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HEAVY-IOS BEAM PR032 DSSIGX CALCUIATIOSS FOR THE ORNAK 

ASP SLMO BUtgY TORUS DEVICES 

Gregory 3. McNeilly 

ABSTRACT 

Beam probes are a promising plasma diagnostic tool, since 
the heavy-ion beam is capable of sampling the plasma locally, 
thus allowing measurements of fine spatial resolution. It 
is desirable that the locus of points of second ionization 
of the beam - the detector line - be as nearly straight as 
possible and pass through the center of the plasma. This 
allows a more convenient unfolding of the experimental .•esults. 
In addition, for ORMAK, intervening coils must be avoided as 
much as possible. These constraints, as veil as the probe*s 
physical limitations, determine the limits of the calculations 
described in this report. This work was sponsored by 
C- F. Barnett of the Thermonuclear Division-

I. IHTRODUCnOH 

Figures 1 and 2 show the ORMAK and ELM) Bumpy Torus (EBT) devices. 

Extensive discussion of these devices and their use in controlled fusion 
1 2 research is described elsewhere. ' The beam probe described here is 

similar to experimental apparatus in operation on the Princeton ST 
3 Tokamak and will be described only briefly here, 

Both ORMAK and EBT have their strongest vacuum magnetic fields 

directed toroidally. These toroidal or confining fields produce the 

predominate forces on the ions as th'.y pass through the plasma region. 

Thus, to a good approximation, an ion in a vertical plane containing 

a major radius of the torus (in the case of EBT at th? mid-plane of tvo 

coils) is deflected by the confining field only within that plane. 

Consequently, the calculation of the trajectory is reduced to two 

dimensions. The effect of in-plane or poloidal fields is discussed in 

detail below. 
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P ig . 1 . The ORMAK (Oek Ridge Tokamak) Device 
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Pig. 2. The EBT (Elmo Bumpy Torus) Device. 



.-\:-. -i O -L.-BUi. « charged bean of lens moves through the plasma, some ion; 

-cllid- wi:.h t:ie electrons ani become ioubly ionized. At this point the 

singly and doubly charged oeams diverge, since the Lorentz force differs 

by a factor of two. Tr.is separation begins at the point of ionization 

and thus provides a measurement of the plasma at a definite spatial 

position. It can be shown-* that a comparison of the 1 and the 2 beams 

gives a measure of the electron density, space potential, and the 

component of the vector potential along the confining field lines at 

the poinc of second ionization. Consequently, sweeping the ion beam 

through the plasma volume as a function of time allows one to measure a 

locus of points. If the sweep time is much shorter than the plasma 

relaxation time9 one tbin obtains a "snapshot" of the plasma volume at 

tnese points. Vfnen the grid of points, i.e. the detector lr'n^ is fairly 

straight and passes through the center of the plasma, one can measure 

radial distributions of the plasma parameters. In the figures of 

trajectories to follow, the diamonds indicate the grid of points of 

second ionization. 

II. Trajectory Calculations 

The following description applies to both ORMAK and EBT since only 

the 3-field calculation is different for the two cases. 

The motion of a charged particle in an electromagnetic field is 

governed by the Lorentz force 

F = q[l + v x B] , (2.1) 

-• -*-

where 3 is the charge oa the particle, S is the electric field, v is 



the velocity of the particle, and B is the magnetic field. Expressing 

Eq. 2.1 in a more mathematical notation, one has 

*-p ?(t) « J [E(?,t) • -£ ?(t) x B(?,t)] . (2.2) 
dt 2 * d t 

Equation 2.2 is a second order, ordinary differential equation, and thus 

may be expressed as a system of coupled first order ordinary differential 

equations using the substitution 

^ ? ( t ) » v(t) . (2.3) 

Using Eq. 2.3 in Eq. 2.2, one obtains 

^f v(t) x SL [ j ( ; , t ) + su) x S(?,t)i (2.u) 

The simultaneous solution of Eq. 2.3 and Eq. 2.U is completely equivalent 

to the solution of Eq. 2.2. In the present calculation, Eq. 2.U is 

simplified by setting E(r,t) * 0, and S(r,t) • B(r), i.e. the magnetic 

field is constant in time. The numerical solution of simultaneous first 

order ordinary differential equations is straightforward, and in the 
k present case a self-adjusting Runge-Kutta program is used. The solution 

of Eq. 2.3 and Eq. 2.k gives r(t), i.e. the trajectory of the charged 

particle. Given a set of initial conditions, the trajectory is uniquely 

determined. 

The object of the calculation is to obtain a detector line - the 

locus of points of second ionization - which is fairly straight, not too 

oblique to the ion trajectories, and which passes through the center of 

the plasma. These requirements affect the choice of initial conditions. 
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Given the B field, input to the calculation is: 

Bg - the radios of B field cut-off, 

R. - the radius of the source point, 

Rp - the radius of the detector, 

r - the radius of the limiter for OBNAK, o 
E - the ion energy, 

M - the ion mass, 

S - the point of entrance into the B field region of the central 

trajectory, 

as veil as numerous internal parameters requiring prescribed accuracy, 
k initial step size, etc. The angle at the point of entrance is varied 

until a trajectory passes through the center of the plasma. This angle, 

along with R. determines the position of the source. The charge of the 

ion is changed from 1 to 2 at the plasma center, and the trajectory is 

continued. The intersection of the ion path and the fU radius determines 

the position of the detector. With the source and detector fixed, a 

series of trajectories at different entrance angles is calculated to 

sweep through the plasma volume. The point of second ionization of each 

trajectory is determined as follows. The path of the 1 beam is calculated. 

If the path misses the detector due to an excessive deflection by the B 

field, the calculation of the path is abandoned. However, if the path 

misses due to insufficient deflection, a point of second ionization at 

the middle of the path is chosen and the trajectory recalculated from 

that point. The program then performs an iteration on the point of second 

ionization, moving the point to an earlier position on the path if more 

deflection is required, or to a later position on the path if less 
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deflection is required, until intersection vith the detector is obtained. 

When this calculation has been repeated for all the trajectories at 

different mtranee angles, the locus of points of second ionization 

represents the detector line - so called, because the signal in the 

detector originates only from this line in the plasma. For a given ion 

and a given entrance point S , one may vary IL , R p, and S to affect the 

shape of the detector line. The results of calculations for ORMAK and 

EBT are described in Section IV belov. 

III. Lens Calculations 

The angular spread of rays from the source required to sveep across 

the plasma volume is wider than can be conveniently supplied by sweep 

plates. A parabolic lens can be used to magnify the angle produced by 

conventional sweep plates. This parabolic lens, as the name implies, has 

a parabolic variation in voltage, i.e. 

V(y) » V o(y/ y j l) 2 , (3.1) 

where V is the maximum voltage, and y- is the half width of the lens 

(see Pig. 3). Since 

E * - W , (3.2) 

there is a non-zero value for only the y-component of the E field, and 

thus the motion of the ions through the lens is confined to the x -y plane. 

After the ion emerges from the sveep plates, it moves in a straight line 

in the force free Regions 1 and 3, so deflection occurs only in Region 2. 

The equation of motion in Region 2 is 



r- ; 
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REGION 1 REGION 2 ' 
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I 
Fig* 3* Sweep Platea and Lena Geometry - Side View. The origin of co-ordinatea uaed in 

Section III ia indicated by the circle. 

oo 
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- ^ y « I K , (3.3) 
dt* J 

2 where B « - 2? y/y.. Equation 3.3 can be written J o * 

-S^y • cy « 0 , (3.k) 
dt 

where c * 2V q/aqr.. The solution of Eq. 3 .^ ia 

y * A a i n ^ t + B c o e • c ' t , (3.5) 

where A and B are constants detendned by the initial conditiona. Since 
the Telocity in the z direction ia a constant determined by the ion 
energy, tine aey be eliminated from all equations by the relation 
t * X/T . With the equation of motion known in all three regions, the 
focal length and aweep angle of the lena can be calculated by matching 
the equations of motion at the region boundaries. If one chooees 
origin as shown in Fig. 3, ishe equations are 

Region 1 y y i + ^ i i (3.6) 
xd 

T /— 
Region 2 y « - & - sin ^ - • J t COB *§JL (3.7) 

(x-x.) 
Region 3 y « yt • T y , (3.8) 

where the numbered subscripts refer to positions and velocities at the 
left hand side of each region. The focal length of the lena (i.e. the 
length beyond the right hand aide of the lena) is 

- riL 
V. 

and th* wrap angl* a of tb* Iras i s 

Y~ , (3.9) 
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1 « - tan"1 [v (max)/v ] (3.10) 
2 y$ x 

vhexe the v (max) is for the outermost possible trajectory through the 
yi 

lens. Equation 3.9 and Eq. 3.10 are determined by yj and r which are 

given by 
ry, . ^ ^H ys -^2. sin •£"-=•• y 2 cos •£"-=• , (3.11) 
/^ x x 

and • » T cos /c y 2 ^"sin ^"r~ * (3.12) 
y* " Tx x 

where for the case of parallel sweep plates 

y* Tx 
y* x ^ ^ - (3.13) 

Thus the focal length is independent of y 2, and the sweep angle is known 

as a function of y 2. To obtain • (sax), one needs y2(max) in Eq. 3.12 
where 

y2(max) « y f / f - sin JT-± • cos /c^ (3.1*) 
1 ' L ( x 8 / 2 * x d ) ^ - vx Tx J 

and the inflection point X. is given by 

X. - -*- tan"1 [v /y2 ^c] . (3.15) 

Equation 3.9 - Eq. 3.15 provides a closed form solution for the focal 

length and sweep angle of the lens. The parameters x , x., x., y-, V , 

and v can be varied to study their effects. 

If a beam of radius y is considered, the lens introduces a trans­

verse dispersion which can be significant for some parameter values. 

The above equations apply, with y 2 replaced by y 2 • y in Eq. 3.13 
— o 



u 
for the bottom and top of the beam respectively (thus also affecting 

Eq. 3.15)» y. replaced by y- - yf in Eq. 3.1*», where j f is the displacement 

due to the finite beam - i.e. zero for the top of the beam, 2f for the 

bottom of the beam - and the first term in the bracket of Eq. 3.lb 

•ultiplied by 1 • y /yz(max). In this case Eq. 3.1* becomes transcendental, 
— o 

and y2(max) must be iterated to obtain a solution. The results of the 

lens calculations are discussed in Section Y below. 

IV. Results of Trajectory Calculations 

For OHMAK and EOT, the vacuum B fields in the vertical plane are 

calculated using an OWL version of the KAFOO coaputer code. Three 

dimensional OBMAK calculations, including the effect of the plasma current, 

used an analytic approximation for the total field which is described 

below. Only two dimensional calculations have been performed for EBT. 

An approximation to simulate the effect of the high-beta annulus in EBI 

is described below. 

The OHMNC vacuum B field is well approximated by 

o 

where R is the major radius of the torus. B is the B field in tbe o o 
middle of the minor cross section of the torus, and x is measured from 

an origin located at the middle of the cinor cross-section (see Fig. U). 

At the inner radius of the confining field coils, the B field falls 

rapidly toward zero. The poloidal B field due to the plasma current is 

approximated by 

B.(r) * -2^ r [1 - - ^ ] for r < r , (1.2) 
• wr2 2r2 ° 

c o 

B^(r) . — forr > TQ , (U.3) 
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Fig- **• The Co*ordinate Syscem Used in the Equations of 

Section IV. 
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vhere r is a radius measured from the center of the minor cross section, 

u is the vacuum magnetic permeability, I is the total plasma current 

flow (UOC^OOO amperes), and r is the radius of the ORHAK limiter (23 cm). 

Equations k.2 and U.3 result from a parabolic plasma current fall-off 

ending at r , with a total current flow of I. 

The effect of the poloidal field is to produce a z-displacement of 

the particle trajectories. The z-displacement depends on the geometry 

of detector and source as well as the beam energy. For a typical geometry 

(see Fig. 6), the z-displacement at the detector, due to the B field of 

Eqs. k.l to fc.3, is about 2 cm ± 1 cm. (Mote that all trajectory figures 

list the ion energy in keV on the first line, then on the second line 

the source angle measured from the vertical axis, the detector angle 

measured from the source axis, and the source and detector radii in 

centimeters.) Since the z-displacement within the confining coils is 

less than the above, and since B is reasonably constant as a function of 
z 

z, the calculation can be treated as a two-dimensional one, with the 
trajectories confined to a vertical plane of the torus. The figures of 
trajectory calculations shown are all two dimensional. 

When the source and detector radii are sufficiently large, the 
detector line is straight and at approximately a U5° angle to the ion 
trajectories (see Fig. 5). A more transverse detector line improves 
resolution as can be seen by imagining a parallel ion trajectory and 
detector line. In th's case the point of second ionization could be at 
any point on the trajectory. Unfortunately, the larger radii such as 
shown in Fig. 5 define ion paths which are primarily intercepted by 
ORMAK coils. Thus, other geometries are necessary in order to optimize 
the beam's transmission through the device. 



Ik 

600.X 
:7.*9 :o:.«: scoo :».oo 

Pig. 5- "Straight Line" Geometry for OMAK. Bote that in all 

trajectory figure* the ion energy is listed in keV on the first line, 

then on the second line the source angle measured from the vertical axis, 

the detector angle measured from the source axis, and the source and 

detector in radii centimeters are listed. 
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600.00 
20.0C 106.3* 60.00 100.00 

Fig. 6. Optimized Geometry for ORMAK- See Section IV for 

elaboretion. 
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Figure 6 is an example of an optimized geometry. Other ion energy 

end geometry combinations yield similar results, but Fig;. 6 displays 

the current design choice. The bean, transmission can be further 

improved by slight movements of three outer coils. The coils on the 

y-axis will be moved toward the left half of the device, and the coil at 

-30° (measured from the x-axis) will be moved counterclockwise-

With f:xed geometry, measurements off the plasma center can be made 

by changing the ion energy. Figure 7 illustrates this effect for a 

decreased beam energy. Increasing the beam energy moves the detector 

line in the opposite direction. 

For EBT, two major differences from ORMAK (aside from differing 

magnetic fields) affect the trajectory calculations. The ions of the 

EBT beam probe are potassium instead of thallium, and there are no coils 

to intercept the beam. Tvw deficiencies exist in the present calculations, 

(l) The calculation is two dimensional. This approximation is exact in 

the mid-plane between two EBT coils where the ion beam will be injected. 

However, unlike ORMAK, the magnetic field varies strongly as a function 

of z, and the effect of slight displacements out of the mid-plane should 

be studied with three dimensional calculations. (2) The effect of the 

high-beta annulus is not presently accurately known and is phenomenolog-

ically approximated in the present calculations. The vacuum EBT magnetic 

field in the mid-plane is modified, by a form factor given by 

j 
F(?) - [1 - I exp {- (|? ! - |? - v h 2/Ar}] (h.k) *• a c 

This is a gaussian depression of the vacuum field to 50 percent of normal 

due to an annulus of radius r , off center by r with a diffuseness of Ar. 
a' c 

The form factor is based on the fact that 
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500.30 
20.00 I06.3>4 60.00 100.0C 

Fig- 7* Effect on the Detector Line of Varying the Ion Energy. 
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p p + B /2 2i constant , (U.5) 

where p is the perpendicular plasma pressure in the annulus, and B is 

the modulus of the magnetic field. The plasma pressure in the annulus 

falls off in an approximately gaussian manner. Scaling the proposed EBT 
2 •+ 

geometry to the canted mirror results, one obtains r = 12 cm, r -
p (-2,0,0) cm, and Ar = 23 cm . 

Figure 8 is a trajectory calculation without the presence of the 

annulus, and Fig. 9 includes the above approximation to the annulus. It 

is clear that in the above approximation the effect of the annulus on the 

detector line and source-detector geometry is significant. These 

calculations will be continued and extended to three dimensions when the 

magnetic field due to the high-beta annulus is better known. 

V. Res cLLts of Lens Calculations 

Note that for parallel sweep plates, Eqs. 3.9 and 3.10 are independent 

of the ion mass. Thus, the thallium and potassium beams have identical 

behavior in the lens system. For a given ion energy, the lens must be 

designed to provide a sweep angle large enough to move the beam across 

the plasma volume of interest and at the same time to have a focal length 

long enough to isolate the lens system from the plasma. For an ion energy 

of 600 keV (ORMAK probe), a sweep angle of 30° and a focal length of 21 cm 

is produced by the lens parameters x * 27 cm, x. « 60 cm, x * U0 cm, 

y, * 10.2 cm, and V * 70 kilovolts. The transverse dispersion for a 

beam of one cm diameter introduced by this lens is 3.2 cm per meter. For 

an ion energy of 120 kev* (EBT probe), a sweep angle of 37° and a focal 

length of 5.1 cm are produced by the lens parameters x * 25 cm, x « 60 cm, 
s a 
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18-

120.00 
•1.81 137.25 50.00 SO. 00 

Fig. 8. Typical BBT Detector Line Without the High-Beta 

Annulua. 
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120.00 
3.20 IHH.92 50.00 50.00 

Pig* 9* Typical EBT Detector Line With the High-Beta Annulua 
Simulated as Described in Section IV* 
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x« « 30 c«, y. * 7.2 cm, and V * 17 kilovolts. The transverse dispersion 
Jfc * O 

for a beam, of one cm diameter introduced by this lens is k.Q cm per meter. 

The transverse dispersion is less in the ORHAK case, but the distance the 

beam travels before detection is longer. Thus, in both cases the trans­

verse dispersion produced by the lens may cause significant los~ of beam 

intensity and resolution. Therefore, it is desirable to inject the 

narrowest possible beam into the lens as the dispersion is rougbiy propor­

tional to the diameter of the injected beam. 
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