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Abstract 

The theoretical framework of a general approach to sensitivity analysis 
using adjoint functions is introduced and developed for practical application. 
Sensitivity and the context in which it is used is defined quantitatively in 
terms of adjoint functionals. The physical meaning and applicability of such 
a definition are then discussed with reference to both analytic and predic-
tive studies. Connections are made between the general approach and 
perturbation theory for predictive applications. Specific formulations use-
ful in cross-section sensitivity work are described in detail. 

v 
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I. Introduction 

The goal of sensitivity analysis in its widest sense is to establish 
the connection between the solution of a problem and the parametric data used 
to obtain that solution. Two central questions are addressed in performing 
such an analysis, the answers to both being essential ingredients in a general 
sensitivity theory: 

(1) How can the contribution of an input parameter to the solution of 
a particular problem be quantitatively measured? 

(2) How will the solution change as a result of changes in such a 
parameter? 

The answer to the first question is analytic in nature, involving a 
description of the role played by each parameter in determining a particular 
solution with an eye toward understanding the relationship between parameter 
and solution. An answer to the second question, in the context of a general 
theory, involves methods for determining the character of the new solution 
resulting from a change in the input data. This aspect of the theory is, 
therefore, predictive in nature. In the past most attempts at sensitivity 

1-7 
analysis were based in large part on this latter approach with little 
appreciation for its connection to the analytic aspect. It is hoped that 
a melding of the two approaches into one general theory will give impetus to 
the use of sensitivity analysis in a wider range of problems than is presently 
considered practical. 

What is proposed here is a mathematical formulation of sensitivity theory, 
based on strong physical insights, with the aim of setting up a quantitative 
basis for the concept of sensitivity. The approach is sufficiently general 
to allow the discussion to be restricted to neutron transport problems without 
losing sight of its potential applicability in other areas. In this light, 
the problem discussed in this paper will be the solution of the time-independent 
Boltzmann transport equation and sensitivity questions involving basic micro-
scopic cross-section data and the spatial transport of radiation. During the 
course of the developments, indications of other applications of the theory 
will be pointed out. 
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It is tacitly assumed in the present work that sensitivity questions 
are properly stated only after the specification of all problem data including 
sourcesmaterials, geometry, and detector responses (i.e., sensitivity questions 
are strictly problem dependent. Generalizations to the results of a particular 
study are then possible only within a class of problems similar to the one 
specified or problems exhibiting similar sensitivity results. Also, we assume 
that the need for sensitivity analysis arises in part from the vast amount 
of data used JL a calculation, and the lack of specific information about the 
importance of any particular data element in arriving at a result. A require-
ment of sensitivity theory, therefore, is that it reveals the importance of 
all input data without the need for prior specification of the parameters 
which are to be examined. Particular attention is thus focused on a meth-
odology for analyzing the sensitivity of the result to the entire input 
data field. 

II. Definitions 

To reduce the potential size of a sensitivity study to manageable pro-
portions and, in addition, to be able to draw from well-known mathematical 
formalisms, the basic nomenclature needed in any analysis must first be 
defined. In particular, the teim "result" and the usage of the word "sensitivity" 
must be made mathematically precise so that they can be meaningfully discussed 
in the broader context of the theory. 

In the first instance, the basic "result" of a solution to a problem 
will be assumed to be a flux integrated quantity or more simply a response. 
Stating this mathematically, we define: 

R = N(D ds = < z R , N y (1) 
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Here, N(£), is the angular flux solution of the Boltzmann equation, which 
in operator notation can be written as: 

LN = S (2) 

with external source S and. Boltzmann operator L; represents a point 
in phase space and is a function of the conventional independent variables 

and E; Eĵ (̂ ), is the response function which relates the flux to the 
physical response desired; and R, is the flux integrated response being 
studied. For convenience sake, integrals over all phase space if will be 
denoted by braces as is conventionally done to connote an inner product of 
two functions. 

While this definition appears to be somewhat restrictive, it really is 
not, for one is at liberty to choose E^CcJ to fit the problem being studied. 
For instance, if the flux itself at a particular point in phase space were 
the fundamental quantity whose sensitivity one wished to examine, then 
could be chosen to be n-dimensional delta function where n is the order of 
the dimensions of the phase space. That is to say, let: 

S R(0 = «(TT o) (3) 

thus yielding a flux response; 

R = J 6(J-F ) N(iW = N(F) 
5 (4) 

The freedom to choose therefore increases the generality of the 
definition. 

The second element of nomenclature requiring definition is the connotation 
of the term sensitivity. For our purposes the meaning of sensitivity will 
be derived from an explicit mathematical connection to be made between the 
final result and the input data used to solve a specific problem. This 
connection will be related to the adj oint flux N* (f)9 which is a solution 
to the adjoint Boltzmann equation: 

L*N* =-• S* . (5) 

Here S* is the adjoint source and L* is the adjoint Boltzmann operator, g 
which for a suitable choice of boundary conditions satisfies the following 
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well-known inner product relationship: 

(6) 

To connect the problem input data included in the operator L to the 
final result the adjoint source must be chosen to be the response function 
of interest: 

Sensitivity can now be spoken of in terms of the following inner product 
relationship involving the adjoint flux: 

Here L is some operator in the subset {L > of the Boltzmann operator L, 
X X 

whose definition and domain determine what input parameters are being studied; 
the term L N is then a source of neutrons arising from the operation denoted A 

by L , and I , therefore, represents an adjoint weighted production rate of A X 
neutrons integrated over all space. The expression defining I will be 
denoted as the integrated sensitivity function. 

It will become clearer in the next section how I is related to the X 

result R and why Eq. (8) can be referred to as the sensitivity of R to the 
data included in the operator L . Specifically, the interpretation of the 
adjoint flux as an importance function will be used to make the connection 
between I and R. Some mathematical properties of terms of the form of I , 

X X 
in particular the functionals in perturbation theory, will also be discussed. 

Ill. The Adjoint Flux as an Importance Function 

The interpretation of the adjoint flux as a function describing the 
importance of particles contributing to the final result is the under-
lying physical basis of general sensitivity theory. While many physical 
arguments can be used to justify such an interpretation, for the purposes 
of this discussion a brief mathematical explanation of the adjoint flux as 
a Green's function offers clear justification for its use in this context. 

8 
Following a traditional course, the two alternative methods for 

computing the result R can be derived. The first involves a solution of the 

s«(Q = SpCQ. 'R (7) 

(8) 
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Boltzmann equation for N(^) [see Eq. (2)] with subsequent calculation of the 
result R using Eq. (1) and a suitable response function A second choice 
involves solving the adjoint Boltzmann equation for N*(Q [see Eq. (5)] and 
then computing R from the following relationship: 

R = S(g)N*(0<fe =<S,N*> (9) 
I 

The fact that the R computed in this manner is entirely equivalent 
to that obtained using Eq. (1) is easily demonstrated by multiplying Eq. (2) 
by and Eq. (5), with S* = by N(|), integrating over all phase 
space K and subtracting the two resulting equations. Noting that all terns 
other than those involving S and cancel out as a result of the definition 
of the adjoint operators and suitable boundary conditions, we finally get 
that: 

(s,K*y =«(sR,N) . (10) 

From this well-iknown result it is possible to understand the adjoint 
flux as a Green's function by simply letting the problem source S(if) be a 
multi-dimensional delta function. That is, let: 

Sfe) = <5(R~o) (11) 

in Eq. (9) and combine this result with Eq. (1) to get: 

R = J Z R ( 0 N(Od£ = N*(ro) (12) 

This result clearly demonstrates that N* CQ quantitatively represents o 
the contribution of particles born at the point s^in phase space to the 
result R. For the case above where particles are born only at F , N(F) is o o 
numerically equivalent to the total result R. For a distributed source 
S(F), the linear nature of the Boltzmann operator allows N* (gj to be used 
as a Green's function to sum up the contribution of particles born at all 
point in phase space to arrive at the result R [i.e., R can be computed from 
Eq. (9)]. 

Because of this property of the adjoint flux, it can physically be 
interpreted as an importance function. That is, it is a quantitative 
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measure of the importance of particles born at any point in phase space in 
contributing to the final result. This interpretation is quite general in 
that it can be applied to any problem whose results can be stated in the 
form of Eq. (1) and whose solution is described by a linear equation with 
a real-valued adjoint function. In this regard sensitivity analysis, as 
developed in the next section, has wide ranging applicability in other fields. 

IV. Sensitivity Analysis of the Boltzmann Operator 

Using the above formalism, we can begin now to answer the first of the 
two questions central to sensitivity theory--how do we measure the importance 
of an input parameter in the solution of the Boltzmann equation? To make this 
determination, the result, as defined in Eq. (9), is rewritten in terms of 
the Boltzmann operator L defined in Eq. (2). T^ a t i s : 

This alternate foimulation of the definition of the result is fundamental 
to the general approach. From the previous developments on interpreting 
the adjoint flux as an importance function, it should be clear now that a 
quantitative assessment of the sensitivity of the result to the data specifying 
the problem is completely determinable from Eq. (13). The term LN here 
represents a birth rate for particles in phase space and N*LN their importance 
in contributing to the final result. Treating the integrand of the inner 
product in Eq. (12) as a density function describing the birth rate importance 
per unit volume in phase space, we can define R(£), the differential sensitivity 
function as follows: 

To answer any specific sensitivity question, therefore, the Boltzmann 
operator L can be broken down into a subset of operators {L } and the 
sensitivity of the result to the parameters contained in any L can be 
determined in integral fashion from Eq. (8) or as a function of phase space 
position using Eq. (14) with L replaced by L . It should be understood here 

A 

that there is great freedom available in choosing the L 's for any sensitivity 
study. It is only the domain of definition of L in phase space that limits 

(13) 

R(£) = N*LN (14) 
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the study to a particular set of input data. Thus spatial and angular 
effects as well as energy-dependent cross-section sensitivity can easily 
be incorporated into the theory. 

To be a bit more specific, a number of important terms in the Boltzmann 
equation can be used to define the L 's with an eye toward practical sensitivity 
applications. Only the analytic aspect of the theory will be discussed here, 
practical applications of the predictive possibilities being reserved for 
the discussion in Section V. 

A. External Sources. 

Clearly, before any use is made of the Boltzmann operator itself, 
the sensitivity of the result to the external source, S, is readily available 
from an inspection of Eq. (9). Defining a differential sensitivity function 
for this term: 

V c ) = ^ CIS) 
allows the spatial, angular, and energy dependent specifications of the source 
to be checked for their importance in arriving at the result R. Here RcUf) 
represents the sensitivity of R per unit volume in phase space to the source 
neutrons born at Such a sensitivity function is quite useful in trying 
to understand the physical mechanisms by which particles go from their point 
of birth to the point at which they contribute to the result. RgCl") will 
clearly define the most important energy, angular, and spatial regions from 
which source particles emerge and should allow simpler models for specifying 
the problem to be evaluated. Also worth noting here is the form of Eq. (15) 
normalized per source particle [i.e., divided by S(f)J; the sensitivity 
function here is simply N*(£) itself. Since no specific source specification 
is involved here, N*(5) is useful for evaluation of the importance of any 
source spectrum in calculating the result R. This latter application is a 
familiar motivation for solving the adjoint Boltzmann equation for N*(£) i 
when faced with a series of problems in which only the source specifications 
change. 
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B. Leakage. 

Following the example above the sensitivity of the result to streaming 
leakage from phase space can be investigated with the sensitivity function 

Rs TCD = N*(jp 8>VN (0 (16) 

Since this term involves the spatial and angular problem specification data 
explicitly in the ft.v operator, it is quite useful for sensitivity studies 
involving the spatial mesh and angular quadrature and should also shed some 
light on the mechanisms of transport and slowing down. Certainly, the 
regions of high leakage will appear as maxima in a plot of Eq. (16) and will 
indicate streaming paths in space, energy, and angle. The minima, on the 
other hand, should indicate regions in •which slowing down dominates. Particularly 
useful here are the integrals of over angle, Rgp(r,E), and over space, 
R ^ (E,ft). Both of these latter functions contain valuable information about 
the importance of each element of the space mesh and angular quadrature as 
a function of energy. This information can be used to correlate streaming 
mechanisms with cross section behavior as a function of energy. Improvements 
in specifying the spatial and angular meshes as well as the cross-section 
data might well result from studying the sensitivity of the result reflected 
in these functions 

C. Collisions. 

In dealing with the collision processes in the Boltzmann equation, 
two terms are available for sensitivity analysis, one involving the loss of 
particles from a point in phase space as a result of particle inteiractions 
and the other involving double differential cross-section data representing 
the scattering of particles into a point in phase space. Determining the 
importance of collision losses is straightforward with the use of the 
following total cross-section sensitivity function: 

% , L O S S ® 5 C17) 
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The total cross section is used to define the loss function, since any 
collision at removes the particle from that point in phase space. 

An integration over all angles in a region of space represented by r^ 
(specifically a spatial region which is homogeneous in material composition), 
yields an energy-dependent sensitivity function for losses: 

* / 

Rz ,LOSS(E) " j dto dF (18) 
T r Q 0 

representing the importance of all collision losses as a function of energy. 
This latter function is quite useful in pointing out regions in energy where 
collision processes are very important and, therefore, should aid in selecting 
energy grids for solving particular problems. 

The problem of defining useful sensitivity functions for double dif-
ferential cross-section data is more difficult to do generally, since 
particular applications can lead to quite different functions. For instance, 
the importance of all particles scattering into a point in phase space can be 
represented by: 

Z g U ^ e ) N U T ) d V (19) 

where K represents r,E,£2 and represents r,E?,nf (i.e., different energies 
and angles at the same spatial position r). Since most solutions of the 
transport equation involve an expansion of the scattering transfer cross 
section, in Legendre polynomials in and the data are taken 
to be constant over homogeneous material zones, a more useful function is: 

Rv TM(E) - N* (r,E) IN 
b r E? 

0 
Eg(r,E'->E) N£ (r,E') dE' dr (20) 

where the z subscripts represent the expansion of the flux and its adjoint 
in terms of Legendre polynomials P^(y) in polar angle cosine y= That is 

/ 

N£(r,E) = ]_ P£(y) N(F,E,fi) dto ( (21) 
to • 

The two functions given in Eqs. (19) and (20), specifically the latter, are 
ideal for determining the mechanisns of particle slowing down in shielding 
problems. When either of these functions is broken down into separate terms 
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for each partial cross section (i.e., elastic, inelastic, etc.), the 
important mechanisms by which particles lose energy in collision and then 
contribute to a response should be quite apparent. 

In a similar fashion, an alternate double differential sensitivity 
function can be defined to study the importance of transfer reactions out of 
any enexvgy region. Using the Legendre polynomial expansion form, we can define 
an outscattering sensitivity function 

) 

R* (E) = 
^OUT - E, 

N^(E) ^(r,E^Ef) N*(E') dE» (22) 

o 
Here (E) represents the cumulative importance of the z harmonic of 

*s,our 
all particles scattering out of phase space at energy E; the tern, 
N' (E) z g(r ,E->£') represents a reaction rate for the transfer; and N5^ (E'), 
the importance of the particle at its final energy E'. This latter form, 
while equally useful as Eq. (21) for studying slowing down mechanisms, has 
a more important use in cross section sensitivity analysis as spelled out in 
the next section. It should be noted that R~ (E) is simply an adjoint 

S,0UT 0 
foimulation of R̂ , ^ E ) , since the adjoint of the Legendre moment of the 
transfer cross section is simply its transpose in energy. Also, noteworthy 
is the potential usefulness of both Eqs. (20) and (22) in determining the 
importance of higher order expansion terms in specifying the scattering 
transfer cross section in particular applications. 

D. Cross-Section Sensitivity Profile. 

For specific analysis of the sensitivity of the result to cross-section 
behavior as a function of energy a combination of previously defined 
sensitivity functions is needed. Since cross-section data are usually 
specified in a number of homogeneous regions in any problem and the energy 
dependence of the data is of paramount concern, a spatial and angular 
integrated function is of interest. In this light, we can define a 
sensitivity function for a particular reaction type by combining the functions 
defined in Eqs. (18) and (22) for handling total cross section losses and 
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outscattering double differential data, respectively. 
If we first define R (E) as: 

Tc 

^T 2z+l] r£ 
l [ 41 i z ,out 

r: (E) (23) 

where the first term represents the total importance of £ (E) type collisions X 
in removing a particle from energy E and the second term is the collective 
gain in importance after emerging from collisions at other energies and 
angles. The positive and negative signs in front of the terms reflect the 
effect of such losses or gains of importance on the result. R^ (E) then 

x 
denotes the energy dependence of the total result r for reactions of type 
£ (E) at energy E. A Msensit.ivity profile" can now be simply defined as 
a normalized probability density for the sensitivity function given in 
Eq. (23). That is: 

The normalization allows P̂ , (E) to reflect the fractional sensitivity 
x 

of the result R to reactions of type I (E) at energy E. If this function is 
summed over reaction types and spatial zones and a leakage sensitivity 
profile added to it [i.e., Eq. (16) integrated over r and sT and normalized 
to R], the integral of the combination over energy will be unity. 

Writing out the explicit functional form of P^ (E) for a particular x 
reaction type, we get the following: 

P 2 (E) e Rs (E)/R 
I 4J 
X X 

4J 
X 

(24) 

r 
P, (E) = N*(r,E,ft) £x(r,E) N(r,E,C2) dr dQ 
x (25) o 

r Ef 
, N (r,E) i:*(r,E->E') N* (r,E») dE' dr j R 

o 

Since £ (r,E) is independent of any of the integration variables in this 

equation and the first term in Eq. (25) is also expandable in Legendre 
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polynomials, we finally get: 

P y (E) = 
^CE) 
R 5 [ 2 * 1 ] J dr - N^r.E) N*A(r,E) 

N4(r,E) f N*(F,E') dE» 

(26) 

Where 1(E) = sY(rrt,E) and S (r,E-*Ef) = E (E) f (E-*E») in zone r and X X 0 X X X o 
f (E-»Ef) is simply the Legendre moment of the normalized probability 
for transferring from E to E' by reaction type x. This fomi is particularly 
convenient from a computational point of view since spatial integrals of the 
Legendre moments of the flux appear explicitly as separate terms in the equa-
tion. In fact, it is quite useful to define a special function for these 
terms in a homogeneous spatial region rQ in the form of a matrix: 

MJtCE,E,D = NA(r,E) N%(r,E') dr (27) 

In terms of this function, we can rewrite Eq. (26) in the same homogeneous 
zone as: 

LCE) 
% (E) = 
x R I 

21 + 1 
41 

- Ma(E,E) + J fx(E-^E') M£(E,E') dE' (28) 

Eq. (28) is in a form which is easily used to study cross section 
sensitivity. Graphical display of P (E) for all partial cross sections used 

10 11 
in a given problem is a great aid in understanding particle transport. * 
The most important energy ranges in each partial cross section set under 
study are clearly identified in such a plot by the maxima in the function P (E) z x 
V. Predictive Aspects of the Theory 

A. Connections with General Perturbation Theory. 

The analytic aspects of the theory should now be apparent from both 
the definitions of the sensitivity functions and their application in 
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analyzing the Boltzmann transport operator. The other important aspect of 
the theory is its potential for predicting changes in R as a result of 
changes in the operators {L }. To demonstrate this capability, the 

A 

connection between a general sensitivity function R(f) and the principles 
of perturbation theory will be examined. 

The more formal mathematical implications of the definition introduced. 
in Eq. (8) for discussing sensitivity can most easily be developed by showing 
that such a mathematical form is a first-order functional in general pertur-
bation theory. Starting from Eq. (13): 

R = LN^ (29) 

we can define a perturbed problem such that the perturbed flux N' and its 
adjoint N*', resulting from the perturbed operators L1 and L*', respectively, 
satisfy the following equations: 

L'Nf = S (30) 

L*»N*» = S* (31) 

A result for the perturbed problem can then be found from the expression: 

R1 = <N*',L,Nf)> (32) 

The relationship between the perturbed result, R', and the unperturbed 
result, R, can easily be established by letting the perturbation be defined 
by a series of incremental changes, such that: 

N1 = N + 6N (33) 

N*' = N* + 5N* (34) 

L' = L + 6L (35) 

L*' = L* + <5L* (36) 
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Expanding R' in terms of these quantities, we get: 

R' = <JN* + $N*), L'N*> 

= + <^N*,L'Nj> (37) 

Noting that L'N' = LN = S, we can identify the first term in the final foim 
of Eq. (37) simply as the unperturbed result R and rewrite this equation as: 

R1 = R + <sN*,L*N> + <3N*,L !6N> (38) 

Taking the adjoint of the second teim in Eq. (38): 

= <N,L**6N*> (39) 

and noting that L*'N*' = L*N* = S* such that: 

L*' (N* + SN*) = L*N* (40) 

and therefore: 

L*»fiN* = - (L*' - L*) N* = - 6L*N* (41) 

We finally get the second term to be: 

= - < N o L * N * ) (42) 

Taking the adjoint of this result again, the perturbed result can be 
written simply as: 

Rf = R - <N*,6LN> + (43) 

From the standpoint of linear perturbation theory where second-order 
effects of the form of the third term on the right hand side of Eq. (43) 
are ignored, we get: 

R' - R = 5R = - <N*,6Ll£> (44) 

It is this relationship that clearly defines the connection between 
the analytic and predictive aspects of the definition offered in Eq. (8) 
for discussing sensitivity. If L in that equation is defined as the perturbed 
operator 6L, then we can formally write I for this case as 

A 

I6h = = ~ 6 R (45) 
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The integrated sensitivity function as applied to answering the second 
fundamental sensitivity question -- how will the solution change as a result 
to changes in the input data? -- can readily be interpreted as the first-
order change in the result arising from the data change specified in 6L. 

With this formal equivalence having been established, Eqs. (15) through 
(28), derived in the previous section can be applied to perturbed problems 
to predict changes in the result. This procedure is particularly powerful 
when the sensitivity of the result to changes in an operator is viewed as a 
function of phase space position. For instance, energy-dependent cross-section 
uncertainties, represented by (E), can be incorporated into the definition 
of the sensitivity profile P v (E) given in Eq. (28) such that a graphical 

x 
display of a first-order approximation to <$R (E)/R can be presented. An 

energy-dependent assessment of the effect of these cross-section uncertainties 
on the final result is immediately available from such a plot. This 
function is as useful in determining which cross section uncertainties are 
important, as is the expression given in Eq. (28) for determining which 
cross sections are important. A similar strategy can be used to compare 
diffusion and transport theory calculations simply by specifying the 
operator in Eq..(16) to be the difference between leakage operators in 
the two theories (i.e., 3L = - D(F,E)v2). D(r,E) here is the diffusion 
coefficient. 

In problems where linear perturbation theory proves to be inadequate 
for predictive purposes, the definition of the sensitivity function can 
easily be shown to be compatible with generalized perturbation theory. 
The result for the perturbed problem, R', as given in Eq. (32), simply 
leads to a perturbed functional of the form: 

The only differences between the unperturbed and the perturbed cases is the 
the use of the perturbed adjoint in computing the function. With this generali-
zation, Eq. (43) can be recast in the following form: 

(46) 

But since L'N' = LN = S, it is formally equivalent to: 

(47) 

(.48) 
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Here we can readily see that if SL is used for L , we can generalize the 
X 

definition of I for a perturbed problem as follows: 
Js, 

where I., is exactly equal to 6R now. 
Thus, graphical representations of any of the sensitivity functions 

previously derived with suitable changes so as to reflect the behavior of 
N*1, can be used to rigorously predict changes in the result as a function 
of position in phase space. 

B. Interpretation in Terms of Partial Derivatives. 

In many aspects of optimization theory one seeks to minimize or 
maximize a certain function using iterative procedures and first-order 
approximations to the rates of change of the function vith respect to the 
parameters varied in the optimization process. For the purposes of 
optimizing the procedures for solving the Boltzmann equation with respect 
to specification of the input data, the rates of change of the result R 
with respect to the input parameters are important quantities. Within the 
framework of the sensitivity theory just developed, such partial derivatives 
are available in some special cases. Fortunately, these cases do include a 
number of practical problems for which optimization might to contemplated. 

One important instance in which derivatives can be obtained from 
sensitivity theory occurs in the specific case of an operator of the form: 

where the a^'s are parameters whose sensitivity one is interested in studying, 
and the L^'s a.re operators independent of the a^'s. Using generalized 
perturbation theory, we can develop an expression for 6R in terms of such an 
operator by starting with Eq. (49). Thus, let us introduce a perturbation 
in a specific region of phase space with a 6L defined as follows: 

(49) 

LN = JL^N = Ja(C) L_N (50) 

'•Sc^U) L.N € - < £ < £ + A£ 2 (51) 
5L = 

0 Elsewhere 
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Here, i" + (Ai~/2) is understood to be of the form (x + Ax/2, y + Ay/Z, etc.). 
The perturbation in the result will then be given by : 

rK+CW 2) 
6R = j N*'6LN d^ (52) 

If we now assume that 6ou/cu is a constant in the perturbed region, we 
can rewrite Eq. (52), making use of the definition of the perturbation 
given in Eq. (51), to get: 5+(Z£/2) 

fia. 
6R = — a. l 5-CA5/2) 

N*!a^L^NdC (53) 

This can be rewritten as: -^nrr/ty 
N*'L Nd£ 

_ 
, €~(Ag/2) 1

 ( 5 4 } 
6 (In <*.) A$ AC 

If the perturbed region contains no source singularities then N*LN will be 
a continuous, bounded function, and we can let A!" approach a differential 
region in phase space and approach zero. In this limit, we get 

N*1 N* 

aIT aif 

6R 3R 
6(lnai) 8(lnai) 

and therefore: 

^ = N*L N = R (£) (56) a(lnou) ai ai 

Thus, in this instance the sensitivity function per unit volume in phase 
space, RqjJCQ > is related to the local rate of change of the result with 
respect to a change in the sensitivity parameter a^. It is quite useful to 
note that the form of the sensitivity function for cross-section studies 
[see Eq. (28)] is included in this special case of multiplicative operators. 
The derivative form above should allow optimization procedures to be 
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implemented in the selection of the energy grid used to produce group 
averaged cross sections in the multigroup transport equation. The 
here would represent the group averaged cross section in group i and the 
error in the result, <$R, could be minimized by an appropriate selection 
of group energy boundaries. 

VI. Conclusions 

In building a mathematical theory of sensicivity analysis and 
developing specific tools for analyzing the sensitivity of the Boltzmann 
equation to its input parameters, new areas of study will hopefully be 
opened up. The theory outlined in this paper includes the possibility of 
making analytic studies of the Boltzmann operator to understand the 
physical processes underlying particle transport. Such studies are made 
possible by the availability of procedures for analyzing all input data 
and regions in phase space for their contributions to the solution of a 
problem. Its compatibility with perturbation theory adds a predictive 
aspect to the theory which allows an estimation to be made of changes in 
the result arising from changes in the input data. Considerable progress 
is possible in the area of optimizing transport calculations as a result 
of such a combination of analytic and predictive capabilities. In the case 
of cross-section studies, the detailed outline of actual procedures needed 
to implement both capabilities, together with the interpretation of the 
sensitivity function as a local derivative of the result, should prove 
most useful in this phase of sensitivity analysis. 

In summary, using a consistent mathematical basis, sensitivity theory 
should greatly increase the understanding of what parameters are important 
in the solution of a problem and what effect approximations have on the 
result. The physical insight gained from this understanding should enable 
transport calculations,cross-section measurements, and integral experiments 
to be made far more efficiently than they are at present. 
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