, 157 

attenuation 158 " ^ 

continuous energy loss model 150-151 

discrete energy loss model 151, 162 , ' 

LET 47-48, 89 

radiation loss 58-61 

scattering 68, 73, 75-76 

secondary (spectrum) 145-148, 151, 156, 157, 159, 162 . 

stopping power 47-48, 152, 159. 

Energy, most probable 52-53 

Energy absorption coefficient 4, 32, 131, 139-142, 156-157, 159-163 

Energy density (see Local energy density} ^ ___^__.-_ .̂ ^__^_-_— -

Energy fluence 3, 5, 142 

Energy flux, flux density 3, 103, 128, 131, 135-136 
i 

Energy imparted to matter 2, 7-11, 138, 148-149, 152 
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Energy loss 

collision 43-53, 59-61, 153 

most probable <•' 53 

radiative 58-64, 153 

Energy transfer coefficient 3, 32 

Energy transferred 

charged particles by collision 35-36, 86-91 

photon 7-11 

Equilibrium (see Charged particle equilibrium) 

Event size 93-94, 98 

Excitation 34, 43, 164 

Exponential integrals 171-183 

Exposure 1, 7, 131, 134, 141-142, 158-162 

Extrapolation chamber 157 

L 
Fano theorem 158-159 

Fermi-Eyges multiple Mattering theory 76-78' 

Feynman diagram 25, 61 

Fluence (see alao Energy Ouence) 2, 5, 142, 145 

Fluorescent radiation 21-22, 32 

Flux, flux density 2. 5, 103-104, 131, 135-136, 139-141 

calculations 103-137, 141 •" 

Fluctuations, in energy loss 

collision s, 

Gaussian 48-53 

Landau 53 

radiation 64 
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Fluctuations, in range (see Straggling) 

Free-air ionization chamber 7 
./• 

Frequency (see Probability) , 

0 

Gamma rays (see Photons) \ 

Gaussian scattering (see Scattering, charged particle, m 

Giant resonance (see also Photo nuclear) 18 

Gray, L. H. (see Bragg-Gray principle) / 

Gray's principle of equivalence 149 

I. ^ 

Impact parameter 41-43, 46, 63, 69, 88 

Internal conversion 22 

Ionization 34,43-53,149-150,157,169-160,163 

Ionization chambers 132, 157-162 
' • ' . . - . f . 

Ionising radiation 1 

K 

Karma 3, 5, 7-11 

Ktola-NUUma formula 16, 30,Sa» / 

Kaoek-oa (see Colliaion, hard),' ^&j§^V -

Landau distribution 53 , ' . 

Laurence theory 146,150,153-154 \ / •"* 
i • • ' ' • 

LET (linear energy transfer) 4, 47-48, 85-i01 

cutoff energy 48, 89-91 

distributions 91-93 
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dose average 92-93 

number average 93 

track average 92 

Line source •< 103, 106-110, 135-136. 

Local energy density 5, 85-88,-93-101 

A' 

Mass (e.g., mass attenuation coefficient, see name of the 

'taass " prefixed; e.g., attenuation coefficient) 

Massey-Corbin cross section 40 . P 

Mesons (see Charged particles, heavy) 

Moliere scattering 78 

Miller cross section 38 

Moments method (Bee Boltzmann transport equation) 

Monte Carlo nvethod (see fioltzmann transport equation) 

Moseley's law 20 

Mott. scattering formula 

electrons 68 
i - • / ' • • 

heavy particles 68 

N ' L ' " 
Nuclear photo effect (see Photo nuclear) 

Number flux density (see Flux, Dux density) 

Pair production 15-16, 18, 22-28, 32, 93 

Photoelectric effect 14-16, 19-22, 32 

Photo meson IS, 17 

- 208 -



1 ': • .-• 

Photons ' , • ' -. 

absorbed dose 137-143,145-164 

Interactions 14-33"' \ 

LET distributions^ 91-93 Y ^ ^ ^ - J 

4 mass absorption coefficient. 31-32 

mass attenuation coefficient «, 3, 30-32, 138-139 

mass energy absorption coefficient 4, 32, 131, 139-142 

mass energy transfer coefficient 3, 32 

sources (see Sources) 

Photo nuclear 14-15, 18 

Plane source (see Area source) 

Point source 103-106, 110. 114-115, 125, 127, 130, 134, 140-141 

Polarization effect 45-47, 53, 150, 159 

Positrons (see Electrons) 

Probability 

of collision 38-43, 86 

of elastic scattering 67-74 

of increment of local energy density 97-101 

of local energy density 97-101 

of radiation energy loss 53-58 
i 

Protons (see Charged particles, heavy) / 

a • " { / ' : " • 

Quality factor 2, 91 ' 

Had (unit) 2 

Radiation probability 53-58 
]• 
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Radiation length 24, 58-61, 75 

Radiation loss (see Energy loss, radiative) * 

Radiative process (see Bremsstrahlung) 

Range 64-67, 78-82 

scaling laws 78-82 " < 

RBE (relative biological effectiveness) 2, 93 

Relaxation length 134, 137 

Rem (unit) 2 ' ; 

Roentgen (unit) l] 160 " 

Rutherford formula' 

elastic scattering distribution 68-72, 74 

energy distribution 41-44 

8 • 

Scattering 

charged particle 67-78 

multiple 72, 76-78 f - , * ' • -^~ 

plural 72, 78 

Rutherford 68-72, 74, 78^ 

single (see Scattering, charged particle, Rutherford) 
o - " .-

coherent 14-16 
/ 

Compton 14-17, 26-32, 129/131, 133 ^ 

Delbruck 15, 17 
. '•'-.' '"J 

elastic 14-16, 67-78 '• •-< 

elastic nuclear 15-17 

electron resonance (see, Scattering, Rayleigh) 

incoherent 14-16 

Si ' 
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<4 

inelastic, 14-16 

mew square angle of 74-76 

nuclear potential (see Scattering, Delbruck) \, 

nuclear resonance 15, 17 

photon (see also Buildup) 14-18,20-32.129.139 

Rayleigh IS, 18, 32 

Thomson 17 

Screening 54-66,68, 66, 71-73 

Shell corrections 46 •. • * 

Shielding (see also Attenuation and Buildup) 

multiple layer 136-137 

Shower (see Cascade shower) 
<? • ' " 

Sievert Integrals 184-189 

Slab source 103, 115-118, 136 

Sources 103-128 

distributions 104, 10ft, 113. 118 ' 

geometry 
• • ' " \ 

point 103-106, 110, 114-115, 116, 117, 130, 134-136, 140-141 

line 103, 106-110, 136-136 r 

area 103, 111-115, 114, 134-135 

slab 103, 115-118, 136 

cylinder 103, 118-123 

sphere 103, 122-128 

self absorption in 104, 109; 115, 119-110, 114, 190-194 

strength 103, 124 

Spencer-Attlx theory 151 
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V 

Spherical source 103, 122-128 

Statistical fluctuations 48-53, 64-6,7 l \ \ 

Stopping power (see.also Energy loss) 4, 43-53, 78-82, 88, 142-143, 159 

Q 

density effect 45-47 

of compounds 48 , 

LET 47-48, 86-101 

restricted (see also LET) 47-48, 88, 152 

scaling laws 78-82 v 

shell otorrection 46 \ 

total ,153 I ^- ", ••.7 

Stopping power ratio (see also Cavity chambers) 147, 150-163. 

Straggling \ 

energy (see Fluctuations, in energy loss) 

range 64-̂ 67 . . , v •' 
- ' • \ ' • • . * - • 

Straight ahead approximation (see Boltzmann transport equation) 

Successive scattering, method of (see BoUzmann transport equation) 

1 ' " • " ' ' 

Taylor formula 135 

Thermoluminescent dosimeters (TLD) 163 

Tissue equivalent 98 

Track length 91-92 

' Transport theory 128-130 

Triplet production (pair production in the field of an electron? 

U 

Uncomded flux (approximation) 129-133, 135-136 

\ 

.~L 

, 25-Sfl 
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V 

Volume source (see Sources) 

W ' ' i ; . . 

W (eoergy per ion pair) 142 r 149, 159, 163-164 

X 

X-rays (see Photons and Bremsstrahlung) 
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