
AAEC/E267

cs
UJ

AUSTRALIAN ATOMIC ENERGY COMMISSION
RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

AEUPDATE - AN EDITOR DESIGNED TO ALLOW SEQUENTIAL AND

PARTITIONED DATA SETS TO SE UPDATED

by

I.L. JOHNSTONE

August 1973

ISBN 0 642 99586 9

AUSTRALIAN ATOMIC ENERGY COMMISSION

RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

AEUPDATE - AN EDITOR DESIGNED TO ALLOW SEQUENTIAL

AND PARTITIONED DATA SETS TO BE UPDATED

by

I.L. JOHNSTONS

ABSTRACT

The implementation and use of an editor developed for the IBM360

Operating System is described. The editor provides the capability to

update both sequential and partitioned data sets as well cis providing

facilities for printing or punching all or parts of data sets. A

feature of this editor is the ability to use many data sets for input

or output during update operations. The editor is more versatile and

less complicated to use than the editors supplied v?ith the. Operating

System.

CONTENTS

Page

National Library of Australia card number and ISBN 0 642 99586 9

The following descriptors have been selected from the INIS Thesaurus
to describe the subject content of this report for information retrieval purposes.
For further details please refer to IAEA-INIS-12 (INIS: Manual for Indexing)
and IAEA—INIS—13 (INIS: Thesaurus) published in Vienna by the International
Atomic Energy Agency.

1. INTRODUCTION

2. COMMANDS

2.1 Passive Commands

2.2 Active Commands

2.3 The Command Data Set

3. SPECIFICATION OF DATA SETS

4. DD STATEMENTS

4.1 SYSPRINT

4.2 SYSIN

4 . 3 SYSPUNCH

4.4 INPUT/OUTPUT DD STATEMENTS

5. CONCLUSIONS

6. ACKNOWLEDGEMENTS

APPENDIX

Example 1

Example 2

Example 3

4

6

6

6

6

6

6

7

7

A CODES; DATA PROCESSING; IBM COMPUTERS

1. INTRODUCTION

This report describes the implementation and usage of an editor developed

for use with the IBM System/360 Operating System at the AAEC Research

Establishment. It was developed in response to the demand for a comprehensive

editor that was both versatile and uncomplicated to use.

IBM System/360 assembler language was the vehicle for implementation of

the editor. All input and output is done using the standard BSAM (Basic

Sequential Access Method) and BPAM (Basic Partitioned Access Method) Assembler

macros.

Standard data sets are associated with each invocation of the editor.

These are the command, print (usually the printer) and punch (usually the

punch) data sets. The command data sot contains the commands for controlling

the edit operations, and the data cards to be written to the output(s). The

entire command data set is written to the print data set. The records written

to the print and punch data sets are controlled by the LIST, PRINT and PUNCH

commands.

The editor provides the capability to update both sequential and

partitioned data sets with fixed length records (record length not exceeding

two hundred and fifty six bytes), An unlimited number of data sets may be

specified for output from the editor.

2. COMMANDS

The editor is controlled by the command O.ata set. Two types of cards

appear in the command data set, namely command and data cards. Command cards

are identified by command character(s) at the start of the card. The default

command character is '#' (see Section 2.1.2 for further details and infor-

mation on how they may be changed). Each command card hap a single command

on it.

The commands may appear in free format on the card from the column

following the command character(s) up to and including column seventy two.

Blanks and commas may be inserted where desired between words and delimiters

to improve readability. Only the first eight characters of words are signi-

ficant to the editor.

WORD = {&an | £ £ LETTER and a £ ALPHA , N >0]

LETTER = (A,B,C, B, @,$,#}

ALPHA = LETTER U {0, 1, 2, 8, 9}

L DELIMITER = {{,),-) commas are not delimiters.

Data cards are those which are not identified as command cards. The

sequence number field of the data cards which are not governed by the INSERT

2.

command (see Section 2.2.2) controls the processing of these cards. If a

data card has a blank sequence field then the data card is written to the

output data set(s) and the input positioning is not affected. If a data

card has a sequence number field then the input data set is written to the

output data set(s) until a record is found in the input that has a sequence

number which equals or exceeds the sequence number of the data card. If the

sequence numbers are found to be equal then this input record is skipped. The

data card is now written to the output data set(s). Attempting to write a

data card to an output data set which has a logical record length not equal to

eighty will cause an error termination of the editor.

Two command types are recognised, namely active and passive. Active

commands cause the operations of the editor to be initiated. Passive commands

provide an environment in which edit operations are performed.

2.1 Passive Commands

COLUMN - specify the sequence number field.

USE - specify command character(s).

READ - specify input data set.

WRITE - specify output data set(s).

LIST - specify printing of updated output records.

NUMBER - specify resequencing of output data set(s).

PAGE - skip to new page on print data set.

2.1.1 CQ-.UMN [N [M]] *

N specifies the location of the sequence number field, if omitted

column seventy three is assumed. M is the number of digits in the sequence

field.- the default being 8, and the maximum is 16,

2.1.2 USE CCC...C

The function of this command is to change the command characters which

are formed i'rom a variable number of non-blank characters. The new command

characters are written as they are to appear on command cards. If no command

characters are indicated the '#' is assumed,

Examples^

USE ./

USE $

2.1.3 READ ddname [(membername)]

This command specifies the new input data set (see section 3).

* [] indicates optional specification,

N,M represent decimal numbers not exceeding 16 digits.

3.

Examples

READ SYSUT5

READ PDS (B)

2.1.4 WRITE ddname { (membername)] {ddname [(membername)]] [...]

This command specifies the new output data set(s). Since this command

may specify many output data sets any conflicts (see Sections) between these

data sets will result in the earlier named data set being closed.

Examples;

WRITE PDS (XY)

WRITE DDl, DD2, DD3 - This example demonstrates the

use of optional commas

WRITE PDS(A) PDS(E) - this example demonstrates a simple

conflict of data set specification (see Section 3).

The above command is equivalent to WRITE PDS(B).

2.1.5 LIST ; NOLIST ; NO LIST

These commands control the listing of updated records that are being

written to the output data set(s).

2.1.6 NUMBER [[FROM] N] I [BY] M]

This command specifies that records written to the output data set(s)

will be rese-'juenced. N is the initial value of the sequence numbers supplied,

the default being 100. M is the sequence number increment, the default

being 100.

Specification of a new output data set has no effect on the sequence

numbers which are supplied when resequencing is specified.

Examples;

NUMBER 50 50

NUMBER FROM 1000 BY 1000

NUMBER BY 50

2.1.7 NONUMBER ; NO NUMBER

This command specifies that all records are written to the o'ltput

data set(s) unchanged.

2.1.8 PAGE

A new page is taken on the print data set.

2.1.9 DEFAULT PASSIVE COMMANDS

COLUMN 73 8

NO NUMBER

NOLIST

READ SYSUT1

4.

$ WRITE SYSUT2

2,2 Active Commands

COPY - write input data set to output data set(s).

INSERT - updates from command data set.

SKIP - specify input positioning.

DELETE - specifies deletion of members or records.

PRINT - specifies members or records to be printed.

PUNCH - specifies members or records to be punched.

REWIND - reposition data set to initial record.

Active commands may specify three methods of control namely by sequence

number comparisons, card comparisons and by specification of a number of

records.

When sequence numbers are being used to control an edit operation, the

operation will be terminated when a record with a sequence number equal to

or exceeding the specified sequence number is encountered in the input data

set. In general no check is made to ensure that all sequence numbers are

in ascending order for any input data sat. Records with blank sequence

fields may appear in any input data set. For these records no comparisons

are made, and the operation will not be terminated by such a record*

Commands that are normally controlled by sequence number comparisons

may also be controlled by card comparisons; this option is indicated by

the absence of sequence number specification from the command. The card

following the command card is the basis for the comparison, which proceeds

from column one through to the column preceding the sequence number field.

The operation continues until a matching input record is found.

2.2.1 COPY

This command specifies the writing of records from the input data set

to the output data set(s).

Formats;

1. COPY - the remainder or all of the input is copied.

2. COPY M* [RECORDS]

3A. COPY TO [BEFORE] N**

3B. BEFORE N - alternative to 3A

4A. COPY TO AFTER N

4B. AFTER N - alternative to 4A

* a decimal number not exceeding 16 digits

** a decimal number not exceeding 16 digits specifying a sequence number.

2.2.2 INSERT

All data cards following this command are written to the output data

set(s) independent of their sequence numbering until the next command card

or end-of-file is encountered on the command data set.

2.2.3 SKIP

This command is used to position the input data set.

Formats :

1. SKIP - skip remainder of input.

2 . SKIP M [RECORDS]

3 . SKIP TO [BEFORE] N

4. SKIP TO AFTER N
%

2.2.4 DELETE

This command copies selected records from the input data set to the output

data set(s) with the deletion of specific records. It can also be used to

delete members from partitioned data sets.

Formats:

1 . DELETE ddname (member name [member name. . .] } [.....]

the specified members are deleted from the indicated

partitioned data sets.

[.....] this format implies:DELETE MI - M2

COPY TO BEFORE M

SKIP TO AFTER M

COPY TO BEFORE M

SKIP TO AFTER M
o

3. DELETE If delete has no operands then the input data

set is copied to the output data set(s) until a card

in the input matches the data card following this

command. The matching input record is then skipped and

the next command processed.

2.2.5 PRINT

This command causes the printing of specified records from the input

data set which is positioned to the first record following those printed.

Tihe absence of the print data set causes skipping of specified records.

Formats;

1. PRINT - print the remainder or all of input data set

2. PRINT M [RECORDS]

6.

3. PRINT TO [BEFORE] N
4. PRINT TO AFTER N

2.2.6 PUNCH

This command causes the punching of specified records from the input

data set which is positioned to the first record following those punched.

The absence of the punch data set causes skipping of specified records.

Formats;

1. PUNCH - punch the remainder or all of input data set

2. PUNCH M [RECORDS]
3. PUNCH TO [BEFORE] N
4. PUNCH TO AFTER N

2.3 The Command Data Set

When the end-of-file on the command data set is reached the remainder

of the current input is written to the output data set(s). The absence of

the command data set specifies -;hat SYSUT1 (default input data set) is

copied to SYSUT2 (default output data set).

3. SPECIFICATION OF DATA SETS

The default input and output data sets are assumed to be specified on

the SYSUT1 DD and SYSUT2 DD cards respectively. If other input or output data

sets are required READ and WRITE commands are essential. These commands are

checked for logical conflicts and multiple outputs to the same data set

result in earlier output requests being terminated.

4. DD STATEMENTS

4.1 SYSPRINT

This DD statement defines the print data set (normally the printer).

The logical record length and block size are fixed at one hundred and twenty

one bytes with a record format of FBA.

4.2 SYSIN

This DD statement defines the command data set. The logical record

length and blocksize are fixed at eighty bytes with a second format of FB.

4.3 SYSPUNCH

This DD statement defines the punch data set (normally the punch).

The logical record length and blocksize are fixed at eighty bytes with a

record format of FB.

4.4 INPUT / OUTPUT DD STATEMENTS

The editor requires DD statements to define the data sets referred to by

the READ, WRITE, REWIND and DELETE commands.

The maximum record length supported is two hundred and fifty six bytes.

7.

If any data set does not have a logical record length and/or blocksize

specification then defaults of eighty bytes are used. If the number of

buffers (via the BUFNO parameter) is not specified then 2 buffers will be

used.

Multivolume and concatenated data sets are not supported.

When an error occurs involving a particular data set then the diagnostic

given refers to the data set by ddname and member (if it is a partitioned

data set).

5. CONCLUSIONS

The AEUPDATE program provides editing facilities that are flexible and

easy to use. The command cards are simpler to use than those of current

editors and comprehensive diagnostic error messages are given; this

includes the scanning of the remainder of the command data set for further

errors after an initial error is detected.

6. ACKNOWLEDGEMENTS

The author thanks Dr. D.J. Richardson for suggesting this problem and

for invaluable discussions during the implementation stages. Thanks are

also extended to I.J. Hayes, R.P. Backstrom and P.L. Sanger for helpful

suggestions.

APPENDIX

EXAMPLE 1

In this example a new member (AA) is to be added to a partitioned data

set, with the new member contained in the command data set.

//' EXEC PGM=AEUPDATE

//STEPLIB DD DSN=AAELIB.LMODA,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD definition of the partitioned data set

//SYSIN DD *

WRITE SYSUT2 (?A)

INSERT

(cards that are to form the member AA)

/*

EXAMPLE 2

In this example a member (BB) of a partitioned data set is to be

updated with a new membername and the prior member deleted from the

partitioned data set. New sequence numbers are to be supplied for the

new member (CC).

// EXEC PGM=AEUPDATE

//STEPLIB DD DSN=AAELIB.LMODA,DISP=SHR

//SYSPRINT DD SYSOUT=A

//DATA DD DSN=DISPLAY,DISP=OLD

//SYSIN DD *

READ DATA(BB)

WRITE DATA(CC)

NUMBER FROM 1000 by 1000

DELETE 100 - 750 1050 1350

data statement 1 00001400

data statement 2 00001650

COPY

DELETE DATA(BB)

/*

EXAMPLE 3

In this example a three-member partitioned data set (NEWPDS) is to be

created. Two members (CC and DD) are copied from an existing data set

(CujDPDS) . A new member (EE) is contained in the command data set.

// EXEC PGM=AEUPDATE

//STEPLIB DD DSN=AAELIB.LMODA,DISP=SHR

//SYSPRINT DD SYSOUT=A

//IN

//OUT

//SYSIN

DD DSN=OLDPDS,DISP=SHR

DD DSN=NEWPDS,DISP=(NEW,KEEP),UNIT=SYSDA,

SPACE=(CYL / (1 ,2 ,4)) ,

DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

DD *

WRITE OUT (CC)

READ IN (CC)

COPY

WRITE OUT (DD)

READ IN (DD)

COPY

WRITE OUT (EE)

INSERT

(cards that are to be the member EE)

PRINTED OFFSET BY THE

AAEC RESEARCH ESTABLISHMENT

