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Abstract 

We propose a simple parameterization for high energy 
diffractive amplitude based on an absorbed multiperipheral 
model and the unitarity relation. This parameterization 

2 

gives an eventual ^(lns) growth for the total cross section 
and a ^lns grcwua for the average multiplicity. This ampli-
tude together with Regge pole contribution gives a good fit 
to the pp elastic scattering data for PL ak > 10 GeV/c and 
ItI < 0.8 GeV2. i i 
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X. Introduction 

iiccent 1SH data* indicate that pp total cross? section 

increases as a function of c.m. collision energy (»s). 
Theoretically the rise of a total cross section with an asymp-

2 totic behavior Mlns) is anticipated in the QED model of 
2 Cheng and Wu. A similar rise is also expected from various 
3 4 4,56 eikonal models, ' and absorbed multiperipheral models, ' 

when a "strong coupling condition" is imposed. After the 
ISR data became available, the pp elastic data were analyzed 
by Cheng, Walker and Wu in terms of a simple parameterization 
based on an impact picture in accord with the earlier QED 
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model* To our knowledge, this is the only work advanced thus 
far, which gives a quantitative description to both the total 
cross section and the near forward scattering data. In this 
paper, we propose a different parameterization for the dif-
fractive amplitude based on the idea of absorbed multiperipheral 
model and unitarity relation. This amplitude together with a 
Regge pole contribution gives a quantitative description to 
the pp data for PL a b £ 10 GeV/e and ]t| < 0.8 GeV2. Our model 
predicts that ultimately the total cross section grows like 

2 Mlns) # while the average pion multiplicity grows like *vlns. 
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2. The model. 

For act" iui tencss, we shall consider |>f» scattering oi»lv. 
However, most o*; our discussions below can be easily generalized 
to other cases. For large s the |>p elastic amplitude, T22 " 
T2 2^,b) at a given impact parameter b, satisfies following 
asymptotic unitarity relation 

2 ImT22 - \ t # T 2 2 ] 2 • lReT22|2 * t T2NT2N 3 
(1) 

2 "* S iIWT22i * T2NT2N * 

We shall ignore any spin effects* We assume that at high 
energies, the elastic scattering amplitude contains a di£-
fractive term, which has a power behavior s° up to some Ins 
factor and is mainly imaginary, and a lower power term, with 
e.g. v;.̂  approximate ImT22 by the leading diffractive 
contribution alone* On the right hand side of Eq. (1), the 
inelastic contribution is to be saturated by an "absorbed" 
multiperipheral series, with "proper" Regge trajectories (i.e. 

P-A2 with 0 . 5 + t> exchanged alo„g the -Xtiperipheral 
chain. In the limit of exchange degeneracy, the exchange of 

Q 
a gives a real contribution to ^22* S o n a t u r a l t o 

elude the |ReT22l term in the sum, which was done in the 
last step of Eq. (1). Taking into account both the initial 
and final state absorptions between the two nucleon lines, 
Eq. (1) can be written as 
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2 ImT22 % jimT22[2 + \1>22\2U a ;irr.T22j" + jl + iT22I^H / (2) 

whcro ii « in the uiuoyorbcU overlap function. After a 
Fourior-Uessol transform, this overlap function at t « 0 is g 
given by 

ta 
H(s,t«0) - <H(s,b)> « t a (g2lnE) <G(N,b>> « FE°, (3) 

where the symbol <> designates a Fourier-Bessel transform, 
i»e» 

H (s, t) 2 <H(s,b)>t • J bob H(s,b) Jc(xb) , with x « /^t . (4) 

In Eg. (3) F is a parameter specifying the overall strength. 
E is the incident lab. energy in GeV, S % s/2K, with M being the 

2 2 
nucleon mass. Ana c « 2a(Q> - 2 g % g - 1. To give rise 
to » asymptotic behavior, with positive power of Ins in 
the absorbed amplitude, it is necessary that c be positive, 2—» or e^uivalently the "strong coupling condition* to hold, i.e. 

g2 > 2 - 2a (0) . (S) 

In general, resonances in addition to pions are expected to 
be emitted along the multiperipheral chain. So N in Eq. {3} 
specifies the total number of "particles" (pions, as well as 
resonance's# and also the two nucleons) in the final state* 
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The number of particles emitted along the internal chain is 
N-2. In Eq. (3)f c is the normalized particle multiplicity N 
distribution which depends on g2fcnE. And G(N,b) is an unknown 
function, which specifies the production probability as a 
function of b and N. It is normalized such that <G(N,b)> = 1. o 
Within the multiperipheral model, has a Poisson-like distribu-
tion. For large N, this distribution peaks at around N ^ N, 
where N is the average particle multiplicity, which for large 
E is given by: N ^ g InE. From Eq. (3) one gets the approxi-
mate relation, 

H(s,b) £ FE° G{N,b) . (6) 

We propose to parameterize G(N,b) as follows, 

-bN/x2+X2 bN(l + x/b2+b^) / 2 
G(N,b) « <e > = 5 ?->/->— exP ~M/b +b* - bM) b U) + b i ) / 2 

with 

3 / 2 T U 2 

N 
(7) 

bN = d1(N - 2) + dQ . (8) 

To motivate the proposed form of Eq. (7), let us look at the 
b dependence of the right hand side. In the small b region 
(i.e. b << b^), the exponent can be approximated by the form 

G ( R' b ) - T o ^ T M 1 * (9) 
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This expression can be linked to the usual random walk 
p i c t u r e ' ' * * In particular, each emission along the chain 
for small b appears to contribute to a step in the two-

»5 

dimensional b space with step-size (d^/A) . All the steps add 
in a random walk fashion to give rise to a final radius-squared 
(K - SJd^/A. The parameter dQ in Eq. (8) accounts for contribu-
tion of the two external verteces. In the large b region 
(i.e. b >> bN), the parameterization of Eq. (7) has the property 
that for fixed s as b increases, the quantity G(fT,b) and in 
turn the 2-2 elastic partial wave amplitude, fall off like 

% i exp (-CQnst. £) , 

where Jl is the total angular momentum. This has a maximum 
12 

rate of falloff allowed by a finite range interaction. 
Back th& the unitarity relation, Eq. (2). Making the 

approximation that T22 is purely imaginary and solving for 
the quadratic equation we get 

IH1T22 - 1 - 7 T B • 

To ensure the amplitude T22 t o he even under crossing, 
-i-5-we make the usual replacements by Ee 2 and write 

T = T = i(l - ) 2 2 /l-2iT0 
(11) 
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where T is the "Born terra" amplitude (note TQ = Lim T22)' 
° F+C 

given by 

ifi 
Tq = ^ (Ee 2 )C G(N,b) . (12) 

mm 

For the complexified version, we choose the parameterization: 

bK = Bo[g2UnE - + d] J Bq[(1 + c) (JtnE - + d] , (13) 

where BQ and d are new parameters. Equations (7), (11), (12) 
and (13) completely specify the diffractive amplitude. For 
future convenience, the explicit algebraic form of T is given 
in the Appendix. 

For comparison with the low energy data, we further add 
a Regge pole contribution to T and write the full elastic 
amplitude as, 

A = T + R . (14) 

The relevant Regge poles for near forward pp scattering are 
the w-p and the A2~f° trajectories. Their contribution is 

13 parameterized as 

R - [ - e + ( e - i , , 0 , < t ) + X) • 8 _ < e - i , , a < t ) - X) ] E
a < t ) _ 1 e a t , <XS) 

with the W±H subscripts designating the even and odd signatures 
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and oc(t) = ~ + t. In the limit of exchange degeneracy, 

= Due to the oversimplified parameterization for the 

nondiffractive term, we will not impose this relation for R. 
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3. Comparison with the data 

We make use of the normalization convention 

c_ % 4.41 ImA (in mb) 

(16) 
and = I Al 2 dt 1 1 (in mb/GeV2) 

Present model was used to carry out a simultaneous fit to pp 
data: oT and Re/Im at t - 0, the slope parameter of dif-
ferential cross section at t = 0 and t = -0.35 and some 
sample differential cross sections at 12.8, 19.2 and 1500 GeV/c. 
To further constraint Regge pole residues, pp total cross 
section data are also included in the fit. For the pp case, 
the factor in Eq. (15) is replaced by . No least-
square fit program was used, although sample calculations 
were made with parameters varied to obtain their optimum 
values. We present a typical solution here. The parameters 
are: 

diffractive part Regge pole part 
F = 50.0 
X = 0.44 mb"*5 GeV^ = 10.55 mbVGeV 

= 4.8 mb^/GeV 
a = 1.75 GeV-2 

B0 = 0.123 mb^/GeV 
c = 0.04 
d = 13.0 
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The comparison of present solution with pp and pp total 
cross section is shown in Fig. 1. Solid curves are theoretical 
predict ions* One spes that fits are reasonable down to 
l?Lab ^ 6 GeV/c. The diffractive term alone is also shown in 
the figure as the dashed curve. 

From Eq. (7), for very large s, the partial wave amplitude 
has a characteristic cutoff in b at 

b2 % {[ £n(FEC)]2 + 2AbN £n(FEc)}/A2 

% (UnE)2[c2 + 2AB QC(1 + c)] 
(18) 

+ £nE[2c £nF + 2AB (1 + c ) I n F + 2AB cd]}/A2 o o 

% {0.006 UnE)2 + 0.81 UnE) }/\2 

ignoring some £n£nE factors. In the last step our solution 
was used. The numbers imply, for example, at E ^ 7x10** GeV/c 
the first term is only one tenth of the second term, and at 

29 
E ^ 2x10 GeV/c, the first term is half of the second term. 
So the total cross section rises more or less linearly over a 
long range of E, although ultimately it goes like M£nE) . 
According to Fig. 1, the present solution predicts a ^7mb rise 4 
between PLak ^ 1500 GeV/c and 8x10 GeV/c (a characteristic 
energy for the Isabelle machine). 
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The comparison between predicted Re/Im ratio of the 

forward scattering amplitude and the data is shown in Fig. 2. 

The fit is good at least for p ^ ^ beyond 10 GeV/c. Notice 

the diffractive component alone gives a positive contribution. 

Thus it is the nondiffractive term which is responsible for 

the substantial negative ratio in the low energy region. For 

completeness, the prediction for pp is also included in the 

plot. 

The situation of energy dependence of slope parameter 

B as defined in the Appendix is shown in Fig. 3. The theo-

retical curves are evaluated at t = 0 and at t = -0.35. They 

are to be compared with those points given in the corresponding 
2 

regions. There is a crude agreement down to s = 10 GeV or 

p>Lab % 4 GeV/c. Note the definite difference between the 

slope parameter at t = 0 and that at t = -0.35. This dif-

ference already exists at the Born-term level, where the cor-

responding slope parameter is given by 

Reb,, 
B = N (19) Born A t + x 2 

Our solution has X = 0.44 % 3m^. So B„ varies rapidly near v Born r J 

t = 0. Apparently after the absorption and unitarization, 

this feature of varying slope persists to the extent giving 

a good description to the data. 

The situation for differential cross section is illustrated 

in Figs. 4a and 4b. The fit at ISR region in the small |t 
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interval is particularly satisfactory. This for pLab = 1500 
GeV/c is illustrated in Fig. 4a. The well advertized "break" 
in the differential cross section is well reproduced within 
the model. Fig. 4b illustrates the differential cross sections 
at various energies. Fits to 12.8 and 19.2 data as shown 
are satisfactory up to |t| % 0.8 GeV . At 1500 GeV/c, the 
predicted curve deviates from the data also at around 
11| % 0.7 to 0.8. It has a dip at |t| % 0.9 GeV2, while the 
data shows a dip much further out in |t|. In particular it 
is at |t| ̂  1.2 GeV2. 

The predicted differential cross section at Isabelle 
energy is also shown in Fig. 4b. Three features are particularly 
worth noting: 

(i) the rapid shrinkage phenomena, 
(ii) the inward motion of the dip, and 
(iii) the rise of the secondary maxima. 
Our fits to elastic data and asymptotic predictions are 

similar to those obtained from the impact picture parameteriza-
tion reported in refs. 7 and 16, except for the latter no 
detail fits to the slope parameter, Re/Im and the differential 
cross section data below, say s ^ 100 GeV2, were made. In 
ref. 7, fits to ISR differential cross section are extended 
much further out in t. Within the present framework, it 
appears necessary to look fcr a different parameterization 
for G(N,b), in order to reproduce the observed larger |t| 
behavior. We have not yet explored this possibility. Anyhow, 



at least for It) < 0.8 Gev2, where most of the cross section I • 

is, we found that, both models give similar description to 
the elastic data. In other words, the elastic data for 
|t| % 1 is insensitive in distinguishing the two models. The 
multiparticle production information is a more rewarding 
place to investigate the differences of the two models. We 
shall come to this later on. 
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4, Discussion*. 

4.1. The smallness of c. i*» Sec. 2, the trajectory zero-
Intercept ci{0) « jt was assumed from the very start. We 
examine now the implication for the different choices of a{0) 
Let Mc be the average number of decayed pions per particle 
which is being emitted along the multiperipheral chain. The 
data gives*7 

E % 2.3 int . (20) n 

On the other hand, the multiperipheral model predicts 

N. N s — % g2 inE . (21) 
Ho 

Thus 

« i l l . h i ( 2 2 ) 

° g2 2 - 2a{0) • c 

With c » 0.04, 

for a(0) = 1 , N0 « 57 , 

a(0) » | , N0 - 2.2 , (23) 

and a(0) » 0 , NQ - 1.1 . 

If one assumes that NQ is not much more than 2 (or 3), the 
present solution then definitely favors building up the 
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ciiffractiv^ contribution through the exchange of the afore-
mentioned "proper tra jectorie.s . " The exchange of objects 
with intercept around unity would necessarily implicate the 
emission of clusters which subsequently decay into an un-
reasonably large number of pions. 

A short-coming of our proposal is that we have not given 
an explicit multiperipheral amplitude from which to deduce 
the b-dependence of the G-function assumed. So we are not 
able to extract the inclusive distribution from the model. 
Recently, in the context of an unabsorbed multiperipheral 
model, an intriguing relation between the average particle 

2 
transverse momentum <p2># the slope parameter of the elastic 
cross section at t = 0, and the average particle multiplicity 
was derived. ' In the derivation, some simplified assump-
tions and asymptotic approximations were made. Apparently 
a gross discrepancy between the prediction of the unabsorbed 
multiperipheral model and the data was found. It is unclear, 
a priori, whether a similar criticism should be applied to the 
present work. 
4.2. Comparison with the eikonal model in the multiparticle 
production phenomena. We observe that the leading asymptotic 
term of the "generating function" for a multiperipheral model 

18 can be cast in the general form 

H(x,b) ^ explg1(x) ZnE + g2(x)J-F^ (b) (24) 
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where x in this subsection represents the dummy variable 
which keeps track of the number of pions in the final state. 
Taking into account the initial and final state absorptions 
between the two nucleons, the absorbed inelastic cross section 
is given by 

ain s «±n<*)|xaBl 388 <1*1 <|S(x,b)|2 - 1)>Q (25) 

To see the role of x for example, by expanding the right hand 
side in powers of x, one obtains the topological cross section. 
In particular, cr can be read off directly from the coefficient 
of J*-2. 

3 5 For eikonal models' 

a.n(x) » <|S|2 (eH(x'b> - 1)> (26) 

Thus the average pion multiplicity is given by 

eik i dqin M L 
fl = aT; 85 ^ ^ L * ' C27) 

2 
Equation (24) gives with g2' » || 

g?(l> (1) L 2 2 
< N , e 2 / o i n ' < l V " ( 1 ) lxiE + ' ( 2 8 > 

2 3 4 where <N^> is the average number of "open ladders" produced ' 
T ' while is the average number of pions in each open ladder. 
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2 The strong coupling condition says > So Eg. (27) 

now implies that the growth of <NL> will eventually dominate 
over the growth of <NL>. Furthermore, the overall pion 

* a2 a2 
multiplicity grows like ^E91 IhE/o^, or ultimately ~ 2 l/*nE. 

For the present model, taking the same parameterization 
as that given in Eq. (24), we get 

fl 88 g i , ( 1 ) A n E + g2,( 1 > * ( 2 9 ) 

Thus the energy dependence of the pion average multiplicity 
is one place where one can distinguish between the eikonal-
type model and the present model. Our preliminary investiga-
tion on topological distributions also indicates that the two 
models give very different predictions there. Detail 
theoretical investigation on the topological distribution 
may prove to be useful to further specify ways to distinguish 
the two models. 

We thfink Professor 2.C.G. Sudarshan for encouraging us 
to look into the ultra high energy physics in connection 
with the Xsabelle project study. This originally instigated 
the present investigation. 
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Appendix: Algebraic form of the diffractive amplitude 

Starting from Eq. (11), 

T_ = - sin ^ + i(l - — cos f) , (A-1) 2 2 /? 2 /r 2 

where 

re 1 6 = 1 - 2iT_ = (1 + 2lmT ) - i2ReT^ o c o 

The Born-term amplitude T Q is specified in Eq. (12) , which 

gives 

c b (1 + x/b2+b2 ) -
2T = iF (Ee 2 ) . exp [-A(/b2+b* - b )] 

° (b2 + b*)3'2 

(A-2) 

where 

FEC r i r 2 r 4 n 
r 5 = — , and 95 = j (1 - c) + 0]_ + 9 2 - 63 + 04 (A-3) 

with the auxiliary variables defined in the following manner 

i 0 l 
(i) r ne = b_,. So 1 N 

1- = B { [ (1 + c)£nE + d]2 + [£(1 + c)]2} 1 o 2 

- 1(1 + c) 
and 9, = tg [ -] 1 (1 + c) AnE + d 

2 . rln ^ i 2 ^ 

(A-4) 
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(ii) r e 2 = 1 + \/b2 + b^ . So 
1 CM 

r_ = /dx2+dy 2 and eo = tg"1 p- , (A-5) 2 I dx 

with dx = 1 + Ad^ cos and dy = Xd^ sin 

where d± = [ (b2 + r2 cos 261)2 + (r2 sin 2Ql)2)l*t , 
2 i rn sin 26, and cf> = ± tg — ± ± 1 2 b2 + r2 cos 261 

1 0 o o (iii) r e = (b̂  + bM)0/ . So 3 N 

r., = d-, and 6 = 3$, . (A-6) j x 3 i 

(iv) r4e1 4 = exp[-X(/b2+b2 - bN)3 - So 

r^ = expl-X(d^ cos - r^ cos ] 
(A—7) 

and 6 = -Md^ sin - r^ sin <J>̂) 

The amplitude at arbitrary t is given by 

100 

T22(s,t) = | bdbJ0(xb) T22(s,b), with x = /-t (A-8) 
o 

At t = 0, JQ(xb) = JQ(0) = 1. The slope parameter is defined by 

B = A (in = 2 [ReA ~ ReA + ImA — ImA]/ fj , (A-9) dt dt dt dt dt 



\ 
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where 
I CO 

^ = ! bdbA(s,b) J, (xb) {—) . (A-10) dt • Q 1 2x 

b b2 
At t = 0, J. (xb) (~) = In practice Eqs. (A-8) and (A-10) are 1 c x 4 
calculated through numerical integrations. 
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Figure Captions 

Fig. 1. The pp and pp total cross section for incident 
5 

laboratory energy from 5 to 10 GeV/c. Solid curves 

are model predictions. The dashed curve represents 

diffractive term alone. For data points, see refs. 

14 and 15. 

Fig. 2. The ratio of the real part to the imaginary part of 
_ 5 

the pp and pp forward amplitude from 5 to 10 GeV/c. 

Solid curves are model predictions. The dashed curve 

represents diffractive contribution alone. Data points 

are for pp only. See ref. 14 for detail references. 
Fig. 3. The slope parameter B for pp differential cross sec-

5 2 
ticn in the energy region s = 5 to 2x10 GeV . 

Theoretical curves shown are computed at t = 0 and 

t = -0.35 GeV . Data points as shown are divided 
into two groups: one with |t| < 0.1 and the other 

with 0.15 < |t| < 0.5. See ref. 14. 

Fig. 4. a. A comparison between the theoretical curve and 

the pp differential cross section data at 1500 

GeV/c. For data points see ref. 14. 

b. A comparison between theoretical curves and the 

differential cross section data at 12.8, 19.2 

and 1500 GeV/c. For data points, see ref. 14. 
4 

Prediction at 8x10 GeV/c is shown by the dashed 

curve. 
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