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HEAVY-ION BEAM PR0O3Z DSSIGN CALCULATYIONS FOR THE ORMAK

AND £LMO BUMPY TORUS DeEVICES

Gregory S. Mcieilly

ABSTRACT

Beam probes are a promising plasma diagnostic tool, since
the heavy-ion beam is capable of sampling the plasma locally,
thus alloving measurements of fine spatial resolution. It
is desirable that the locus of points of second ionization
of the beam - the detector line - be as nearly straight as
possible and pass through the center of the plasma. This
allovs a more convenient unfolding of the experimental _esults.
In addition, for ORMAK, intervening coils must be avoided as
much as possible. These constraints, as well as the probe's
physical limitations, determine the limits of the calculations
described in this report. This work was sponsored by
C. F. Barnett of the Thermonuclear Division.

I. INTRODUCTION
Figures 1 and 2 show the ORMAK and ELM) Bumpy Torus (EBT) devices.
Extensive discussion of these devices and their use in controlled fusion
research is described elsevhere.l’2 The beam probe described here is
similar to experimental apparatus in operation on the Princeton ST

Tokanak3

and will be described only briefly here,

Both ORMAK and EBT have their strongest vacuum magnetic fields
directed toroidally. These toroidal or confining fields produce the
predominate forces on the ions as th~y pass through the plasma region.
Thus, to a good approximation, an ion in a vertical plare containing
a major radius o the torus (in the case of EBT at thz mid-plane of two
coils) is deflected by the confining field only within that plane.
Consequently, the calculation of the trajectory is reduced to two

dimensions. The effect of in-plane or poloidal fields is discussed in

detail below.



~ BLANK PAGE




Fig. 1.

The ORMAK (Osk Ridge Tokamak) Device.
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Fig. 2. The EBT (Elmo Bumpy Torus) Device.
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AZ & 3ingly 2narg2d gean of i{cnz movas tarougnh the plasms, some ions
200113. WIinn o tne =lectrons anld pecome iocuctly icnized. At this poaint the

w

singly and Jdoutly caargei veams diverge, since tne Lorentz force diifer
vy a factor of two. Tais separation begins at the voint of ionization
ani tnus vrovides a measurement of the plasma at a definite spatial

‘s - . , 3 . . . + +
nosition., It can oe shnown~ that a comparison cof the 1 and the 2 beams
gives a measure 2f tne electron dersity, space potential, and the
component of tne vector potential along tue confining field lines at
the poinc of second ionization. Consequently, sweeping the ion beam
through the plasma volume as a functicn of time allows one to measure a
locus of points. if the sweep time is much shorter than the plasma
relaxation time, one th:n obtains a "snapshot" of the plasma volume at
tnese points. When the grid of points,i.e. the detector 1l'ng is fairly
straignt and passes tarougn the center of the plasma, one can measure
radial distrioutions of the plasma parameters. In the figures of
trajectories to follow, the diamonds indicate the grid of points of

zecond iownization.

II. Trajectory Calculations
Tae following description applies to both ORMAK and EBT since only
tne 3-field calculiation is different for the two cases.

The motion of a charged particle in an electromagnetic field is

governed by the Lorentz force

ray
Loy

= qf

>
=

=
wnere 3 1s tne charge on the particle, E is the electric field, v is
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the velocity of the particle, and E is the magnetic field. Expressing

Eq. 2.1 in a more mathematical notation, one has

d2 > > > d » >,
=, r(t) = g [E(r,t) + 3 r(t) x B(r,¢)] . (2.2)
dt

Equation 2.2 is a second order, ordinary differential equation, and thus
may be expressed as a system of couvled first order ordinary differential
equations using the substitution

S HE) = H(e) . (2.3)

Using Eq. 2.3 in Eq. 2.2, one obtains

£ ¥t = 3 @EFE,e) + (o) x BE,) (2.4)

Tre simultaneous solution of Eq. 2.3 and Eq. 2.4 is completely equivalent
to the solution of Eq. 2.2. In the present calculation, Eq. 2.k is
simplified by setting f(;,t) = 0, and 3(;,t) = ﬁ(;), i.e. the magnetic
field is constant in time. The numerical solution of simultaneous first
order ordinary differential equations is straightforward, and in the
present case a self-adjusting Runge-Kutta program is used.h The solution
of Eq. 2.3 and Eq. 2.4 gives r(t), i.e. the trajectory of the charged
particle. Given a set of initial conditions, the trajectory is uniquely
determined.

The object of the calculation is to obtain a detector line - the
locus of points of second ionization - which is fairly straight, not too
oblique to the ion trajectories, and which passes through the center of

the plasma., These requirements affect the choice of initial conditionms,



Given the B field, input to the calculation is:

RB - the radius of B field cut-off,

R1 - the radius of the source point,

R, - the radius of the detector,

r - the radius of the limiter for ORMAK,

E - the ion energy,

M - the ion mass,

S - the point of entrance into the B field region of the central

trajectory,

as well as numerous internal parameters requiring prescribed accuracy,
initial step size, etc.h The angle at the point of entrance is varied
until a trajectory passes through the center of the plasma. This angle,
along with Rl determines the position of the source. The charge of the
ion is ~hanged from 1+ to 2+ at the plasma center, and the trajectory is
continued. The intersection of the ion path and the R2 radius determines
the position of the detector. With the source and detector fixed, a
gseries of trajectories at different entrance angles is calculated to
sweep through the plasma volume. The point of second ionization of each
trajectory is determined as follows. The path of the 1+ beam is calculated.
If the path misses the detector due to an excessive deflection by the B
field, the calculation of the path is abandoned. However, if the path
misses due to insufficient deflection, a point of second ionization at
the middle of the path is chosen and the trajectory recalculated from
that point. The program then performs an iteration on the point of second
ionization, moving the point to an earlier position on the path if more

deflection is required, or to a later position on the path if less




deflection is required, until intersection with the detector is obtained.
When this calculation has been repeated for all the trajectories at
different :ntrance angles, the locus of points of second ionization
represents the detector line - so called, because the signal in the
detector originates only from this line in the plasma. ~for a given ion
and a given entrance point SO, one may vary Rl, Ra, and E to affect the
shape of the detector line. The results of calculations for ORMAK and

EBT are described in Section IV below.

III. Lens Calculations
The angular spread of rays from the source required to sweep across
the plasma volume is wider than can be conveniently supplied by sweep
Plates. A parabolic lens can be used to magnify the angle produced by
conventional sveep plates. MS parabolic lens, as the name implies, has

a parabolic variation in voltage, i.e.

v(y) =V (y/y,)° , (3.1)

vhere Vo is the maximum voltage, and Yo is the half width of the lens

(see Fig. 3). Since
E= -W, (3.2)

there is a non-zero value for only the y-component of the E field, and
thus the motion of the ions through the lens is confined to the x .y plane.
After the ion emerges from the sweep plates, it moves in a straight line
in the force free Regions 1 and 3, so deflection occurs only in Region 2.

The equation of motion in Region 2 is
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Fig. 3. Sweep Plates and Lens Geometry - Side View. The origin of co-ordinates used in
Section III is indicated by the circle.



2

d
By =q E , (3-3)
at® y
vhere B’ = o Zvoy/yi. Equation 3.3 can be written as
d2
at

vhere ¢ = Zvoqlrv:. The solution of Bq. 3.h is
y=zAsin/ot+Bcosvct, (3.5)

vhere A and B are constants determined by the initial conditions. Since
the velocity in the x direction is a constant determined by the ion
energy, time may be eliaminated from all equations by the relation
ttx/vx. With the equation of motion known in all three regions, the
focal length sand sweep angle of the lens can be calculated by matching
the equations of mtion at the region boundaries. If one chooses

origin as showm in Fig. 3, the equations are

Region 1 Y=y +’{'ﬂx. (3.6)
d
:z;_ e x /e x
Region 2 y= sin +y cos —=, (3.7)
/c x x
("’z)
Region 3 yEy tv, — . (3.8)

x
vhere the numbered subscripts refer to positions and velocities at the
left hand side of each region. The focal length of the lens (i.e. the
length beyond the right hand side of the lens) is
x, = - ::-!:' . (3.9)
£
and the sweep angle a of the lens is
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g'.: - tan~} [v’,(m)/vx] (3.10)

vhe:e the vn(-nx) is for the outermost possible trajectory through the
lens. Equation 3.9 and Eq. 3.10 are determined by ys and v’, vhich are

given by

v
Y2 - /_x], /-"'
y3 = === sin vc — + y3 cus Ve — , (3.11)
/c x x
a =v os/c—x" /—inv’--x-"- (3.12)
an vn ’zc s -Y2/cs c =, .

b ¢ b ¢

vhere for the case of parallel sweep plates

’z'x

'!z = m: . . (3.13)

]
Thus the focal length is independent of y2, and the sweep angle is knowm
as a function of y;. To obtain vn(nx), one needs y(max) in Eq. 3.12

vhere

Vx X X
ya(mex) =y, [ sin /c — + cos /o — (3.1h)
(x’/2 + xd)/; v V.

X b ¢

and the inflection point Xi is given by
v 1
X = s tan vy Sy ) (3.15)

Equatioa 3.9 - Eq. 3.15 provides a closed form solution for the focal
length and sweep angle of the lens. The perameters Xgs Xgs Xgo Yg» Vo,
and v x con be varied to study ‘heir effects.

If a beam of radius yo is considered, the lens introduces a trans-
verse dispersion which can be significant for some parameter values.

The above equations apply, with y2 replaced by y2 + Yo in Bq. 3.13
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for the bottom and top of the besm respectively (thus also affecting

BEq. 3.15), y, replaced by y, - ¥, in Eq. 3.1k, where Y, is the displacement
due to the finite beam - i.e. zero for the top of the beam, ao for the
bottom of the beam - and the first term in the bracket of Bq. 3.1b
sultiplied by 1 + yolyg(ll.x). In this case Eq. 3.1k becomes transcendental,
and y,(sax) must be iterated to obtain a solution. The resul's of the

lens calculations are discussed in Section V below.

IV. BResults of Trajectory Calculations

For ORMAK and EBT, the vacuum B fields in the vertical riane are
calculated using an ORNL version of the MAFCO computer co&.s Three
dimensional ORMAK calculations, including the effect of the plasma current,
used an analytic spproximation for the total field which is described
below. Only two dimensional calculations have been performed for EBT.
An approximetion to similate the effect of the high-betas snnulus in EBT"
is described below.

The ORMAK vacuum B field is well approximated by

B R
Bz(x) = r:ﬁi’-)- . (k.1)
vhere Ro is the major radius of the torus, BoistheBﬁeldinthe
middle of the minor cross section of the torus, and x is measured from
an origin located at the middle of the oinor cross-section (see Fig. ).
At the inner radius of the confining field coils, the B field falls
rapidly towvard zero The poloidal B field due to the plasma current is

approximated by

uol r2
B‘(r)t-'-;g r[l--;i]forr<ro, (4.2)
c o
oI
B.(r) ss=forr>r , (4.3)
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Section IV.
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vhere r is a radius measured from the center of the minor cross section,
uo is the vacuum magretic permeability, I is the total plasma current
flow (400,000 amperes), and r is the radius of the ORMAK limiter (23 cm).
Equations 4.2 and 4.3 result from a parabolic plasma current fall-off
ending at s vith a total current flow of I.

The effect of the poloidal field is to produce a z-displacement of
the particle trajectories. The z-displacement depends on the geometry
of detector and source as well as the beam energy. For a typical geometry
(see Fig. 6), the z-displacement at the detector, due to the B field of
Eqs. 4.1 to 4.3, is about 2 cm + 1 cm. (Note that all trajectory figures
list the ion energy in keV on the first line, then on the second line
the source angle measured from the vertical axis, the detector angle
measured from the source axis, and the sourc: and detector radii in
centimeters.) Since the z-displacement wvithin the confining coils is
less than the above, and since Bz is reasonably constant as a function of
2z, the calculation can be treated as a tvo-dimensional one, with the
trajectories confined to a vertical plane of the torus. The figures of
trajectory calculations shown are all two dimensional.

When the source and detector radii are sufﬁ.cientiy large, the
detector line is straight and at approximately a 45° angle to the ion
trajectories (see Pig. 5). A more transverse detector line improves
resolution as can be seen by imagining a parallel ion trajectory and
detector line. 1In th’'s case the point of se:ond ionization could be at
any point on the trajectory. Unfortunately, the larger radii such as
shown in Fig. 5 define ion paths vhich are primarily intercepted by
ORMAK coils. Thus, other geometries are necessary in order to optimize

the beam's transmission throu;hi the device.
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. -9us -

600.20
!7.43 3. OC.20 +30.00

Pig. 5. "Straight Line" Geometry for ORMAK. Note that in all
trajectory figures the ica energy is listed in keV on the first line,
then on the second line the source angle messured fraom the vertical axis,
the detector sngle measured from the source axis, and the source and

detector in radii centimeters are listed.
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Pig- 6. Optimized Geometry for ORMAK.

elaboretion.

See Section IV for
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Figure 6 is an example of an optimized geometry. Other ion energy
end geometry combirations yield similar results, but Fig. 6 displays
the current design choice. The bean transmission can be further
improved by slight movements of three outer coils. The coils on the
y-axis will be moved towarA the left half of the device, and the coil at
-30° (measured from the x-axis) will bte moved counterclockwise.

With fixed geometry, measurements off the plasma center can be made
by changing the i1on energy. Figure T illustrates this effect for a
decreased beam energy. Increasing the beam energy moves the detector
line in the opposite direction.

For EBT, two major differences from ORMAK (aside from differing
magnetic fields) affect the trajectory calculations. The ions of the
EBT beam probe are potassium instead of thallium, and there are no coils
to intercept the beam. Twu deficiencies exist in the present calculations.
(1) The calculation is two dimensional. This approximation is exact in
the mid-plane between two EBT coils where the ion besm will be injected.
However, unlike ORMAK, the magnetic field varies strongly as a function
of z, and the effect of slight displacements out of the mid-plane should
be studied with three dimensional calculations. (2) The effect of the
high-beta annulus is not presantly accurately known and is phenomenolog-
ically approximated in the present calculations. The vacuum EBT magnetic

field in the mid-plane is modifies by a form factor given by
+ 3 > > > 2 i
F(r) = (1 - { exp {- (Ira! - |r - rcl) /ar}] (L4.4)

This is a gaussian depression of the vacuum field to 50 percent of normal
due to an annulus of radius r. off center by r, with a diffuseness of Ar.

The form factor is btased on the fact that
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p, + B/2 v constant , (k.5)

where P, is the perpendicular plasma pressure in the annulus, and B is
the modulus of the magnetic field. The plasma pressure in the annulus
falls off in an approximately gaussian manner. Scaling the proposed EBT
geometry to the canted mirror result.s,2 one obtains r, = 12 cm, ;; =
(-2,0,0) cm, and Ar = 23 cm?.

Figure 8 is a trajectory calculation without the presence ¢f the
annulus, and Fig. 9 includes the above approximation to the annulus. It
is clear that in the above approximation the effect of the annulus on the
detector line and source-detector geometry is significant. These
calculations will be continued and extended to three dimensions when the

magnetic field due to the high-beta annulus is better known.

V. Resilts of Lens Calculations

Note that for parallel sweep plates, Eqs. 3.9 and 3.10 are independent
of the ion mass. Thus, the thallium and potassium beams have identical
behavior in the lens system. For a given ion energy, the lens must be
designed to provide a sweep angle large enough to move the beam across
the plasma volume of interest and at the same time to have a focal length
long enough to isolate the lens system from the plasma. For an ion energy
of 600 keV (ORMAK probe), a sweep angle of 30° and a focal length of 21 cm

d
Yo 10.2 cm, and Vc = 70 kilovolts. The transverse dispersion for a

is produced by the lens parameters x_ = 27 cm, x, = 60 cm, x, = 4O cm,

beam of one cm diameter introduced by this lens is 3.2 cm per meter. For
an ion energy of 120 kev (EBT probe), a sweep angle of 37° and a focal

length of 5.1 cm are produced by the lens parsmeters x, = 25 cm, = 60 cm,

Xa






€. 9. Typicel EBT Detector Line Wi

Simulated as Described in Section IV.

th the High-Beta Annulus
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x, = 30 cm, y, = 7.2 cm, and Vo = 17 kilovolts. The transverse dispersion
for a beam of one ca diameter introduced by this lens is 4.8 ca per meter.
The transverse dispersion is less in the ORMAK case, but the distance the
beam travels before detection is longer. Thus, in both cases the trans-
verse dispersion produced by the lens may cause significant los. of beam
intensity and resolution. Therefore, it is desirable to inject the
narrovest possible beam into the lens as the dispersion is rougrly propor-

tivaal to the diameter of the injected beam.
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