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1 . Introduction 

In the determination of absolute alpha-particle energies in a 

magnetic spectrograph the energy is obtained by extrapolating the high 

energy edge of the alpha line to zero intensity (see, for example, ref. [ l ] ) « 

The method consists of fitting to the experimental points a theoretical 
3/2 intensity distribution I proportional to (x - a) where x is the position 

on the photographic plate and a is the intercept. The procedure used 

until now [ 2 l has been to take I , the measured number of alpha tracks 

per unit interval, subtract from it the average background I and transform 

the resultant quantity I - I to the power 2 / 3 . Then, using appropriate 
x ° 2 /3 

weights, a straight line of the form x = a + b(l - I ) is fitted by the 
method of least-squares. This proccdu.e has the advantage that it leads to 

. 2 
simple analytic expressions [2 J for the intercept a and its variance (T . 

The total number of measured tracks I follows a Poisson distribution 
2 x 

and hence its variance is given by <T = I . When setting error limits on 
this number, one commonly writes the best value as i + O" • However, 

' x — x 

this does not reflect the asymmetry of the Poisson distribution for which 

one would expect asymmetric error limits. For large values of I , this 

asymmetry becomes quite small and can then be neglected, bul in the 

region v/here we are actually performing the fit ( i . e . at the high energy 

edge of the alpha line), I approaches zero. 

S 
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It would therefore seem that a more accurate extrapolation of the 

alpha line to zero intensity could be obtained by considering the 

Poissonian nature of the process and the fact that the errors about the 

measured numbers of alpha tracks will be asymmetric. The technique of 

least-squares is unable to treat this case of asymmetric errors and so a 

procedure has been adopted here based on the principle of maximum likelihood. 

2 . Determination of asymmetric errors 

A treatment of the problem of determining confidence limits on rare 

events distributed according to the law of Poisson is given by van der 

Waerden f 3 j and we only quote here his results. 

If k is the observed number of events of a process following a Poisson 

distribution law, then the confidence limits on the value k are given by 

X + = k + I g 2 + g / k + i g 2 , (1) 

where X and X_ are the upper and lower confidence limits, respectively. 

The factor g determines the degree of confidence and is taken from a 

normal distribution. Thus, for example, g = 1 corresponds to confidence 

limits of about 6 8 % . If the distribution were normal this would agree with 

the usual standard deviation. 

For small values of k the limits of (1) differ considerably from those 

obtained by simply taking (T = v k . A few values are given in the table 

below for comparison. The value of g is taken as unity. 
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3» Principle of the maximum likelihood 

The method used in what follows is based on the principle of 

maximum likelihood. The measured points are designated by (x. , y . ) , 

where x. is the position of the centre of the measured interval on the 

photographic plate, and y. is the number of tracks counted (including 

background) in this interval. We assume that there is no error in the x. , 

and that the error distribution in the y. is Poissonian and thus given by 

p(y.|X.) - - 7 T - e ' ' ( 2 ) 

X . is the (unknown) true value of which y. is a measure, 
i ' i 

If X . were known, we could calculate, using (2), the probability 

of observing a certain number of tracks y . . However, we have only the 

measured quantity y. , and wish to use it to estimate X. by means of the 

inverse probability p (X . | y.) i for the distribution of the unknown true 

values X. . | 
i • 

This can be done by applying the method of Bayes £4jj which gives 

PU.) • P(y.|X.) 
p(X.|y.) = -53 . (3) 

Jp{A..) • p(y.|A..)dXt 

I ' I 

Assuming constant a priori probabilities for the \ , , the integral in 

the denominator of equation (3) is 

* ' , TV. -x. 
f p(y. \\.) d X. = -n - (\.1 • e" ' d X » -^r • T (y. + 1) = 1 . J r ' i ' i i y. I J / v i i y. J. ' i 

Therefore 

A». .-À. 
p(V.|y.) = - V - e ' = p(y. |X,) . (4) 

y. 



The density (4) has a maximum at X . = y. . The measured y. is 
i ' \ ' \ 

therefore the most probable value of X- and for each y. there belongs 

a distribution in X. of the form of equation (4) . 

If we now attempt to fit a family of curves to n points, each having 

y. characterized by equation (4), the best f i t , by the principle of maximum 

likelihood, will be obtained when the product P of the probabilities for 

each point X. is a maximum, i . e . when 

n 
P = 71 p (X. |y.) = a maximum. 

i=i ' ' 
This gives 

n \\\ -X. "jf|Xi n X.yi 
P = 71 r * c = e 7t T* ~ a maximum. (5) 

Taking the logarithm this leads to 

n — n 

CnP = " 5 ! X . + ^ . y. * -£n A,. - ^ </n(y. 1) = a maximum. (6) 
i= l i= l i = l 

To proceed further we must specify the family of curves which we 

wish to fit to the data. 

4 . The form of the alpha line 

We write the theoretical line shape (near the high energy edge) 

for the alpha line in our magnetic spectrograph in the following form 

(see [2]) . 

A. = a(b - x . ) 3 / 2 + y o . (7) 

In this equation y is thw average background and a and b are constants 

to be determined. The constant b corresponds to the point on the plate 

at which the theoretical value X , becomes equal to background, and 

it is this quantity which is used to calculate the alpha energy* 
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The form of equation (7) is chosen in order to avoid subtracting 

the background from the measured points and taking the 2/3 power of the 

resulting counts, both of which would distort the Poissonian distribution 

of the y . . The fit is performed directly to the measured data. 

Substituting equation (7) into equation (6) gives 

- a 2 ( b - x . ) V 2 - -> y + ^ y. " i n f ( b - x . ) 3 / 2 + y 1 - 5 Uy. '.) 

= a maximum . (8) 

Differentiating (8) with respect to a and b and setting the derivatives 

equal to zero, we obtain the two simultaneous equations 

v3/2 

j? (b - x . ) 3 / 2 = ]> —! ^5 (9a) 
R ' i=1 aCb-x.r +y 

i 'o 
and 

fk \]/2 n ^ 2 n y. (b - x.) 

2(b " x? = 1 ~r—,3 /2 . • 
i=l i=i a(b - x j + y 

(9b) 

Equatio-, (9a) is obtained by differentiating (8) with respect to a 

and it is therefore the condition which, when fulfi l led, gives the best 

value of a for b constant. Similarly, equation (9b) is obtained by 

differentiating (8) with respect to b, and its solution provides the best 

value of b for a constant. Unfortunately, there is no exact analytic 

solution, but equations (9) are readily solved numerically by means of 

a computer. One starts with trial values of a and b and by successive 

iterations a solution can be obtained to any desi'ed degree of accuracy. 
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5. Error estimation 

Having obtained the best value of the intercept b = b from (9), 

we would like to estimate its error due to statistical fluctuations in the 

data. Unfortunately, equations (9) prove just as resistant to solution for 
2 

0~, as they do for b itself. However, the error in b may be estimated 

graphically by plotting distribution (5) as c function of b. The procedure 

is to fix a value of b, find the best value of a using equation (9a), 

calculate the set of \. using (7) and then calculate P from (5) . Again, 

this is easily done with a computer. The resultant probability density will 

have a maximum at b = b . Confidence limits can be determined by talcing 

the values of b which correspond to a probability equal to 0.607 of the 

probability at the maximum. For a normal distribution this would correspond 

to one standard deviation. These upper and lower error estimates will 

normally be different, reflecting the asymmetry of the initial Poisson 

distributions. 

6 . Example 

This method has been applied to the analysis of a number of plates 

from the alpha-particle spectrograph. As an example Fig. 1 shows the 
240 

high energy edge of the alpha line obtained from a source of Pu. The 

solid line is the calculated fit to the data. Fig. 2 shows the calculated 

asymmetric distribution in the intercept with most probable value 

(89.918+ 2 ; ^ ) mm. 
240 

The corresponding energies from an analysis of four plates of Pu 

are summarized in Table 2 . 

Although on theoretical grounds, as explained above, one should 

expect this method to give more reliable results, extensive numerical 

calculations with data from our alpha spectrograph show no significant 

difference between the results for the energies based on this and the usual 

least-squares method. 



F i g . 1 . High energy edge of on alpha line with an adjusted f i t 
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Fig. 2 . Calculated probability distribution for the extrapolated end point b 0 of an alpha line 
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240 
Table 2 . Experimental values for the alpha energy of Pu 

Plate Energy (keV) Energy (IceV) 

(least squares) (maximum likelihood) 

242 5 168.35 + 0.35 5 168.25 * °Q'** 

243 5 168.24 + 0.19 5 168.09 * [ J # j * 

244 5 168.35 + 0.28 5 168.14 + ^ ' ? ! 
— — U, 16 

246 5 168.43 + 0.19 5 1 6 8 . 4 5 ^ Q ' | Q 

weighted mean 5 168.34 + 0.12 5 168.25 ^ ' j g 

For the least-squares calculation the mean and standard deviations 

were calculated applying the usual formulae ' 

^- I X I 

For the maximum-likelihood calculation, an approximation was used as 

explained in the Appendix. The asymmetry, clecrly visible in the errors 

of the individual measurements, tends to disappear in the mean, as might 

be expected on the basis of the central limit theorem. 

It is certainly reassuring that the two methods of calculation do not 

give, widely disparate results and one can thei ;fore, for most applications 

at least, apply the simpler least-squares method with confidence. 
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Appendix 

An approximate method for determining the "best" value 

from a set of measurements with asymmetric errors 

Let us suppose that as a result of a series of n independent measure

ments on a quantity x we obtain the values x . , x 0 , . . . , x with 
I & n 

probability distributions f , (x ) , f»(x), . . . , f (x) . The point x. is that 
value of x for which f.(x) is a maximum. We wish to use the measured x. 

i i 
to obtain a "best" value x . This "best" value, in the sense of mcximum 

likelihood, will be the value of x for which the function 
n 

F(x) = Ux) • Ux) • . . . • f (x) = 7Tf.(x) (Al) 
1 2 n l s 1 i 

is a maximum. 

In the case we are considering the distributions f.(x) have the form 

shown in Fig. 2 and must be evaluated numerically. In order to calculate 

F(x) exactly we would have to determine numerically all the densities 

f.(x) at a large number of points and then form their product. Although in 

principle this could be done, we have preferred to simplify the calculation 

by replacing the f.(x) by a "double" or "asymmetric Gaussian" of the 

following normalized form. 

g.(x) = 

w 

C. * exp 

ithC.= ^ f •( 

. • exp 

(x - x.) ' 

12 

(x - x.) ' 
i _ 

2 0-?, 11 

11 iZ 

, for -e>o < x ^ x. , 

, for x. ^ x < o j , 

(A2) 



12 

Here x. is the most probable value (b in Fig. 2) and <j-.. and 
i o i l 

Cj~.~ are the upper and lower confidence limits, respectively, as 

described in section 5 and shown in Fig. 2 . 

It should be noted that as a consequence of the asymmetry of 

equation (A2), the mean value of x 

oo 

E.(x) = ( x • g.(x) dx = x. + J Ï • ( <T n - CT i 2) 

- o O 

cannot be identical with x. , unless rj"., = 0T.o . 
i v 11 i2 

The "best" value x of x is therefore that for which 

(A3) 

n 
F(x) = 71 g.(x) is a maximum. 

i=l ' 

As before, the upper and lower confidence limits are the points x at 

which 

F(x) *» 0.607 F(x") . 

We may add thar the variance of the "asymmetric Gaussian" (A2) is given 

by 

(A4) E.(x - x . ) 2 = <T.i • ( T . 9 + (1 - | r ) ( (T . , - T.0)2 . 
i i 11 \l ( T i l \l 

2 2 This value can be shown to lie between <J"., and (T.« . 
11 i2 
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