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CALCULATING STRESSES IN A PRESSURE VESSEL 
WITH FILL TUBE: COMPARISON OF THE FINITE 

ELEMENT AND PHOTOELASTIC METHODS 

Abstract 

We have calculated the s tresses in an are present. The two methods gave 
elastic solid by both the finite element essentially the same results except in 
and photoelastic methods. The problem regions of extremely large stress gradi-
chosen was s tress under pressure load- ents, where the fringes for the photo-
ing near a pressure-vessel / f i l l - tube elastic model were very difficult to 
interface, where large stress gradients separate. 

Introduction 

The s tresses in an elastic solid can be 
deterri^ned by photoelastic or numerical 
finite element methods. We have com­
pared these methods by using them to 
calculate the s tresses in the pressure 
vesse l shown in Fig. 1. 

The calculations were to provide an 
accurate description of the state of stress 
existing at design pressure loading, in 
particular, the large s tress gradients 
near the pressure-vessel / f i l l - tube inter­
face. Descriptions of the finite element 
and photoelastic methods are given in 
Appendix A and Appendix B, respectively. 

In the interests of simplicity, the 
pressure vesse l and fill tube are of tho 
same material., They are glued together, 
and linear elastic behavior i s assumed. 

1. An excellent introduction to the finite 
element method is given in: 
W. C. Paulsen, Machine Design 43, 
S«pt. 30, Oct. f4, Oct. 28 (15707 
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Fig. 1. Model studied: a spherical pres­
sure vessel . The fill tube is 
glued into place. A 1 -mil gap 
between toe fill tube and pres­
sure vessel extends up to the 
glue joint. 



However, in a real pressure vesse l 
the fill tube and pressure vessel are 
generally of different materials and will 
be joined by welding or brazing. Also, 
local yielding may occur at the v e s s e l / 
tube interface. The presence of different 
materials and local yielding presents no 
difficulty for a finite element aniilysis, 
and in theory the s tresses due to welding 
can be considered, provided that the 

We used the NAOS finite element code 
to determine the s tresses in the pressure 
vesse l shown in Fig, 1. The pressure 
vesse l was zoned in two stages. The 
first finite element zoning is shown in 
Figs . 2 and 3. Isostress contours of the 
calculated radial s tress (<?_), axial s tress r 
(c ), hoop stress (<T J , and shear s tress 
(o ) are plotted in Figs . 4 through 7. 
All s tresses are nondimensionalized with 
respect to the internal pressure (i. e . , the 
s tress is divided by the internal pressure). 
Due to the high s tress gradients near the 
tip of the glue joint a finer finite element 
zoning was made in this region. Figure 8 
show this finer zoning. The boundaries 
of the region shown in Fig. 8 not acted 
upon by direct pressure were constrained 
by displacement boundary conditions as 
calculated by 'die previous coarser zoning. 
Isostress contours of a , a . o^ and r z xj 
a are plotted in Figs. 9 through 12. 

In a typical finite element s tress 
analysis the calculated s tresses are 
substituted into a failure criterion. For 
example, contour plots of the von Mises 
stress are used to predict yielding of a 
ductile material. The s tress pattern 
calculated at the tip of the glue joint can 

effect of the welding process on the prop­
erties of the materials i s completely 
defined, which it i s not. The photoelastic 
method cannot a c c o u n t for local 
yielding or welding s t res ses . In theory, 
it can account for different materials, 
but the difficulty of finding suitable 
photoelastic materials with correct 
ratios of material stiffnesses cannot 
always be overcome. 

be used with fracture-mechanics theory 
to predict local crack growth, i. e . , brittle 
failure due to crack propagation. The 
failure analysis was not made here since 
the purpose of this investigation was to 
compare the calculated s tres ses with those 
determined bythe photoelastic method. 

Fig, 2. Zoning for the finite element 
calculation. The fill-tube/ 
pressure-vessel joint i s shown 
in detail in Fig. 3.. 

Finite Element Analysis 
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Glue joint 

1-mil gap (pressurized) 

Fig. 3 . Zoning at the f i l l -tube/pressure-
vessel joint for the fiuit.e element 
calculation. 

Stress 
Contour Pressure 

1 -1 .1 
2 -0 .6 
3 -0.1 
4 0.4 
5 0.9 
6 1.4 
7 1.9 
8 2.4 
9 2.48 

Fig. 4. Isostress contours of the finite-
element-calculated radisl s tress . 



Stress 
Contour Pressure 

1 -1 .4 
2 -1 .1 
3 -0.8 
4 -0.5 
5 -0.2 
6 0.1 
7 4.0 
8 7.0 
9 8.0 

Stress 
Contour Pressure 

1 -1 .1 
2 -0 .5 
3 0.1 
4 0.7 
5 1.3 
6 1.9 
7 2.5 
8 3.1 
9 3.78 

Fig. 5. Iscstreas contours of the finite-
element-calculated axial s tress , 

Fig. 6. Isostress contours of the finite-
element-calculated hoop s tress , 

V 
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Glue joint 

Stress 
Contour Pressure 

1 -0.63 
2 -0.53 
3 -0.43 
4 -0.33 
5 -0.23 
6 -0.13 
7 -0.03 
8 0.07 
9 0.541 

Inner wall 
of tube 

Tip of glue 
joint 

Fig. 7. Isastrese contours of the finite-
element-calculated shear stress , 
a . 

Fig. 8-

1-mil gap 

Finer zoning for the finite e le­
ment calculation near the tip of 
the glue joint. 
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Stress Stress 
Contour Pressure Contour Pressure 

Fig. 9. Isostress contours for the radial Fig. 10. Isostress contours for the 
stress near the tip of the glue axial stress near the tip of the 
joint (finite element calculation). g lue joint (finite element 

calculation). 

i 

i 
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Contour 
Stress 

Pressure Contour Pressure 

1 -2 .3 
2 -1 .8 
3 -1 .3 
4 -0 .8 
5 -0 .3 
6 0.2 
7 0.7 
8 1.2 
9 1.76 

Fig. 11. Isostress contours for the hoop 
stress near the tip of the glue 
joint (finite element calculation). 

Fig. 12. Isostress contours for the shear 
stress near the tip of the glue 
joint (finite element calculation). 

' Jiif 
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P? suits of the Photoeiastic Analysis and Comparison 
with the Finite Element Solution 

A full-scale photoelastic model of the 
pressure vessel shown in Fig. 1 was 
fabricated and was tested using s tress -
freezing and slicing techniques. The 
model material was a hexahydrophthalic— 
phthslic anyhydride cured epoxy res in . 

The results of the photoelastic analysis 
and corresponding results for the finite 

Meridional stress, cr 

T 

Radial stress, o_ 

Photoelastic 
o Finite element 

-2 
0 

Inside 
20 40 60 80 100 

Outside 
Percent of distance across wall 

Fig. 13. Comparison of photoelastic and 
finite element calculations of 
s tresses across the pressure 
vessel wall. 

element solution are compared in Figs. 13 
through 17. 

Figure 13 is a plot of the meridional 
and radial "tresses across the pressure-
vesse l wall at a section not influenced by 

\ 4 

a. 
0 

\ 

-Tip of glue joint 

-Inner radius 

o o a> o o 0 o°o o o o o o o o o 0 

o Finite element 
o Photoelastic 

y\ 

Fig. 14. 

Y2 
Length along Y 

Finite element and photoelastic 
calculations of axial s tress 
across section Y-Y. 
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(hoop stress) — 

o Finite element 
a Photoelasric 

I 
0.0675 

b l 

0.1675 0.2675 

Radial coordinate, r — in. 

Fig. 15. Finite element and photoelastic 
calculations of hoop s tress 
minus radial s tress across 
section B-B. Hoop stress i s 
directed perpendicular to the 
plane of the paper. 

the fill tube. The meridional and radial 
s tress are seen to be in excellent agree­
ment. 

Figure 14 is a plot of the axial s tress 
along the interface between the pressure 
vesse l and the fill tube. Again the results 
show excellent agreement away from the 
tip of the glue joint. Agreement decreases 
as the tip of the glue joint i s approached. 
Lack of agreement at the tip of the glue 
joint i s due to the finite element zoning. 

Tip of 
glue joint 

x—x 

• Photoelastic 
(30-mil slice) 
Finite element: 
coarse zoning 
fine zoning 

• fine zoning, 
average over 
30-mil slice 

0.03 
a l 

Fig. 16. 

0.13 

Radiol coordinate, r — in. 

0.23 
a 2 

Finite element and photoelastic 
calculations of hoop stress 
minus radial s tress across 
section A-A. 

which did not account for the difference 
in material properties between the glue 
and shell, or for the finite radius of the 
tip of the glue joint (see Fig. 8 for finite 
element zoning). 
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Fringe 
Contour order 

1 0 
2 1 
3 2 
4 3 
5 4 
6 5 
7 £. V 

Whole-order fringes taken off the photo-
elastic model. 

Whole-order fringes calculated with the 
finite element method. 

Vj 

Contour 
Fringe 
order 

1 0.5 
2 1.5 
3 2.5 
4 3.5 
5 4.5 
6 5.5 
7 6.5 
8 7.5 
9 8.5 

Half-order fringes taken off the photo-
elastic model. 

Half-order fringes calculated with the 
finite element method. 

Pig. 17. Comparison of experimental etvess fringe patterns from the photoelastic model 
with stress fringe plots calculated by the finite element method. Fringes were 
multiplied by 5 in the polariscope setup. 
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Figure 1 *. is a plot of the difference in 
the hoop and radial stresses in a section 
perpendicular to the axis of the fill tube 
near the inner surface of the pressure 
vessel. (Note that the difference in the 
hoop and radial stresses is proportional 
to the fringe orders appearing on the 
photoelastic slice.) Again, agreement 
between the two methods of analysis is 
excellent. 

Figure 16 is a plot of the difference 
in the hoop and radial stresses in a sec­
tion through the tip of the glue joint and 
perpendicular to the axis of the fill tube. 
The correlation in the stresses is at best 
only fair. The stresses as determined 
by the photoelastic solution in Fig. 16 
average the stresses over a 30-mil slice 
centered about the tip of the glue joint. 
The corresponding stresses as determined 
by the finite element solution average the 
stresses over a 2-mil thickness, i . e . , 
thickness of one finite element zone (cir­
cled points) and a 30-mil thickness 
(dashed lines). The stresses for the 
circled data points and dashed line were 
obtained from the finer zoning shown in 
Fig. 8. The stresses as determined by 
the coarser zoning in Fig. 2 are plotted 
as x's. The x data points average the 
stresses over a 60-mil thickness. The 
fact that the finite element solution ob­
tained by the coarse zoning and fine zoning 
show excellent agreement for the 30-mil 

The photoelastic method and finite 
element method were used to calculate 
the stresses in a pressure vessel with 
fill tube. As expected, the results of the 

and 60-mil thickness averages, plus the 
excellent agreement with the photoelastic 
solution seen in Figs. 13 through IS, lead 
to the conclusion that the stresses plotted 
in Fig. 16 for the photoelastic solution 
are incorrect. It should be noted that the 
photoelastic solution was extremely 
difficult to obtain in this region due to the 
large stress gradients, which made 
fractional fringe counting correspondingly 
difficult and the position of principal 
planes hard to orient. 

An additional comparison of the re­
sults of the photoelastic method and the 
finite element method is given in Fig. 17. 
This figure shows photographs of 
the whole-order and half-order fringes 
taken off the photoelastic model, and 
compares them with plots of the whole-
order and half-order fringes as calcu­
lated by the NAOS code. (The fringe 
order is proportional to the maximum 
shear stress.) Correlation is good ex­
cept in the protruding section of the 
tube. Lack of correlation in the neck of 
the tube is due to the coarse zoning in 
this area in the finite element solution. 
The slight difference in the fringes in 
the wall of the pressure vessel (away 
from the tube) is due to the method in 
which the plotting routine averaged the 
stresses at the boundary elements. 
The correlation in this area is excellent, 
as was shown in Fig. 13. 

two methods showed good correlation 
(except in Fig. 16 as discussed above). 

The results of the analysis indicate 
that either the photoelastic method or the 

Conclusions 
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finite element method can be used to 
determine the stresses in an elastic solid 
with essentially the same results. The 
primary advantage of the finite element 
method over the photoelastic method is 
its ability to consider yielding, pre-
streeses, and any number of different 
materials. The disadvantage of the 
finite element method is the large com­
puter storage requirement. The computer 
storage available can seriously limit the 
number of allowable elements and thereby 
the resulting accuracy of the solution. 

While the general trend in stress 
analysis is to favor the finite element 
method over the p h o t o e l a s t i c method, 
the photoelastic method continues to 
have its place in the s o l u t i o n of com­
plex three-dimensional problems. The 
photoelastic method is also used to 
check the results of finite element solu­
tions. The c o m p a r i s o n of results 
between photoelastic and finite element 
solutions is especially valuable for 
checking out (debugging) new finite 
element codes. 
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Appendix A 
Finite Element Method 

The finite element method is a numer­
ical technique for obtaining a solution to 
a partial differential equation. The 
method has been used extensively in the 
area of solid mechanics, for which nu­
merous structural dynamic and static 
finite element computer codes have been 
developed. 

The NAOS code 1 i s a finite element 
program that solves for the s t res ses in 
an elastic Solid of revolution subjected 
to symmetric and nonsymmetric static 
loads. The following i s a brief descrip­
tion of the theory behind the NAOS code 
for the case of symmetric loading and 
isotropic material properties. 

M= : s tress vector 

e_ 

H 

<H:: 

: strain vector 

; body force vector 

VARIATIONAL FORMULATION OF 
AXISYMMETRIC ELASTICITY 
PROBLEM 

-jfjffiuJdS, (1) 

wher , ir is the total potential energy in 
the .egion R bounded by the surface S 
(ese Fig. A-1). 

R.S. Dunham and R.E. Nickell, Finite 
Element Analysis of AxisymmetrTc 
Solids with Arbitrary Loadings, Struc­
tural Engineering Laboratory, University 
of California, Berkeley, Rept. 67-6 
(1967). 

H = • displacement vector 

ij/~Axis of rotation 

T 

Fig. A-1 . Cross section of an axisym-
metric region, R, to be treated 
by the finite element method. 
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Ul 
Axis of rotation 

= surface traction vector 

The solution to this elasticity problem 
is obtained by minimizing the total poten­
tial energy, ir, subject to imposed dis­
placement boundary conditions, and the 
following stress-strain and strain-
displacement equations. 

STRESS-STRAIN EQUATION 

(2) 

where 

1 'V -V 0 

M = E 
-V 1 -V 

-V -V 1 

0 

0 

0 0 0 2(1+1/) 

E = Young's modulus 
v = Poissc Hi's ratio. 

STRAIN-DISPLACEMENT EQUATION 

M = [Bljuj, (3) 

where 

Fig. A-2. Subdivision of the region R 
into triangular subregions, one 
of which is R.. 

Substituting Eqs. (2) and (3) into Eq. (1) 
yields 

= X [fHTfBjT[D]_1lB]juf 

•w' r{ufl dV - J jffT{u} dS. (4) 

'8 
8r 

0 

0 ' 

8 
W 

[Bj = 1 1 0 
r 
8 

.8z 
8 

3F. 

r = radial coordinate 
z = ax al coordin ate. 

In the finite element method, the above 
integral is approximated by dividing R in 
subregions R,, and specifying shape func­
tions for the dependent variables, {u}, 
over each subregion. In the NAOS code, 
the subregions are circular rings with 
triangular cross sections as shown in 
Fig. A-2. (Note that quadrilateral cross-
section elements are also allowable in 
NAOS. The code automatically subdivides 

-14-



quadrilaterals into four triangular cross 
section elements.) Over 
the following shape function 

triangular c r o s s - i r r 

the subregion R. JT = £ I / f l { 5 i } T [ N i ] T [ B ] T [ D r 1 l B ] 
ion is assumed i l i 

{u.f = INjJW, (5) • INjjUjf.- {p^lN^u-lJ dRi 

where 

El r z 0 0 01 

D 0 0 1 r z j 

W 

Writing Bq. (5) at points I, J, and K yields 

H 

Solving for \a\ and substituting into Eq. (5) 
yields 

N, IN.] 

*% 
= INJ 

l J 

<U**K IN,] 

S, J "i 

The indicated integrations are now 
carried out either analytically or numer­
ically to yield 

(7) 

where 

[Kj] =4^ 
tpf-fRWTmildRi 

T IB] T [D] _ 1 IB]IH. ] dRj 

h* = &y 
IN.] 1 H 
IN,] 

1 J H 
IN-] 

K . 
w, 

lN.i{uJ. 
Note that the integral over S. only applies 
to a subregion R, with one or more sides 
on the boundary of R. 

Now, define a vector \V\ for the dis­
placements at all the node points in R, 
i. e . , the displacements of the corners 

Substituting the above expression forfuj of all the triangular subregions (elements) 
into Eq. (4) yields H^ 

(6) 
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i , , U 2 } 

• 
t 

In terms of {u} Eq. (6) can be written as 

- =1 BM Tny w - pyTM - py Tw] 
i 

or 

Minimizing with respect to {uf yields 

[KIM " ip\ - \F\ = °- <«) 

Equation (8) is solved subject to any dis­
placement boundary conditions to yield 
the displacement {v\ in the region R. The 
strains in a subregion R. are determined 
by using Eqs. (3) and (6), i. e., 

{ej = [BJIf5.Uu.}. 

and the stresses by Eq. (2), i . e . , 

{a.\-lDl-%\. 

-16-
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Appendix B 
Photoelastic Method 

The photoelastic method for solving 
the state of stress in both two- and three-
dimensional structures problems is 
widely employed in industry. Typical 
problems solved by this technique are: 

» Stresses in solid-propellent 
motors—Aerojet General Corpora­
tion. 

• Stresses in tube sheets and pressure-
vessel reactors— Westinghouse 
Research Corporation. 

a Determination of stresses in rein­
forced openings in pressure vessels. 
Near.'; 100 vessels were tested by 
the University of Illinois and Weat-
inghouse Research Corporation for 
the Pressure Vessel Research 
Committee of the Welding Research 
Council. 

s Oak Ridge National Laboratory-
nuclear pressure-vessel reactors. 

In other words, the photoelastic tech­
nique is a useful tool that is used in de­
signing nuclear-reactor pressure vessels, 
the related tube sheets to these designs, 
and any other nonsymmetrical shell de­
signs not covered by existing finite element 
stress-analysis codes. The staff of Com­
bustion Engineering, Inc., at Windsor, 
Connecticut, has been combining the re­
sults of the photoelastic methods and the 
finite element codes for basing design 
criteria for pressurized shells. Other 
structural problems solved by this *«ch-

2. Welding Research Council Bulletin 113, 
April HUB. 

nique are bridges, tunnels, engine com­
ponents, etc. 

FUNDAMENTAL PRINCIPLES AND 
STRESS OPTIC EQUATIONS 

The photoelastic models used by most 
investigators are clear plastics in flat 
sheet form for two-dimensional stress 
analysis. For three-dimensional analysis, 
carefully selected Epoxy and hardener 
combinations are used. 

When a transparent material is viewed 
in plane polarized light and a load is 
applied across some boundary, a series 
of colored bands will appear that repre­
sent a locus of all points along which the 
difference in the principal stresses 
(P - Q) are equal. If a proper filter is 
placed in the path of light such that the 
light has a constant wave length X, the 
colored bands will appear as alternate 
black and white bands which are more 
convenient for photography and stress 
analysis purposes. These bands appear 
in a numbered order easily identified in 
white light because the zero order fringe 
is black. The following nomenclature 
lists the fundamental terminology employed 
in photoelastic stress analysis: 

X = wavelength (in. or A) 
c = stress optical coefficient 

<in.2/lb) 
t = model thickness (in.) 

P, Q = the two principal stresses 
(lb/in.2) 

n = number of fringes, or fringe 
order 
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f = X/c = material fringe value 
(lb/in.-fringe) 

T = shear stress 
a , o_ = principal stresses in example 2 

The Stress-Optic law expressed in terms 
of fringe order may be written as: 

nX = t(P - Q) <9) 

and 

<P-Q)=g. 

Let the constant terms — = f, and the final 
equation universally employed in photo-
elastic stress analysis becomes 

(P - Q) = ^ . (10) 

Fringe orders viewed in a polariscope or 
a photograph using monochromatic light 
are counted as whole numbers in a dark 
field or half orders in light field. These 
fields are changed from dark to light by 
rotating one of the elements (quarter-
wave plate) of the polariscope. For 
illustrative purposes in reports, it is 
usually more convenient to use the light-
field photograph for marking in fringe 
orders on the light background. 

EXAMPLE PROBLEM 1 

Figure B-l is an example of applying 
the fundamental principles of photoelastic 
stress analysis. This plane-stress solu­
tion to a simple problem shows excellent 
correlation to the theoretical result using 
the flexure equation. 

THREE-DIMENSIONAL PHOTOELASTIC 
STRESS ANALYSIS 

Three-dimensional problems in photo-
elasticity are handled by one of three 
methods: the frozen-stress technique, 
the scattered-light technique, and the 
buried-polariscope technique. The re­
sults in this report were obtained by the 
frozen-stress technique, which is the 
most popular and easily handled. 

Models of structures to be evaluated 
may often be reproduced in full or reduced 
scale epoxy models (shells, rings, forg-
ings, beams, etc.). The models may then 
be loaded at the same boundary points and 
by applying the principles of dimensional 
analysis, the model stresses may be re­
lated to prototype stresses. For aid-
symmetric pressurized shells of revolu­
tion the elastic analysis is simplified by 
the fact that model-prototype stresses 
are directly related by geometry ratios. 
For example, the maximum stress in a 
thick-walled sphere, internally pressur­
ized, is: 

(b 3 + 2a 3) , , , . 
O = p 5 S-> ( ID 

2(b 3 - a 3 ) 

where 
p = internal pressure in psi 
a = inside radius in inches 
b = outside radius in inches 

Now if both sides of the above equation 
are divided by "p", then it is readily seen 
that the cr/p ratio for a model is the same 
as that of the prototype with similar radius 
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Bottom edge 6\ 5 4 3 2 1 0 

-5 .80 • max. fringe order at bottom 

Fig. B-1. An example of applying the fundamental principles of photoelastic stress 
analysis. Fart (a) shows the light-field photograph of half-order stress 
fringes of a beam in pure bending (m = 86.8 in.-lb, f = 88 lb/in.-fringe, 
the beam is 1 in. deep by 0.250 in. thick, the average fringe at the outer 
fiber is 5.90, the material is allyl diglycol carbonate). Part (b) shows how 
the fringe-order data taken from the photograph is plotted and extrapolated 
to the edges of the beam to determine the maximum fringe order. From 
this value of n the maximum principal stress can be determined (a m a x = 
nf/t, = (5.9 X 88)/0.250 = 2070 psi). The theoretical maximum principal 
stress, ctheor* i s calculated as mc/I, or (86.8 X 0.5 X 12)/(0.250 X 1) = 
2080 psi. 

ratios. Then to calculate prototype 
stresses, use the equation: 

Wp) m = W P ) p , (12) 

where the subscripts refer to the model 
and prototype, respectively. 

Stress freezing is accomplished by 
placing the model in an oven and while 
under load, heating the model to the 
critical temperature of the epoxy. For 
most tests at LLL, we use an epoxy with 
a critical temperature of approximately 
315°F. At this temperature the modulus 
reduces to about 5000 psi and the material 
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fringe value f = 1.70 lb/in. fringe. The 
model deforms, and when the temperature 
is reduced to ambient with the load still 
applied, all the deformations and stresses 
remain "locked in." Subsequent slices 
removed and polished may be treated in 
most cases as a plane-stress problem if 
the model is axisymmetric and sliced 
along a principal plane. 

EXAMPLE PROBLEM 2 

Figure 3-2 shows a thick-walled pres­
surized shell that has been sliced on a 
great circle plane of symmetry passing 
through the tube at the pole. Earlier in 
this report we compared the photoelastic 
and finite element solutions for this model. 
Stresses along the vertical wall of the 
hole in the shell were analyzed from this 
slice. Hoop stresses in the hole were 
also evaluated from further subslices of 
this part. 

In most three-dimensional problems, 
boundary stresses are of primary interest, 
because most failures occur at boundaries. 
For our model the boundary stresses may 
be expressed for the outside: 

-ZL-££ 
P Pt 1. (14) 

V ' r . n f 
P Pt' for=°> 

p " pt 

and for ie inside boundary: 

m r _ nf #_ _ _ i 
P pt' < f f r ~ - p ) -

Therefore: 

Fig. B-2. Example of determining 
stresses by photoelastic 
method. A thick-walled 
pressure vessel has been 
sliced on a great-circle plane 

(13) of symmetry passing through 
the tube at the pole. Stresses 
along the vertical wall of the 
hole in the shell were analyzed 
from this slice. These are 
light-field photographs; the 
lower photograph has the 
fringes multiplied five limes 
for easier determination of 
the fractional fringe orders 
across the field. The model 
thickness is 0.132 in., and the 
f is 2.71 lb/in.-fringe. 
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Hoop s tresses along the vertical axis of 
the hole through the shell were determined 
from the inner boundary to the end of the 
tul>e braze. Equation 14 was used with 
c„ = hoop s t r e s s . u 

Solutions across the field of the sl ice 
were performed using the equations of 
equilibrium in polar form, the principal 
s t res ses : 

= <Vo+/- dr (15) 

Equations 15 and 16 are usually only of 
academic interest because they provide 
solutions for the interior s tresses , which 
are primarily lower. Articles on photo­
mechanics frequently appear in the tech­
nical journals such as Experimental 
Mechanics and the Applied Mechanics 
Journal of ASME. There is an excellent 
text, "Experimental Stress Analysis" by 

3 
J. Dally and W. Riley with a section on 
photoelasticity that i s easily read. 

As a . - <x = TT, (refer to Eq. (10)) r m t 

• " • /?? 
3. J.W. Dally and W.P. Riley, Experi-

/i f i» mental Stress Analysis (McGraw-Hill 
< l e ) New Vork. 1865). — 
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NOTKE 

tar M M 1MB O M O M . HMm a» Uoit«d stair* nor 
0» p M • • * • A m * b a n Co«—Won, not lay of liieir 
«nfli||Mi Mt HT «f tefr OBattMMn, MBCoMnftor*. or their 
••••elMI, iMfeM a v MmMy. «vr«i or taiplM, or Mnm«« 
avylMt ftMkr or avjnaMtty fa Ifct m n w , M » M « M 
•t a M B i of «•» MkraMka, c p m a , product or orocaa 
dBokaol, or npnaaBOMkloja would »j(tarV< prmMy-
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