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Abstract: In this paper we show that in the classical theory 
of the electron, with the introduction of a shadow electromagnetic 
field, the electron is stable in the point particle limit. 
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N O T I C E 



Introduction 

It is well known that the classical theory of electrons suffers from sane 
fundamental difficulties such as the divergences of the self-energy and the 
self-force. The divergence of the self-force implies the instability of the 
electron. The usual way to avoid the difficulty of these divergences is based 
on the idea of renoonalization. It has long been considered as proper to 
assume that the infinite self-energy of isolated electrons is physically 
meaningless, and can be subtracted away by the renormalization method. ^ 

The concept of renormalization has been extensively used in quantum field 
theory to eliminate divergent quantities ccrputed from the theory. The results 
obtained are in remarkable agreement with experiments. Nevertheless there are 
reasons not to be satisfied with the conventional treatments of the renormali-
zation procedure. For exanple, not all field-theoretical interactions are 
renormalizable. Furthermore, the computed mass differences due to electromag-
netic interaction is infinite, while experimentally it is finite. Therefore, 
a genuine fijiite theory seems to be favorable, although the renormalization pro-
cedure might still be necessary. 

The failure of having a finite theory is usually attributed to the fact 
that within the usual framework of quantized fields it does not seem possible to 
describe a system with a local interaction. In fact many of the difficulties caused 
by the use of local interaction are shared both by the classical and the quantum 
field theories. One of the explanations for the occurrence of the divergences is 
that classical considerations indicate that for any kind of matter coupled to the 
metric field in the Einstein way, there are limitations on the energy densities 
and masses which can be concentrated or built up in a given region. Consequently, 
that space-time loses its physically meaningful character beyond such limiting 
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(2) densi t ies , and s ingulari t ies then appear in the solutions. ' This explanation 

seams appealing. However, i t i s not yet quite clear whether the existence of 

the s ingularit ies i s essential in the problem of elementary part ic les . I t 

might be that gravitation does not play an important role as fair as the 

divergence problem i s concerned. 

Recently i t has been emphasized that the introduction of s tates with 

negative norm provides a way out of the divergence d i f f i c u l t i e s in quantum 
(3) f i e l d theories. In order to assure the probability interpretation, the 

(4) 
concept of shadow s ta tes has also been introduced. In the electrodynamic 

theory, there i s always analogy between the c lass ica l and quantum theories. 

However, i t i s not ye t clear what i s the counterpart of the shadcw f i e l d in 

the c lass ica l f i e l d theory. In t h i s note we show that in the theory of c l a s s i -

ca l electrodynamics the introduction of a shadow f i e l d makes self-energy of 

the electron f i n i t e and the electron stable. 

Lagrangian and Energy-Stress Tensor Density 

Following the idea of shadow f i e l d in quantum f i e l d theory, we introduce 

a massive vector f i e l d A^ as the shadow f i e l d acocftpanying with the ordinary 

electromagnetic f i e l d Ay. We may write down the Lagrangian for the system of 

the f i e l d s Ay and Ay interacting :*ith a current as follows: 

* - " m V FVy + m *yv + + + *u> (1) 

with 

- 8 A - 3 A 
F uv = 3 A - 3 A ( 2 ) 

M i s the mass parameter of the shadcw f i e l d . 



The field equations for A and A ace obtained by variational methods. as y y 
usual 

A = -4TT j (3) u J u 

(•- M2)Ap = 4tt (4) 
hare the Lorentz condition 3 Ay = 0 is assumed. The condition 3 Ap= o already r r 

follows front the field equations. 
The energy-stress tensor densities for A^ and A^ are respectively 

V - ^ + T C f „ 3 ^ ® 

V = - ^ - « v > + ^ • (« 

The total energy-stress tensor density 5 is the sum of T and T y y P 

T V = T V + T V (7) y y y w / 

Electromagnetic Energy-Momentum and Stability of the Electron 

The electromagnetic energy-mcmentun of the electron is defined as 

P - fT v da (8) y J y v 

where a is a space-like plane. If Py defined in (8) is indeed a proper defini-
tion for the electromagnetic energy-momentum contributing to the electron's energy 
and momentum, it is supposed to transform as a 4-vector under Lorentz transfor-
mation. It is well known that this is not true when we replace Tyv by in (8)^ * 
In order that Py defined in (8) is a covariant 4-vector and the electron is 
stable, the following conditions have to be satisfied, 

| T(o)±
k d3x(o) = 0 for i, k = 1, 2, 3. (9) 
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The subscript (o) means that the quantities are computed in the rest frame 
of the electron. 

From the field equations (3) and (4) we have 

A1o) - r <10> 
-4 "Mr 

A ( o ) = " ( 1 1 ) 

all other components of the fields vanish. The non-vanishing oonponents of 
Fuv and tT are 

F ( o ) ( 1 2> 

- k4 silo)4 e"Mr 1 *k 

F ( o ) - - S ^ — + <13> 

Prom (5), (10), and (12), we have 
2 T k - 1 1 f ̂  h 1(o) k - 4TT r3 1 r2 2} 

( 

T(o) ik - 47" z r for i i* k. (14) r 

4 
T (o ) k = 0 

T 4 _ J: 1. 1 (o) 4 " 4tt 2r4 

Similarly, from (6), (11) and (13), we have 

T 
2 

k _ _ ,1 e"2Mr 1 2 . 1. M i 
(o) k - ^ J f ( r + M ) ( ~ ? ~ 2 } ~ 2 } 
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, -2Mr , j x.x, 
T(o) i = - < 7 + M> ^ r for 1 * < 1 5 > r r 

4 1 Q~mr 1 2 2 

The integration of (14) and (15) over 3-dimensianal space yield 

J T ( o ) k k d 3 x ( o ) = 
J a+o 

| T ( 0 ) i k d 3 x ( o ) = 0 <16b> 

| T ( o ) 4 4 d 3 x ( 0 ) = i ^ 2 i r <16c> 

and 
a-*o 

a->o 

k ,3 
JT(o) i" d"x(o) = 0 <17b> 

F *(<>) 4 4 ^ ( o ) - " i f 1 ( S " I <17o> 

With (7), (16) and (I' *, it is easy to see that the conditions (9) are indeed 
satisfied. Note also that the self-energy of the electron in the rest frame 
of the electron is finite, 

E(o) -|T(o) 44 d3*(o) = I 

is interpreted as the electromagnetic mass of the electron. The observed 
mass is the sum of the electromagnetic mass and the mechanical mass. 
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Concluding Remarks 

We have shown that with the introduction of a shadcw field the electron 
is stable in the point particle limit. This is due to the fact that the 
shadow field provides an attractive force to keep the electron together. The 
idea of introducing an additional ''non-electromagnetic" force to compensate 
for the Maxwell stress, r.£oducing stability of the charged particle and 
making the total self-energy vanish in the rest frame, was first suggested 

(5) 
by Poincare a long time ago. Except for the non-electromagnetic character of 
the force, as it was postulated, the origin of tiiis Poincare's tensor was not clear. 
In contrast to the ira-electranagnetic character of the Poincare's tensor, 
the interaction be+rveen the shadow field and the charged particle is, in 
terms of the strength of the coupling constant, electrcmagnetical in character. 
Physically, the presence of the shadow field is to introduce a small non-local 
effect in a manifestly local fashion, therefore the electromagnetic character 
of the interaction is understandable. 

Another difficulty encountered in the classical theory of electrons is 
the existence of the so called "runaway" solution. A -way to avoid it is to 
impose proper boundary conditions on the solution of the equation of motion. 
The runaway solutions have also been found in a number of simple, exactly 
soluble quantum field theories. In a separate paper ̂  it has been shown 
by the author that in the quantum electrodynamics with shadow fields, the 
runaway modes do not occur in the dipole approximation. Whether the runaway 
solution can also be avoided in the classical theory with the introduction of 
shadow field is not yet clear. 
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