L'Energie Atomique du Canada, Limitee

DETERMINATION DE TAUX DE COMBUSTION D'UN TRAIN DE COMBUSTIBLES PAR ANALYSE CHIMIQUE ET ISOTOPIQUE

par

R.W. DURHAM et V. CORRIVEAU

Laboratoires Nucleaires de Chalk River Chalk River, Ontario November 1972

AECL-4313F

Détermination de taux de combustion d'un train de combustibles par analyse chimique et isotopique

par

R.W. Durham, V. Corriveau

Résumé

Les taux de combustion de six grappes de combustible irradiées dans le NRU ont été déterminés par analyse chimique et isotopique. Le dosage d'uranium en solution a été déterminé par coulométrie à potentiel contrôlé tandis que celui du plutonium par taux de comptage en se servant d'un compteur alpha 2π , balayé au gaz méthane. Ce taux a été corrigé en mesure du rapport 238Pu/239Pu + 240Pu effectué par spectrométrie alpha.

L'analyse isotopique de l'uranium et du plutonium par spectrométrie de masse à thermoionisation a fourni les données nécessaires pour calculer le nombre de fissions d'uranium par la décroissance de ²³⁵U et, avec le rapport Pu/U, le nombre de fissions de plutonium.

> L'Energie Atomique du Canada, Limitée Laboratoires Nucléaires de Chalk River Chalk River, Cutario November, 1972

BURNUP DETERMINATION OF A FUEL STRING BY CHEMICAL AND ISOTOPIC ANALYSIS

R.W. Durham, V. Corriveau

Summary

The burnup of six fuel bundles irradiated in NRU was determined by chemical and isotopic analysis. The concentration of uranium and plutonium solutions was determined by controlled potential coulometry and 2π alpha counting respectively. Alpha spectrums obtained from sublimed plutonium sources provided the ²³⁸Pu/²³⁹Pu + ²⁴⁰Pu ratios needed for corrections.

Mass spectrometric analyses were done on separated uranium and plutonium solutions. The number of uranium and plutonium fissions were calculated from the ²³⁵U depletion and the Pu/U ratio.

> Atomic Energy of Canada Limited Chalk River Nuclear Laboratories Chalk River, Ontario November 1972

Introduction

L'analyse chimique et isotopique d'un train de six grappes de combustible de différents enrichissements ayant subi différentes irradiations a été faite à la demande du groupe Génie des Combustibles Nucléaires.

•

Prélèvement et préparation des échantillons

Quatre pastilles d'uranium ont été prélevées de chaque grappe de combustible au plan médian sur un diamètre de la grappe, de sorte que deux pastilles de deux crayons extérieurs opposés, une pastille d'un crayon intérieur et une pastille d'un crayon central ont été obtenues comme l'indique la figure 1. Ce prélèvement des échantillons a été accompli dans les cellules blindées Universelles du Centre d'études nucléaires de Chalk River.

Ces 24 échantillons ont été dissous individuellement à chaud dans des ballons d'attaque à J'acide nitrique concentré. Les solutions ainsi obtenues ont été ajustées à une concentration d'acide nitrique finale de 7.5M.

Dosage d'uranium

Cette analyse a été effectuée par coulométrie à potentiel controlé (1)(2) en se servant d'un titreur coulométrique ORNL Modèle Q-2005X50. Un voltmètre digital sensible à 0.01 mV mesurait la charge qui s'accumulait sur l'intégreur de courant tandis qu'un enregistreur suivait et tracait la marche du courant pendant le titrage. La réduction de l'uranium se faisait à la surface d'une électrode contrôlée de mercure dans une cellule de verre comme l'indique la figure 2. Le récipient de verre, 38 mm x 75 mm, était abaissé pour y introduire le mercure et l'échantillon à analyser. Le couvercle en "Teflon" soutenait un tube pour l'entrée de l'hélium et deux compartiments isolés qui contenaient les autres électrodes. Ces compartiments sous forme de tubes de verre de 8 mm de diamètre avaient les bouts inférieurs définis par des pastilles de verre fritté qui avaient été fabriquées à la manière de Bird (3).

Un mélange chaud d'Agar-agar à 3% et de sulfate de potasse à 5% avait été versé dans ceux-ci formant, en refroidissant, une gelée de 6 mm d'épaisseur. L'électrode isolée, un fil de platine torsadé (de 1 mm de diamètre) d'une part et l'électrode de référence au calomel saturé d'autre part avaient été insérées dans ces deux tubes de verre remplis d'une solution d'acide sulfurique 0.5M. L'électrode de travail consistait de 7.3 ml de mercure dont la surface était continuellement renouvelée par un agitateur à bouton en "Teflon" bien spécial tournant un peu sous la vitesse où le mercure se briserait en petites bulles séparées. L'intérieur de la cellule était balayé, par de l'hélium humidifié, pendant 5 à 10 minutes avant le citrage et durant tout le temps de la réduction.

Préalablement à l'analyse d'un groupe d'échantillons d'uranium, le mercure, tri-distillé, était conditionné par titrage de 10 ml d'acide sulfurique 2M jusqu'au point où le titrage le plus bas était obtenu (le blanc). Le titrage d'un échantillon d'une solution étalonnée d'uranium vérifiait les données du système. Toutes les solutions étaient dosées en triplicata en se servant d'une microbalance et étaient déposées dans des béchers de 100 ml. Trois vaporisations jusqu'au point de vapeur de l'acide sulfurique servaient à préparer les

- 3 -

échantillons qui étaient par la suite transférés avec 10 ml d'acide sulfurique 2M à la cellule de titration. La première vaporisation consistait de l'échantillon, de 0.5 ml d'acide sulfurique concentré et, de 0.25 ml d'acide perchlorique. Pour s'assurer de la disparition de toute trace d'acide perchlorique il était important que les côtés des béchers aient été bien lavés à l'eau distillée entre chaque vaporisation. Pour les deux autres vaporisations une goutte d'acide sulfurique concentré y était ajoutée en plus de l'eau distillée. A titre de mesure préalable une préréduction à +0.08 V réduisait toutes traces de fer et autres impuretés. La réduction propre et nette de l'uranium (VI) à l'uranium (IV) procédait à un potentiel final de - 0.325 V approché par étapes de telle sorte que le courant ne dépassait pas 60 mA. On a noté que si le fumage des énchantillons aux vapeurs d'acide sulfurique n'était pas assez assidu la préréduction se trouvait plus grande que normale et la réduction propre avait tendance à se rallonger considérablement. La teneur d'uranium dans les échantillons de solutions était calculée en utilisant l'équation suivante:

Poids d'uranium =
$$\frac{V \cdot C}{2 \cdot F \cdot A}$$
 [1]

ou

V est le voltage en volt enregistré par le voltmètre digital corrigé pour ceux produits par les courants Faradique et blanc.

- 4 -

C est la constante de l'intégreur en coulombs par volt, obtenue en mettant un potentiel précis en travers d'une résistance exacte pendant un temps fixe prenant note du voltage produit.

F est le Faraday.

A est le poids atomique de l'uranium analysé.

Une précision de \pm 0.2% pour un échantillon de 3 mg. s'atteignait d'habitude.

Dosage de Plutonium

Cette détermination à été faite par comptage alpha en utilisant un compteur proportionel 2π , balayé au gaz méthane.

Tous les échantillons, en triplicata, des solutions étaient pesés, sèchés lentement et relevés avec 1 ml l'acide nitrique 0.5M additionné de 0.25 ml d'une solution aqueuse à 15% en nitrate d'hydroxylamine. Le tout pour premièrement se débarasser de l'acide nitrique concentré et deuxièmement pour réduire, durant une période d'environ 16 heures, tout le Pu (IV) et Pu (VI) au Pu (III). Immédiatement avant le passage de ces solutions sur des colonnes chromatographiques le nitrate d' hydroxylamine était détruit par l'addition goutte à goutte d' acide nitrique concentré à ces solutions chaudes. Ceci causait en même temps l'oxydation de plutonium à l'état Pu (IV). La concentration de l'acide nitrique était ajustée à environ 7.5M. Les solutions des échantillons ainsi préparées étaient versées dans des colonnes de 4 mm x 50 mm de résine Dowex 1x4, 200-400 mesh, traitées à l'acide nitrique 7.5M. Dans ces conditions 1e Pu (IV) était retenu par la résine tandis que l'uranium et les produits de fissions ne l'étaient pas. Il s'agissait donc de laver suffisamment les colonnes avec de l'acide nitrique 7.5M. Le plutonium était élué en versant de l'acide nitrique 0.5M. Pour s'assurer d'avoir récupéré tout le plutonium, les colonnes de résine étaient lavées avec une solution de nitrate d'hydroxylamine qui réduisait toute trace de plutonium à l'état (III) et l'enlevait des colonnes. Cet éluat était chauffé, traité à l'acide nitrique concentré et recombiné avec le plutonium élué auparavant. Des échantillons de ces solutions étaient pesés et déposés sur des disques en acier inoxydable poli. Ces sources étaient séchées et on faisait la mesure absolue de leur taux de désintégration total par comptage 2π proportionel dans un compteur balayé au gaz méthane. Une source de plutonium comptée dans un compteur de particules alpha à géométrie faible servait à mettre au point le compteur proportionel 2π . Afin d'obtenir seulement le taux de désintégration du ²³⁹Pu + ²⁴⁰Pu il fallait soustraire la contribution due au ²³⁸Pu. La mesure du rapport ²³⁸Pu/²³⁹Pu + ²⁴⁰Pu en fonction de la contribution du ²³⁸Pu alpha était déterminée par spectrométrie alpha de sources très minces. Une goutte de la solution de plutonium séparé et purifié comme pour le comptage, était séchée sous vide sur un ruban de tungstène chauffé par un courant faible. Le courant était réglé par un autotransformateur qui permettait aussi l' evaporisation des sels volatils, à une température d'environ

- 6 -

500°C et, à chaleur d'incandescence pendant quelques secondes la sublimation du plutonium sur un disque d'acier inoxydable poli, comme l'indique la figure 3. Ces sources minces étaient comptées au moyen d'un détecteur semiconducteur silicium Ortec raccorde à un préamplificateur FET (Field Effect Transistor). Les impulsions étaient assorties et totalisées par un spectromètre nucléaire de Chaîk River, utilisant une calculatrice électronique PDP-8 (Digital Equipment Corp.). La largeur à mi-hauteur de la raie de 5.499 MeV de ²³⁸Pu était 14 keV, comme on peut le voir dans le spectre alpha de la figure 4, et souligne la qualité de la résolution du détecteur.

Analyse isotopique de l'uranium et du plutonium

L'uranium des échantillons était extrait par une solution à 20% en phosphate de tributyle (TBP) dans le Xylène. Les produits de fissions et toute trace de plutonium étaient éliminés de la solution organique par un lavage à l'acide nitrique 5M suivi par des lavages successifs au nitrate d' hydroxylamine. L'uranium était récupéré de la solution organique par lavage à l'eau distillée.

Le plutonium des échantillons était retenu sur des colonnes de résine Dowex 1x4, 200-400 mesh, l'uranium et les produits de fissions étaient éliminés par lavage de la colonnes à l'acide nitrique 7.5M. Le plutonium était élué avec de l'acide nitrique 0.5M. L'analyse isotopique des échantillons d'uranium et de plutonium ainsi purifiés était faite par spectrométrie de masse à thermoionisation.

- 7 -

Calcul du nombre de fissions

Le nombre de fissions de ²³⁵II a été obtenu en se servant de l'équation [2]

$$F_{5} = N_{5}(o) (1 - R_{w} \Delta / R_{o}) \hat{\sigma}_{f_{5}} / \hat{\sigma}_{a_{5}}$$
[2]

où

$$\begin{split} \mathrm{N}_{s(0)} & \text{est le nombre initial d'atomes}^{235}\mathrm{U} \\ \mathrm{R}_{w} & \text{est le rapport final d'atomes}^{235}\mathrm{U}/^{238}\mathrm{U} \\ \mathrm{R}_{o} & \text{est le rapport initial d'atomes}^{235}\mathrm{U}/^{238}\mathrm{U} \\ \Delta & \text{est une correction pour la disparition de} \\ & \mathrm{l'isotope} \ ^{238}\mathrm{U} \\ \hat{\sigma}_{\mathrm{f}_{5}} & \text{est la section efficace de fission de} \ ^{235}\mathrm{U} \\ \hat{\sigma}_{\mathrm{a}_{5}} & \text{est la section efficace d'absorption de} \ ^{235}\mathrm{U} \end{split}$$

L'irradiation ϕ t (flux intégré n/kb) a été obtenue aussi des analyses isotopiques d'uranium en utilisant l'équation [2a]

$$\frac{R_{w}\Delta}{R_{o}} = \exp - [\hat{\sigma}_{a_{5}} \phi t]$$
 [2a]

Le nombre de fissions de ²³⁹Pu a été obtenu en se servant de l'equation [3]

$$F_{9} = \frac{N_{5}(0) \cdot N_{Pu} / N_{u}(\varepsilon) [A_{0} + A_{1} + A_{2} (1 + 1/\alpha_{1})]}{R_{0} \cdot \alpha_{9}}$$
[3]

où

£

est une correction pour la disparition des isotopes

²³⁵U et ²³⁸U. Ce qui est égal au rapport d'atomes de tous les isotopes d'uranium final et de ²³⁸U initial.

- α_9 , et α_1 sont les rapports de capture-à-fissions pour le ²³⁹Pu et le ²⁴¹Pu respectivement.
- N_{Pu} et N_{u} sont les concentrations totales finales de Pu et de U.
- A_0 , A_1 , A_2 sont les abondances fractionnaires des isotopes de Pu.

Le nombre de fissions de ^{2 4 1}Pu a été obtenu en se servant de l'équation [4]

$$F_{1} = \frac{N_{5}(o) \cdot N_{Pu} / N_{u}(\varepsilon) (A_{2})}{R_{c} \cdot \alpha_{1}}$$
[4]

Le nombre de fissions de ²³⁸U a été obtenu en se servant de l'équation [5]

$$F_{8} = (F_{5} + F_{9} + F_{1}) \delta$$
 [5]

où

δ est le rapport des fissions de neutrons rapides au fissions de neutrons thermiques dérivé des valeurs expérimentales obtenues par C.B. Bigham (5) pour des grappes de 28 crayons.

Les sections efficaces et les rapports de canture-à-fission étaient calculés en se servant de la compilation de C.H. Westcott (6). Les valeurs pour l'index épithermique et la température neutronique étaient estimées en se servant des valeurs expérimentales obtenues par Bigham et al (7). Le nombre total de fissions par kg de U a été traduit en énergie totale libérée en se servant de 199 MeV par fission (3.69 x 10⁻²² MWJ par fission).

Un sommaire des analyses isotopiques par spectrométrie de masse se trouve au tableau I tandis que les résultats des analyses d'uranium et de plutonium, exprimés comme le rapport au poids Pu/U se trouvent au tableau II. Ce tableau montre aussi les analyses par spectrométrie alpha et les résultats finals à titre de flux neutronique intégré et d'échappement d'énergie de fission. Les chiffres entre paranthèse ont été estimés puisque dans ce cas la température pour le fumage s'est élevée trop rapidement et il y a eu perte d'uranium.

Remerciements

Les auteurs tiennent à remercier W. Cherrin et J. Schruder qui sous la direction du Docteur M. Lounsbury ont accompli les analyses isotopiques.

Bibliographie

- M.T. Kelley, H.C. Jones, and D.J. Fisher, Anal. Chem. <u>31</u>, 488, 1959
- G.L. Booman, W.B. Holbrook, J.E. Rein, Anal. Chem.
 29, 219, 1957
- 3. W.D. Schults, Talanta 10, 833, 1963
- 4. D.B. Bird, Anal. Chem. 38, 1098, 1966
- 5. C.B. Bigham, Measurement of fast fission ratios in natural uranium, AECL-2285, 1965
- C.H. Westcott, Effective cross section values for wellmoderated thermal reactor spectra, AECL-1101, 1962, et addenda
- 7. C.B. Bigham, R.B. Turner and B.G. Chidley, Experimental neutron spectra in a cylinder of hot moderator, AECL-1471, 1962

TABLEAU I

URANTUM PLUTONIUM PAPPORT D'ATOMES POURCENTAGE D'ATOMES 235/238 ÉCHANTILION 239 240 241 242 INTTIAL FINAL RRA 2 85.96 12,43 1.489 .117 U219 .01270 .00865 U219 RPA10 .01270 .00889 83.16 12.32 1.443 .115 U219 **RRA17** .01270 .00989 89.19 9.69 1.060 .056 U219 PRA25 .01270 .01050 91.03 8.10 .828 .035 88.26 10.52 1.150 .070 U210 RSA 2 .01510 .01111 88.44 10.36 1.125 .072 U210 **RSA10** .01510 .01116 U210 RSA17 .01510 .01236 91.29 7.00 .771 .033 6.70 .613 U210 PSA25 .01510 .01297 92.67 .020 U210 PZA 2 .01270 .00937 88.84 10.04 1.055 .065 RZA10 88.69 10.15 1.085 U210 .01270 .00931 .068 U210 PZA17 .01270 .01040 91.51 7.72 .736 .028 U210 RZA25 .01270 .01081 92.79 6.61 .590 .010 .01668 93.85 U210 SAA 2 5.78 .01429 .363 .011 U210 SAA10 .01418 93.66 5.95 .01568 .377 .915 U210 **SAA17** 95.44 4.32 .01668 .01512 .241 0.000 SAA25 U210 .01668 .01550 96.23 3.57 .188 0.000 U209 SBA 2 .01510 .01147 89.90 9.20 .859 .050 U209 SBA11 .01510 .01151 89.62 9.41 .906 .060 U209 SBA17 .01510 .01266 92.37 7.02 .603 0.000 U209 SBA25 .01510 .0131993.70 5,83 0.000 .470 U210 TNA 5 .01282 .00733 80.06 17.03 2.590 .319 U210 TNA13 .01282 80.31 .00745 16.81 2.570 .310 U210 **TNA19** .01282 .00896 84.74 13.24 1.870 .150 U210 TNA26 .01282 .00973 87.33 11.06 1.520 .090

RESULTATS DES ANALYSES PAR SPECTROMÉTRE DE MASSE

TABLEAU II

SOMMAIPE DES PÉSULTATS FINALS

ÉCHANTI	LLON	RAPPORT α ²³⁸ PU/ ²³⁹ PU + ²⁴⁰ PU	RAPPORT AU POIDS PU/II	IRPADIATION FLUX INTÉGRÉ Øτ n/kb	ÉCHAPPEMENT ÉNERGIE* KW.I/Kg U
U219 PR	A 2	.07184	1.993E-03	.597	3870
U219 PR	A10	.07126	1.981E-03	.554	3670
U219 RR	A17	.06366	1.632E-03	.388	2700
U219 RR	A25	.05854	1.434E-03	.295	2110
U210 P.S.	A 2	.05692	1.742E-03	.477	3660
U210 P.S.	A10	.05775	1.731F-03	.470	3610
U210 P.S.	A17	.05235	1.430E-03	.311	2500
U210 P.S.	A25	.04876	1.239E-03	.236	1970
U210 RZ	A 2	.04906	1.707E-03	.472	3100
U210 RZ	A10	.05011	1.795E-03	.482	3170
U210 PZ	A17	.04521	1.388E-03	.310	2150
U210 RZ	A25	.04306	1.261E-03	.250	1770
U210 SA	A 2	.03111	1.061E-03	.240	2070
U210 SA	A10	.03283	1.077F-03	.252	2170
U210 SA	A17	.02867	8.419E-04	.152	1370
U210 SA	A25	.02637	7.350E-04	.114	1040
U209 SB	8A 2	.04829	1.591E-03	.427	3280
U209 SB	8A11	.05014	1.632E-03	.422	3260
U209 SB	8A17	.04459	1.322E-03	.274	2230
U209 SB	8A25	.04125	1.154E-03	.210	1750
U210 TN U210 TN U210 TN U210 TN U210 TN	IA 5 IA13 IA19 IA26	.10970 .10938 .09710 .08843	2.658E-03 2.627E-03 2.173E-03 1.910E-03	.869 .843 .556 .428	5580 5460 3890 [3090]

* 199 MeV PAR FISSION

FIG. 1 GRAPPE DE 28 CRAYONS

FIG. 2 CELLULE DE COULOMÉTRIE POUR ÉLECTROLYSE SUR NAPPE DE MERCURE

FIG. 3 APPAREIL POUR PRÉPARER LES SOURCES MINCES

FIG.4 SPECTRE & DU PLUTONIUM

On peut acheter des exemplaires de ce document en s'addressant à Service de Distribution des Documents Officiels L'Energie Atomique du Canada Limitée Chalk River Ontario, Canada

prix: 50¢ par exemplaire