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I. Introduction 
Recent years have witnessed the development 

of accelerators of ever-larger current, both peak 
and average, as well as a proliferation of storage 
rings of ever-greater luminosity. Consequently, 
there ia considerable interest in and growing con
cern with, the phenomena which limit beam currents 
and beam densities, namely, the collective modes of 
behavior of relativistic particle beams. Further
more, it has been demonstrated that the collective 
behavior can be controlled, at least to some extent̂  
turned to good advantage, and employed for collec
tive acceleration in devices such as the electron 
ring accelerator. 

Quite naturally then, almost every accelera
tor conference during the last five years has had a 
review paper on collective effects, while at the 
same time the number of original papers in this 
area now exceeds many hundreds. And thus I am 
faced with the dilemma of being unable to give a 
comprehensive and complete review (such a review, 
Incidentally, would be most valuable; in my judg
ment the time is ripe for a comprehensive monograph 
on the subject.), and yat finding it difficult, in 
a brief review, to be comprehensible, balanced, and 
yet fresh. 

I have resolved the delemma by firstly sup
plying sufficient references as to allow the in
terested reader to readily apr;roach and efficiently 
attack the literature. Secondly, I take a few 
steps away from the details and the realities of 
the field and with the advantage of the broader 
view so gained, describe the basic many-body 
physics underlying the subject. Thirdly, I present 
a few examples of collective behavior, in part to 
make the general remarks concrete, but in large 
measure in order to illustrate the beauty of this 
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kind of physics. Finally, Inake some remarks on 
methods for* control of undesirable collective 
behavior, and on the present state of understanding 
of the field. 

II. The Literature 
A comprehensive treatment of collective 

effects may be found in Ref. 1, where also may be 
found some 58 references to the original literature. 
A review of the instabilities of relativistic 
particle beams is given in Ref. 2, where »he reader 
may find some ^ original-paper references. In 
Refs. 3, k} and 5, the general subject of instabil
ities is approached from other points of view. 
Reference 6 is primarily concerned with longitu
dinal phenomena, while the text of Ref. J presents 
a unified approach to work prior to 1966, A recent 
review (8) is devoted to the influence of surround
ings on collective behavior, and finally, a catalog 
of phenomena is presented in Eef. % which also 
includes a treatment of longitudinal phenomena. 

In addition, much recent work is not yet 
referenced in the above-mentioned review articles, 
and attention, in particular, is directed to the 
important first-papers on the head-tail effect (10) 
and on ion-electron instabilities (ll). 

The use of collective fields for the accel
eration of particles may conveniently be found in 
three review papers (12, 15, lh). 

Finally, the reader who is interested in 
seeing how all this knowledge is brought to bear 
on an actual machine would be interested (for 
example) in the four papers listed in Refs. 15 and 
16. 

III. Basic Physics 
Coherent and Incoherent Motion 

The behavior of a beam of particles in an 
accelerator or in a storage ring may be described 
by a properly-relatlvlstic Fokker-Planck equation. 
The diffusion terms arise from the scattering of 



beam particles on. residual gas, the scattering of 
particles on each other, and (for electron beams) 
from the emission of photons. Gas scattering is 
well understood, and machines are usually designed 
so that the phenomenon is unimportant. Intra-beam 
scattering (ADA effect) can be important in stored 
intense beams cf low energy, but again devices are 
normally designed so as to avoid the phenomenon. 
Radiation damping and the associated quantum 
fluctuations in the emission process are important 
phenomena in electron storage rings and this subject 
is well-understood. 

For times which are short compared to the 
characteristic times associated with the above 
mentioned diffusion processes, the Fokker-Planet 
equation may be approximated by the collisionless 
Boltzmann- or Vlasov-equation. Consequently, the 
Vlasov equation is adequate for the analysis of the 
collective behavior of particle beams, provided—as 
we shall assume in the remainder of this paper—gas 
scattering, lntra-beam scattering, and radiation 
phenomena are unimportant on the time scale under 
consideration. 

In the Vlasov equation each particle expe
riences an external time-varying potential (which 
really arises from external fields and from other 
particles, but as far as any one particle is con
cerned it an external potential). Hence all 
particles, as a collection, satisfy Liouville's 
theorem (which is valid even with time-dependent 
potentials) in 6-dlmensional phase space (which is 
a great reduction compared to the full 6K-
dimenslonal space). 

In a stationary state the external potential 
is time independent, and can be obtained by a self-
consistent field calculation which is quite anal
ogous to the Hartree approach to atomic structure. 

In addition, the self-consistent field may 
have dynamic behavior. This is quite analogous to 
the Bohr-Mottleson approach to collective modes of 
atomic nuclei. Of course, dynamic behavior of the 
field can be described in terras of single particle 
motion, but it ia usually easier to think of the 
self-consistent field as having associated degrees 
of freedom. The relation between these two 
approaches has been carefully studied in connection 
with atomic nuclei (the unified model) where the 

inter-play of collective modes (Bohr-Mottleson 
modes) and single-particle states (shell model 
states) is of great importance. 

For accelerator beams we call the motion 
where the self-field is stationary, "incoherent", 
and where the self-field hap dynamic behavior, 
"coherent". Since the coherent modes can, sometimes, 
lead to a rapid loss of the whole beam, we often 
describe such behavior as "an instability", but it 
must be remembered that incoherent collective motion 
can be just as effective in destroying a beam. 
Calculational Techniques 

There are two techniques which are commonly 
employed to evaluate the collective behavior of 
particle beams. A rather detailed discussion of 
these techniques is given in Ref. 2, from which 
Figs. 1 and 2 have been taken. These figures should 
be self-explanatory and hopefully, keeping the 
block diagrams in mind, will greatly ease the pain 
for someone fighting his way through the lengthy 
and detailed calculations which abound in the 
literature. 
Self-Destructive Behavior 

At the henrt of our problem—and I mean the 
problem of the accelerator physicist—is the 
pernicious self-destructive behavior of particle 
beams. What inherent flaw makes beams destroy them
selves? There are deep reasons which succinctly 
can be summarized with the remark that the system 
is not in thermodynamic equilibrium; in fact, with 
relativistic beams one could hardly be further from 
equilibrium. In statistical mechanics terms, the 
constant energy surface in 6w—perhaps 6 x 10 — 
dimensional phase space is of very great extent, 
and the part corresponding to a working device is a 
tiny area over in one corner. Eventually, because 
of metric transitivity (ergodicity), all regions of 
the energy surface will be experienced, i.e., the 
beam will destroy itself. 

But perhaps if the system is well-isolated 
from its surroundings, it will take a very long 
time before it comes to equilibrium. And certainly, 
we must isolate stored beams, for scattering from 
residual gas, noise in the current-supplies to the 
magnets, etc. will eventually lead to beam loss. 
We can readily calculate these relaxation rates and 
impose criteria which must be met in practice to 
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ensure an adequate beam life. These relaxation 
phenomena provide an ultimate limit to beam life
time. When the various other phenomena are con-
tolled, one is still left with the limits imposed 
by Imperfect beam Isolation. 

ffovever, to return to the deep question of 
beam stability, even an isolated system may approach 
equilibrium, (if you pack a gas into one corner of 
an isolated box, it isn't going to stay there.) 
But, you say, look at a system like the solar sys
tem. It has been stable for b.6 x 10 y earth oscil
lations. Of course, I can respond that to hold a 
beam in a storage ring for one day corresponds to 
3 x 10 oscillations, and hence in designing a new 
storage ring I can't take any comfort from the 
present observations on the stability of the solar 
system. However, since we don't know how to scale 
from one system to the other without a theory, these 
are only flippant remarks. 

Just such a theory was developed in the 
sixties. In fact, the last decade has witnessed 
remarkable progress on the classical problems of (l) 
ergodicityj. metric transitivity, and the basis of 
statistical systemsi and (2) the question of stabil
ity of conservative dynamical systems. Building on 
older work by Hopf, Hadamard, Krylov, and especially 
Kolomogorov (17)* the new progress has been made, 
primarily, "'jy Moser (l8) and the Soviet (Moscow) 
school of mathematicians: Arnol'd, Sinai, Anosov, 
and Aves (19). The application of these new results 
to physical systems has been pushed first by 
Chirikov (20), and then by many others. 

Consider a few of the new results. Firstly, 
the famous Kolmogorov-Arnol'd-Moser theorem consid
ers the motion described by 

N 
n = ? Y . C F * 2 + ^ ^ 2 ) + x [ v ? + V k + "' 3 

k-i 
where <u are positive frequencies, N Is the 
number of degrees of freedom, V, V, are cubic 
and quartic polynomials in P. and Q,j and \ 
is a measure of the nonlinearity. This describes, 
for example, motion near equilibrium in the solar 
system. The theorem.(approximately stated) is that 
provided 

(2) \ is sufficiently small (but not 
infinitesimal), 

(5) V, is nonzero, 

then except for a set of small measure the trajec
tories are quasiperiodic orbits lying on smooth 
N-dimensional integral surfaces embaSed in the 2N-
dimensional phase space* 

Consequently, a one-dimensional nonlinear 
system has a nonzero stable region around a linear 
stable equilibrium point (one-dimensional surfaces 
close-off the unstable zones), as is Bhown in 
Fig. 5« The one dimensional result is very inter
esting for application to beam problems in which 
there is negligible coupling between the three 
degrees of freedom. For H-dimenaions, Arnol'd 
(very slow) diffusion is speculated to occur even 
when the theorem is satisfied. 

Secondly, and conversely, when \ Is large 
the motion is vil-Uy unstable, i.e., the trajec
tories which aro initially close, separate from 
each other at an exponential rate. The system is 
said to be strongly-mixing, or stochastic. This 
transition or stochasticlty limit is a function of 
the initial amplitudes and of \. Sinai proved 
the ergodicity and mixing in a hard sphere gas, 
thus solving a century-old. mathematical problem 
(21). It seemB that even a system of sidkU. dimen
sionality may obey statistical laws and thus there 
is provided a significant new basis for statistical 
mechanics. 

Chirikov has suggested a method for esti
mating the stochastlcity limit (20). Roughly 
speaking the criterion is that when the nonlinear 
resonances (computed in first-order) become so 
dense as to fill all available phase space, then 
the motion is stochastic. This simple criterion 
has been applied, with surprising success, to many 
different systems (20). 

From this recent work we conclude that for 
a beam of particles to be stable, it Is necessary 
that each particle be below the stochastlcity 
limit, otherwise the beam will break up in an 
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incoherent manner. As we shall see, beam self-
fields can, at a certain current level, put par
ticles over the stochasticity limit. 

In electron storage rings it is probably-
sufficient to be below the stochasticity limit 
(since radiation damping should dominate Arnol'd 
diffusion) and thus provide long-time stability. 
For proton storage rings the importance of Arnol'd 
diffusion is presently moot; it may be involved in 
the ISR beam lifetime and experiments are being 
planned to try to find out. 

Of course, stability of a beam against 
incoherent modes is not sufficient for beam stabil
ity. We, know many examples from accelerators of 
coherent instabilities; in fact, most of the review 
articles on >,eam behavior have concentrated on 
coherent behavior, which is why I have emphasized 
here the incoherent effects. 

Finally, I want to remark that whether or 
not the solar system is stable, is still an open 
question. 

IV. Some Examples 
Incoherent Weak-Strong Limit of Colliding Beams 

In storage rings (for this phenomenon our 
experience to date, comes only from electron rings) 
a sufficiently intense beam will cause a weak, beam 
(i.e., even a single particle) to blow-up. It is 
believed, as a result of extensive numerical 
studies (3, 22) and theoretical analysis (20, 25) 
that the blow-up may be explained in terms of the 
nonlinear fields associated with the intense beam, 
causing at a certain level of intensity, particles 
of the opposite beam to be over the stochtisticity 
limit. 

A convenient measure of the effect of the 
strong beam is the change it causes in the betatron 
oscillation frequency of a particle in the opposite 
beam. For a Gaussian beam of N particles, with rms 
transverse half-widths cr̂  o , the change in the 
vertical v-value (the number of betatron oscilla
tions per revolutions) of r particle colliding 
head-on is: 

r N ? 
A v y = 5t y a (a + a ) > J y x y ' 

where r is the classical electron radius, y is e the particle energy in rest-mass units, and 2n6 

is the local wavelength (at the crossing point) of 
the betatron oscillation (2k). 

It is observed (on the Stanford rings, ADOEE, 
AGO, the VEP's, and SPEAR) and it is computed, that 
when A v is only ft 0.02 there is a blow-up of 
the particle oscillation amplitude. (A computer-
generated movie, by John Rees, delightfully illus
trates this phenomenon and was presented at this 
juncture to the Conference.) In practice the 
strong-weak beam effect is a serious constraint on 
storage ring operation. In order to reach high 
luminosity it has been necessary to build machines 
with very low values of (3 . so that, in the face 
of a given A v . one may achieve a large value of 
the beam density N/a (a + a ). y x y' 
Coherent Azimuthal Behavior of a Coasting Beam 

The very first instability of an accelerator 
beam to be studied was the negative mass Instability 
(25) (a special case of coherent azimuthal behavior^ 
and furthermore, it is the only instability to have 
been theoretically predicted.. (Since calling 
experimentalist's attention to the possibility of 
instabilities, we theorists have never been able to 
catch up with them again!) However, the subject is 
not without current interest; we believe our present 
troubles with the electron ring accelerator are 
related to this instability. 

Consider an azimuthally uniform beam of 
particles (mass m, charge e, number N) circula
ting on an orbit of radius R. A perturbation in 
beam current may be written in the form 
I exp i(n© - tot), where n is an integer (the 
mode number) and to (which is close to nco_, with 
CD the circulating frequency) describes the time 
development of the collective mode. Associated 
with the perturbed current will be an azimuthal 
electric field, Eg, of the form E exp l(n9-cot). 
The field, E n, is related to I (via Maxwell's 
equations) and one is led to define (8, 26) a beam 
coupling impedance Z = -2itRE /i . 

It can be shown (25, 27) that, approximately, 
the beam is stable provided 

V 2 r e N I v 2
 7

2 I E ' 
where v, y and r are defined as before, 
(AE/E) I S the full-width at half-maximum of the 
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distribution of the beam in energy, and Z Q is "She 
impedance of free space. Note, then, that for a 
given coupling, sufficient dispersion in the beam 
will prevenc the Instability (25), which is an 
example of the general phenomenon of landau damping. 

Also, it is clear that the beam surroundings 
are important, as they strongly influence the value 
of Z . In fact, a succinct way to characterize 
one of the problems to be solved in developing an 
electron ring accelerator is to state that (for an 
accelerator having a reasonably high rate of energy 
gain) the device must be designed so that 
( |z |/n) ~ (Z_/lO), i.e., the coupling must be 
reduced significantly below Its "natural value". 
Transverse Two-Stream Coherent Modes 

Rather recently, the theory of ion-electron 
coherent transverse oscillations has been developed 
(ll) and extended (28), and seen to be relevant to 
electron ring accelerators (11, 26), the Bevatron 
(29), the ITEP 7 GeV accelerator (30), and possibly 
the CERN ISR (3l). 

Consider a beam of protons which is azimuth-
ally uniform and not subject to clearing fields. 
In due course it will become somewhat neutralized 
by electrons produced in beam-background gas inelas
tic collisions. The electrons oscillate ("bounce"1) 
in the electrostatic potential well of the protons. 
An unstable—yet energy conserving—resonant cou
pling can occur between the (positive energy) 
coherent electron transverse motion and a (negative 
energy) slow-wave coherent transverse proton mode-

Let K, and x.* be the transverse 
coordinates of the £fch proton and the jjth 
electron, and let oi be the circulating frequency 
and ux v the betatron oscillation frequency of 
the kth proton. The equations of motion for the 
kth protoD and the Jth electron are (ignoring 
self-species forces): 

fa 3 ] (p) 2 „ 2 5t + \ 59 V + (p) 

t ^ K 2 U ( e ) - ^ ] > 
o x. v ' 

u _ -
at 2 

2f^P) 'I* (e)l 
i 1 

Here = Is the electron bounce frequency and ia 
given by 

where we have assumed N protons in a uniform 
beam of major radius R and minor radius b. The 

2 proton energy is y Mc , the electron mass m, 
and x ^ and x p ' denote the positions of the 
centers of mass of the beams. 

Interestingly enough, despite the possibil
ity of landau damping in the proton motion (due to 
a spread in frequencies arising from the spreads 
in oi and in v, ca values), the above equations 
have unstable solutions when the parameters are 
such that the average values v and 01 satisfy 
(n - Vr/y^ s 0) , and n Is any Integer larger 
than v . However, the proton potential well is 
not perfectly harmonic, and thus there is also a 
spread in the bounce frequency 03 , which might 
more properly be written as co .. The condition 
for stability is (ll, 28): 

(A %)A[(„-V A] > (J ) ( 3 . ) _ £ _ 

where A denotes the spreads In the appropriate 
electron and proton frequencies. 

Analysis similar to that outlined above has 
been applied to electron ring accelerators where 
one recalls the mutual ion-electron interaction is 
central to the concept. It is found, theoretically 
(11, £8), Lhat the instability limits the range of 
performance capabilities of the device, but to 
date no experimental Information Is available to 
either confirm or deny these conclusions. In the 
Bevatron, on the other hand, the Instability has 
been observed (29), and tben removed by the simple 
and definitive method of clearing the electrons 
from the beam (32). 
Transverse Emittance Growth in Linacs 

As a final example, consider the phenomenon of 
transverse beam size growth in the early sections 
of a proton linear accelerator. Much theoretical 
effort has been devoted to this subject, but 
because of its difficulty the numerical simulation 
studies have to date, provided more insight than 
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the analytical studies. 
In particular, it has "been shown (33) that 

the "blow-up is not due to longitudinal-transverse 
coupling through the rf fields 1Q the gap "between 
drift tubes, but rather, is due to nonlinear space 
charge forces. A convenient parameter is the beam 
brightness, B, defined by 

z e 

where I is the current in mA and e is the 
normalized emittance in cmrad. It was found ijiat 
(33 )> in a linac with an injection energy of 750 
keV, beams with B £ 10 y underwent considerable 
blow-up. 

Subsequent studies (3*0/ partially motivated 
by a desire to understand the blow-up phenomenon, 
have explored the coherent modes of oscillation of 
a beam and the thresholds for instability of these 
modes * It is not yet clear what relation, if any,, 
these coherent modes have to the blow-up studies in 
Ref. 33. Alternatively, one can conjecture that 
the phenomenon studied in Ref. 33 is the result of 
nonlinear space charge forces causing jTarticles tc 
be above the stochasticity limit t It w<uld be most 
illuminating to undertake analyses, analogous to 
those in Ref. 20 and 23/ so as to confirm or dis
prove this conjectured explanation of emittance 
growth. 

V. General Remarks 
Methods of Control 

The collective ehavior of particle beams 
can be characterized as either coherent or incoher
ent. In an incoherent mode the self-consistent 
field is stationary, while the coherent patterns 
have time-varying self-cons is tent fields and hence 
can be observed through their associated ac 
macroscopic fields. 

In order to control the self-destruction of 
a beam through an incoherent mechanism, one must 
change the parameters upon which the phenomenon 
depends. A practical example of such a means is 
the use of low-£ in colliding beam devices to 
reduce the effect of the intense beams upon particles 
in the oppositely directed beam. 

In electron machines, in contrast to proton 
devices* radiation damping helps to control incoher

ent as well as coherent behavior. 
Self-destuctlon of a beam through a 

coherent mode, i.e., an instability, may be 
controlled in at least three different ways, 
namely by (l) Landau damping, by (£) control of 
the environment, and by (3) feedback. 

(l) Landau Damping. This relies on a 
spread in the frequency of particles partaking in 
the coherent motion. Thus, energy spread sta
bilizes the negative maris instability, and octo-
poles, whiuh produce frequency dependence upon 
betatron oscillation amplitude, stabilize the 
transverse resistive wall instability. Because of 
Landau damping there exists a threshold current 
for each instability, and thus, by use of adequate 
amounts of damping, an instability can be prevented. 

(a) Control of the Environment. The 
driving terms of the instabilities always depend 
on the beam surroundings. One can reduce an 
instability by reducing the driving term, for 
example by reducing the coupling impedance in the 
negative mass instability. Thus, one can make 
growth times very long and/or raise the threshold 
for the instability. (Conversely, one must be 
very careful not to inadvertently make the 
impedance too high. At ADQNE, they experienced 
great beam difficulties, but when the clearing 
electrodes were removed they were able to store 10 
times as much current.) Because the environment is 
so important (for example, reistive instabilities 
are present only as a result of the beam surround
ings . ) , and because it is more under the machine 
designer^ control than any other factor, much 
attention must be devoted when designing a machine 
to the role of the environment in beam instabil
ities. 

(3) Feedback, "if it is coherent, it can 
be cured," has sometimes been said. That is far 
from true, but it refers to the fact that when 
coherent modes can be detected, feedback may be 
used provided one has adequate bandwidth, etc. to 
force the mode down. It is routinely used on the 
ZGSf for example, to keep the transverse resistive 
wall instability under control at a current level 
10 times the threshold value. 
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State of Understanding 
Generally, despite the insight which we have 

gained during the last decade into the collective 
behavior of particle beams, we have not been able 
to predict in which manner a new high current beam 
will be limited. With each small step into novel 
regimes we have encountered a new instability 
(Cosmotron and Bevatron-negative mass instability, 
MURA 1+0 MeV model-resistive wall Instability, 
Stanford electron rings-incoherent weak-strong beam 
instability, B3-longitudinal effects at transition, 
VEP-2 (Novosibrisk)-beam-cavity effects, ADA-Toudidc 
effect, ISR-coherent ion-electron instability, 
ADONE-head-tail instability, etc.). 

On the other hand, with each step we have 
been able to understand the newly-encountered 
problem so as to avoid the same trouble in future 
machines. (Thus, the ISR was successfully designed 
to avoid longitudinal and transverse-resistive 
instabilities, and SPEAR immediately reached cur
rents which took years to achieve in the first 
storage ring.) 

So much work remains to be done both on the 
theoretical and on the experimental side. And 1>; 

is important that such work be done, for deeper 
understanding is needed in order to be able to 
build more efficient devices, design convenient and 
economical collective-field accelerators, and 
safely take that exciting step to the next genera
tion of colliding-beam devices. 
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Block diagram of the Single Particle Motion approach 
to self-field phenomena 
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Block diagram of the Collisicnless Boltzmann 
Equation approach to self-field phenomena 

Asiume a distribution function 
<Mq.p.t) 

CollisionlrSB 
Boltzmann Equation 

dt|i_ 8<|i dq 8l|/ dp 8+ _ n 

ar "Sq" ar + 5p ar1' TT" " 

A partial nonlinear integral 
differential equation for the 
distribution function 

Maxwell 1 s equations 
Dynamical information 

Hamiltonian functional 
H[q.p.+(q,p.t)J 

Hamilton's equations 

dq_8H[q,p,»Mq,p,t)] 
Ht"~ 8p 

d p . 8H[q.p,»|<(q,p,t)I 
dT " 8p 

Fig. 2 

Fig. 3. Phase plane for one dimensional 
motion {with a time-dependent periodic 
Hamiltonian). 


