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A new method for distinguishing between pairs and single pulses

- by Jorg W. Mulier
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1. Introduction

In recent years.various groups have focussed their interest on problems reloted

to spurious pulses which are an obvious and permanent nuisance in all megsurements
of absolute disintegration rates. The current methods available fer deteciing

and measuring afterpulses have been well reviewed quite recently in severa!

papers ( []z to [33 ), where also earlier references cen be found.

Apart from a few rare cases where pulse-height analysic is possible, all these
techniques'use in one way or anotaer the time relationship which exists between
the corresponding "genuine" and "spurious” pulses. Within this gencral approach,
two main variants.can be distinguished. Either the time distribution of the intervals
is measured, or one analyzes the relative voriance in the number of registerca
counts which can be deduced from repeated measurements. Let us first have o brief
look at some of the merits and drawbacks of these "interval™ ond "counting"
techniques.

In the first place, they all suffer more or less from the fact that the influence of
dead times is an essentially unsolved problem for parent-daughter decays or
similar two-step processes. However, providad that T , the product of count
rate and dead time, is sufficiently small, simple approximate methods for the
corresponding corrections will be odequate.

The interval method, among other virtues, has the advantage of great flexibility,
as the time origin can be determined either by a genuine or by an arbitrary nulse,
and diffcrential or integral distributions can be measured. This technique represents
a direct approach to the problem and is capable of yielding fairly detailcd
information on the time behaviour of the various mechanisms which may be
responsible for the production of spurious pulses. Besides, from an experimcnial
point of view, the measurements are rather straightforward and rapid.

The counting technique, on the other hand, requires a higher degree of sophis-
tication in experimentation as well as in the analysis of the resulis. This is af
least the casc in its present form where o variance~to~meon ratio has to be -
exploited. Apart from the dead-time corrections, which are ‘'a more serious .
problem here, some specific assumption about the time behaviour of the aftur-
pulses is nceded (c.g. exponential) to permit unambiguous conclusions, Althcugh
finc achicvements have been made recently in this ficld (:4:, |’3:l), much work
s:ill remains to be done. For other versions of counting methods with gateing see | 17,
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Since ¢ characteristic, but often badly known time distribution bitween o parent
(or genuine) pulse and its daughter pulse (or ofterpulse) is the only recognizable
feature of "pairs" in a train of pulses - the physical causes for the relationship
being largely unknown and thercfore out of control -, it seemsnatural that
statistical methods have to be applied in any attempt tc separate such pairs frem
single pulses. A distinction can therefore only be expected for large samples,
but not for individual events. This is what is actually done in all the technigues
mentioned before, but other possibilities for extracting the wanted information
micht exist.

2. Separation by means of a modulo 2 counter

In order to achieve such a discrimination we are going to suggest g somewhat
different approach which is based on a porticularly simple variant of the correlation
technique. If we restrict ourselves fo the case where a primary pulse cannot be
followcd by more than one secondary pulse (thus neglecting mulhpk ofterpuls s),
then any measured count in the superimposed process is either a "single"

belongs to a "pair"

Our problem is therefore equivalent to finding a practical way to distinguish
between these two classes, e.g. by counting the pairs or the singles alone -

if this can be achieved. We think that the special form of the correlation method
as used previously (L6] [7]) might offer un interesting and simple solution

to this problem.

We recall that in this variant a two-valued function x(t) is associated with the
counting process which jumps at each arrival of o pulse from -1 to +1 or vice versa,
depending on the previous state. This is also done (with the same process) after

a delay & . A simple electronic arrangement then allows us, by measuring an
average count rate, to determine the autocorrelation function

R(S) = E {x(f)'x(f+g)} : (1)

If W(k) is the probability for measuring exactly k count. within a time interval §
(with random origin), the correlation function may also be written in the form

R(S) = S W) + (-1 = Prob (k even) - Prob (k odd) . (2)
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Now, the total number of pulses can alwoys be decomposed into "pairs" and

Msingles", thus

k=2np+ns, | (3)

where np is the number of pairs and n of single pulses within the time 5.




Whether k is even or odd (epends therefore only on the number of single pulses,
hence

107 n
RGE) = > W) (-1)° . (4)
n =0 s
s
This relation holds quite generally and is independent of any assumption about
the probability distribution.

An experimental measurement of the correlation function R(2) is thus not at all
affected by the presence of pairs. As o matter of fact, this is an obvious consequence
of the construction of the correlator which (in the present form) measures the
difference in the probabilities for counting an even or an odd number of events in S .
It is therefore basically a modulo 2 counter.

As in (4) no interval distribution is needed, but only the probability for a given
number of (unpaired) events, this relation may also be applied to non-homogeneous
processes. With the help of the well-known result ([6:! , E7]) that for o Poisson
process (with count rate 9 ) the correlation fut.ction is given by

R(S) = 29181 | (5)

it now follows (sce Appendix A) that for a Poisson distribution of the primary events
we always have
-2 4L
R(6) = ° . (6)

Here e is the mean number of uncorrelated single pulses in the interval & .
In order to illustrate more explicitly the effect on the correlatior function, let us

consider two specific assumptions for the time relationship between mein pulse
and afterpulse in some more detail.

Exponential time distribution

This case has olready been treated earlier in eonnection with the parent-daughter
problem, If

P = true count rate of the primary events,

T = average time interval between primary and secondary event,
€y 2 ~ detection probabilities for a primary (secondary) event,

] = probability for afterpulsing (per genvine pulse) and

b = experimentol court rate for background,

then it can be shown {8J’ that the meoan number of uncorrelated single pulses
ina time inicrval { is given by
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where now E’I = e, , but

In what follows, &, thus always means the “effective efficiency” for afterpulses,
with 8 included.

By using the abbreviations introduced previously in a similar context [9], namely

K = 9(£I+£2-£IE2)+b and
| (®)

B=p-e1&,
the expectation for singles may be written as

w, = (ec-p S +2pTo - BT (9
Since a direct measurement of the total count rate yields

Stot = ?(£]+£2)+-b =x+p, (10)
an equivalent form of (9) is also .

w, = 9, 08l -280¢-T+ T -y (9")

From (9) or (9') we obtain readily the limiting cases
{PM 191 = (o + ) 18] for IS} & T

s (X - ) 5] sl »T .

We may note that both these limits are actually independent of the specific
time distribution chosen here (see Appendix B).

The correlation function is now easily obtained inserting (9) or (?*) into (6) as

5 " S
R(5) = exp {-2(x - B S| - 4p T -7 D]
= {-2 151+ 4 (i8]-T +T- '|‘5|/'C)Q~ ()
= exp (- Pfof ol B (lo]~-TL e } )

A convenient graphical representation of the correlaticn function is for instance

obtained by plotting the quantity -%— + InR(&) as a function of the delay ) /
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which is according to (6) just M (compare Fig. 1a). The experimental curve
lies between the two straight lines representing the initial and the fingl slopes

X + B, respectively, and passes at |5| = T through the point
(X +B)T -2BT/e=x (x+0.264B)T .

A result equnvalent to (11), opart from printing errors, has actually been obtained
previously LIO] The much more eloborate method, however, has the drawback
that it is not evident that R is entirely determined by the unpaired pulses alone,
as is clearly shown by (4) or (6). Since in both this approach and the present one
the poissonian nature of the (surviving) parent pulses is used in an essential way
for the proof (by assuming an exponential interval density for any time origin),
neither con be used to take dead-time effects into account in a rigorous way.

4, Constant time interval

In this model, an afterpulse is supposed to occur (if at all) at a fixed time lag U
after the genuine pulse. If the same notation is used as before, the experimental
pair rate for a very large measvring interval is given by

?p=§>'e'-6e2=g6152=ﬁ. (11a)

Applying (10), this leaves for the rate of the singles

Ps B 9toi.z S7p

X =B . (12b)

PLE |+ €2 &, E)+Db
We now have to determine the distribution of the pairs in the interval S .

This problem is very similar to the one considered in [8] for the exponential

time distribution, but is actually simpler as the density corresponding to a constant
distance T is just the delta function & (t = T). For the survival probability of

a pair (with primary pulse at t) this yields

{1 i 0<trclf]-T
q(t) = .
0 |8l-T <¢v ISl

The corresponding average probability is therefore

_ » e
q = _g. 5 q(f) dt = (Tg‘(lg‘ -T) for T $ !c"!
“J'. 1(_) ' w © v/ lrS[
o .
M ,1 L 0) | (13)
= Max <1 - <=, .
[ ] f




Thic ¢iv-. for the number of pairs within an interval & the expectation

alSi= g0e e alisi=pglsi. (14)
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The average number of uncorrelated pulses in S is therefore

1S
H‘s - ?tot'é!‘.z‘u'p !

v
Tw
F
Ed
3
3
-
o
ES
¥
A
kA
E
i
£}
S

which after some elementary rearfangements con be brought into the form

(ORT T RT DR e
T U =B IS +28T v 18i 3 C oo
which is equivalent to .
R ?f'o't.l&l for ‘5,'41 Ty
B YRR li2B(15l—L) Iéiw. - -
SRR L tof | |
Since we know that pairs as well as sm_gle pulscs form an mhomogeneous Poussc;n b
process for any inferval distribution L8 |, we now obtain the correlation function
by simply mserhng (15) into (6) as
exp ir-2? lgl ! for '8 ¢ TR
< - . tot B .
R(S) = . : | (-6)
o B exp | 2 S)f f|8l+ 2 B (lgl -‘t)—‘ l ')/ »:' ,'...." RS AT et
Fig. 1b shows that plotting -~ ;‘ln R(S ) versus 5 is again o‘ convement method
for determining T as well as P =0 - 5) e e2 , which corresponds to the sudden
change of slope occurring at ’5! If the other parameters can be assumed to be

known, this therefore leads to a dlrect determination of the probability © for the
generation of afterpulses,

1 1
1 nr(EHA / = M-z - 7
2 " el 2" 7
d
| ) P
o) g b)
| Ny .
| = | |
= = 1§ - =18

Fig. 1. Schematic behaviour of the correlation function R( 4 ) in the presence
of afterpulses, if these have a) an exponential, b) a constant interval
distribution with respect to the prumary event, each time with mean T .

“or derails see text,
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5. Finaltromarks

It may be intaresting to note that in this method the quantity we are actually
looking for, namely the pair rate B, is essentially obtained as the difference
between two measured mean values (see Fig. 2), whereas in previous techniques
the corresponding quantity had to be calculated frem a difference of variances.
Therefore o betier precision might perhaps be expected for the new approach.

Finally, we may mention that the usefulness of this method should be largely
independeni of the presence of dead times. If the pairs are not too frequent, as

will be the case for afterpulses, the "surviving" events form to a good approxi.nation
a dead-time-distorted Poisson process. Since the autocorrelation function is well
known for this case | H:] the corresponding influence can be taken into account.

It thus seems from what has beer. said above that such a correlator with only

two possible states might offer itself as a nearly ideal instrument for distinguishing
between paired and single events in a series of pulses. Nevertheless, some caution
might well be in order here as no attempt hos yet been made to check the
feasibility of this idea experimentally.

A generalization of this method for determining quantitatively the ozcurrence
of multiple pulses will be presented in another report.

APFENDICES

A, Direct derivation of (6) for a Poisson process

It has been shown previously ( 1:12:5, eq. 12), that for the case of a parent~
daughter process with parent pulses following the Poisson law, the probability for
observing exactly k events is given by

-(.u,'s+ !.bp) K p,:) L l"zi
W(k) = e i—g) i-(. * (k"2i)', ’ (A])

where L and &L are the expectations for the number of singles and pairs,

reSpectlvely, and K is the largest integer below (k+1)/2.
Let us briefly considar two simple special cases of (A1),

a)~kx_,p_‘_—:__9_, i.e. complete absence of all (true) pairs. As | in (A1) stands for

the number of pairs, the sum reduces to the term {=0 , thus

‘. W

_ s Vs
W(k)—e '—k‘_'.-"

which is an ordinary Poisson distribution for k.
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b) .2 =90, i.e. there are only pairs. In this case, the only term remaining in the sum

(;’-\i)is for j=k/2, which requires thet k be esven. Hence

|
- 4 4
e Lf‘l for k =2j
W(k) = b
0 " k odd.

We therefore arrive at a Poisson distribution for the pairs, as expected.

Let us now evaluate the probability for k even on the basis of (Al).

%.
Prob(k even) = > W(k=2n)
n=)
i 2n-2j
-(Ms+‘_¢,p) % n (.LE . “w
a0 =0 1} (@n-2j) 1

e

’

where, applying its definition given in (A1), K has been replaced by n since
k=2n, ~

Formally, the sum over | may be extended to infinity az 1/(n-j) ! =0 for j> n.
By reversing the order of the summations we get

. . M 0
Prob(k even) = e P 2_ —b Z _—
But since [12:], with s =n-j ,
2,2 A -A

2oyl T e (A2)

we may also write

() g ! PR o
Prob (k even) = e S -Peile fre )
i=0 M
1 24,
=5(0+e ). (A3)
As k can only be even or odd, there is obviously
_. 208
Prob(k odd) = 1 ~ Prob(k even) = % (1 ~¢ 5 . (A4)

Equation (2) then yields for the correlation function

' ~2j4 -2 L -2 (L
R(S) = 5 [(14e 5 -0-e Hf)}e : (6)

as we had expected,

w
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8. Limiting values for W and R(0)
For a sufiiciently short time intervel o, we have only to consider the casces that
1 or 2 pulses arrive, as the probability for several events can be neglected for
C - “] . . . .
bl K« S')tot' Thereby we obviously assume n "smooth" behaviour and in particular

the absence of a delta function necr the origin of the interval density. This
therefore excludes the case where ¢ —> 0 (compare for. example. [9_j). We then
have

Problk odd) = Prob(l) =~ 9 | $1 , )

. tot (BI)
Prob(k even) = Prob(0) =~ 1 - ¢ 181 .

tot
This gives with (2) for the correlation function

R(§) = Problk even) - Prob(k odd)

~ 1 . < -1

~1-29 161 for 121 &L g . (62)

The correlation function thus always starts for S =0 at R=1 and then decreases

linearly with the slope
-2 9tot * sign (5) . | (83)
This general feature has previously been used in a more complicated example [H].

It will be obvious that for g —> 0

S

o3 9tot|0| (ox +B) lol and H’p 0, (84)
as pairs require a finite interval length to "survive" (Fig. 2).

The initial linear behaviour (B2) of the correlation function R(S) is thus quite
a general feature which is not restricted to aspecific process or interval distribution.

In order to determine e for the case of a very long delay, we restrict ourselves

to a Poisson process for the original pulse sequence. For 181 » T, however,
the relative contribution to g from such (original)pairs where one of the partners

happens to fall outside the beginning or the end of the measuring interval o
becomes negligible (edge effect). We therefore have for 161 3> T
o, PP ,
o, = (g, =2pE E)Icl = (x -B) 161, (85)

independently of the exact interva: distribution for pairs (cf. Fig. 2), and the
correlation function goes over into the simplc exponential

-

R(ag) = exp -{3‘-2(:;( - B) 1S l} . (86)

{
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Fig. 2. Schematic plot of the effective count rate L /181 for single pulses
as a function of the measuring mterval )
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