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Abstract 

A hamiltonian model of lorentz invariant particle inter-
actions is used as a framework in an attempt at describing 
massless particle decay. By restricting to the two particle 
sector we find an exact solution for the time development of 
the survival probability. Several modes are obtained and dis-
cussed. In particular we show that the presence of a per-
sistent mode, i.e., the case in which the survival probability 
has a non zero limiting value, has to be interpreted as in-
dicating that the massless particle is a stable bound state. 
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1. Introduction 

The possibility that zero mass particles, in particular 
the photon and neutrino, can display unstable features, has 

(1 2 i 
been considered in the l i t e r a t u r e . T h e problem is chal-
lenging as its implications might be profound. Essentially 
all our knowledge of the Universe is the result of the inter-
pretation of the flux of electromagnetic radiation impinging 
on the Earth, mostly in the optical but also in other portions 
of the spectrum. This interpretation is partly based on the 
assumption that the photon is a stable (massless) particle. 
By stable here is meant that spectroscopic analyses of a given 
beam of radiation, propagating in free space, carried out by 
observers at rest with respect to each other, and placed a 
distance apart along the beam, should not show any change as 
the observers separation is changed. Changes in intensity, 
on the other hand, should be fully explained by geometrical 
arguments. 

Questions of stability of zero mass particles are in-
timately connected to relativistic invariance and to quantum 
mechanics- If we disregard quantum effects, and consider only 
a beam of classical massless particles, (propagating at the 
speed of light), and ask for a covariant prescription for the 
decay, (i.e., decrease in intensity), we end up with the re-
sults of reference 1. Prom relativistic invariance the only 
restriction is that the function describing the decay can depend 
only on the ratio t/E# where E is the energy of the particles 
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and t is the time elapsed. The ratio t/K is the generaliza-
tion of proper time appropriate to massless particles. 

The situation is considerably more complicated when 
quantum mechanics is introduced. Our intuition on unstable 
particles is intimately connected to the exponential decay 
law, in which the half life is simply the inverse of the 
transition rate per unit time. Experimentally only massive 
unstable particles have been observed. It is also an ex-
perimental observation that for unstable particles the mass 
does not have a well defined value, but rather a certain in-
trinsic spread is seen, which can be characterized by a 
"width". For those particles that live long enough for the 
exponential decay law to have an experimental meaning, it is 
observed that the mass, which can be defined for instance as 
the mean value in the mass distribution, is always much larger 
than the width. A further important observation which seems 
to be verified in general is the proportionality of the width 
and the transition rate per unit time, i.e., particles decaying 
faster show a larger width. All these observations can be 
explained within a quantum mechanical framework, provided cer-
tain approximations are applicable. In particular the narrow-
ness of the mass distribution, i.e., mass much larger than 
width, seems to play an important role. A closer look at the 
problem shows, however, that the exponential law cannot hold 
exactly in quantum mechanics for all times.^ It has been 
indicated that the non-exponential behaviour can be traced to 
the non-vanishing probability of recombination of the decay 
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products into the initial s t a t e . W e notice that recent 
explanations of the exponential decay law,*5* avoid this 
problem by simply not allowing the system to follow a purely 
quantum mechanical evolution, but rather amending the dynamical 
laws by the addition of random interactions {"measurements"). 
Whether this is the correct prescription or not the fact re-
mains that an isolated (i.e., free) system will not follow the 
exponential law at ail times. 

In the case of massless particles, we must first of all 
recognize that no evidence is available on which our intuition 
could be built upon, although a few ^neral statements can be 
made* Consider, for example, photons decaying according to 
an exponential law. From conservation of energy, if photons 
are also included in the decay products, they will appear at 
longer wavelengths th*n the initial one. Since in this case, 
from relativistic invariance, the transition rate per unit 
time is inversely proportional to the energy of the decaying 
photon, we expect the following effect to be observable; the 
ratio of the intensities of two different spectral lines, 
emitted under similar conditions, should show a correlation 
with the distance from the source to the observer. Astronomical 
observations,^ however, indicate no anomalies in, e.g., the 
Balmer series, up to distances, computed on the basis of the 

Q lft 
red shift, of up to 10 - 10 w light years. A more stringent 
test is given by the absence of a conspicuously small intensity 
in the 21 cm wavelength radiation from neutral hydrogen, from 7 ft astronomical objects as far away as 10 to 10° light years. 
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This places a lower limit for the half life for photons on 
the visible range, on the assumption of an exponential decay 

1 3 
law, of about 10AJ yesrs. This is orders of magnitude larger 
than current estimates of the age of the Universe, and would 
rule out the possibility of observing exponential law decays 
of optical photons. For photons of much lower energies, the 
situation is not so hopeless but so far no experimental evi-
dence is available. 

Another important question is whether we should expect a 
width associated with a finite transition rate for a photon. 
The analysis of Goldhaber and Nieto^ can be interpreted as 
indicating that the mass spectrum of the photon has no im-
portant contributions beyond 

m > lO^cm""1 = 1<T15 eV . 

If this is interpreted as a width, and in turn given the usual 
correlation to half life, we find for a photon "at rest" a half 
life o' the order of one second. Unfortunately there is no 
simple way of interpreting this result. If for instance we chose 
the same value of m as a scale for photon energies, we find 

g 
for optical photons a half life of the order of 10 years. Ar-
bitrarily large values can be obtained, however, by assigning 
smaller mass values to the photcn. 

In conclusion, our knowledge of the properties of the 
decays of massive particles seems to be of little use in dis-
cussing massless particle decays. In fact it seems that the 
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only indication that we are dealing with the decay of a mass-
less system would be that only massless particles appear as 
decay products, since otherwise, the presence of a massive 
particle, of say mass y, in the final state would have to be 
interpreted as indicating that the decaying state mass was at 
least equal to p. It is then of interest to try and establish 
what properties appear in a model in which quantum mechanics 
and relativistic invariance are considered exactly and not 
within a perturbative scheme. In what follows we shall take 
the point of view that whatever a massless unstable particle 
is, it can only decay into massless particles. We shall 
interpret the requirement of Poincar£ invariance in the sense 
that there exists a set of operators satisfying the appropriate 
commutation relations and under which the physical (stable) 
states transform irreducibly. One of this operators plays the 
role of the Hamiltonian H, We shall then assume that any state 
can be written as a linear superposition of eigenstates of H 
and then study its evolution in time. 
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2. The model 

We shall follow a method based on work described in 
references (8) and (9). As a starting point we define a set 
of vectors 

px ; m2, p2> , <2.1) 

describing states of two (distinguishable) spinless particles 
of masses m-̂  and m2# with well defined momenta p^ and 
and satisfying the normalization conditions, 

<1^, p^; m2# P2'n5i' Pl? m2' p2> 

(2 .2) 

= 2 u)2 6 (p^ - p^) 6 (p2 - p2) , 

/
2 2 m. + p. . 

This set is assumed complete. Every possible state can 
then be represented by a vector 

|4» 
/

d^p d^P2 
P2

)lml' m2' P2? <2'3> 

By the methods indicated in reference (9) one can construct a 
representation of the Poincar£ group. The details are not im-
portant as only the formal properties will be used. Instead of 
(2.3) one can consider states described by the variables 
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M = [<Wl f ui2)2 - p2)h 

A(M) = [M2 - (m1 + m2)2] fM 2 (2.4) 

q = MA h (M) {px - p2 - [(m2 - m2)/M2J P) 2, £ 

q = MA""15 (M) (w, - a) O •! [(m2 - m2)/M2] (uix + w2) } . 

M is then the center of mass energy and P is the total momentum. 
The unit vector § can be used to perform a partial wave 
analysis of the state. However, to keep our discussion as 
simple as possible, we shall assume from the outset that only 
S-waves are involved in the decay. We are then led to consider 
the states 

which we interpret as states of particles 1 and 2 with center 
of mass energy M, total momentum P and zero total angular 
momentum in their center of mass. Their normalization is 

|M, P> (2.5) 

<M, P|M', P' > = 2 W 5(M - M1) 63(P - p') (2 .6) 

where 
W = /M2 + P^ 
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We now consider another set of states 

!u, <, o> = / " d „ ( 4 ± 4 ) , ' ^ « > |M/ K> , (2.7) 
M \M + Kz/ o 

where 

a+(M) = M - y - / (M'} dM 1 f (2.8) 
M M - M1 ± ie o 

and F(x) is a real function of x for x in (M0 ^ x < »). 
Our definition is clearly motivated by the relation between 
the "bare" V and the "physical" N-0 particles in the Lee 

(10) model. It guarantees that for any choice of F(x) we have 

<y, ic, o | u, < \ o> = 2/p2 + k 2 6 3 (ic - k ') . (2.9) 

This normalization suggests that the vectors |u, ic, o> could 
be treated as representing states of momentum K of a single 
spinless particle of mass y. We notice however, that our 
definition (2.7) is not invariant under boosts, and therefore 
the interpretation of (2.7) is frame dependent. One might 
then question the point of considering frame dependent objects 
in a relativistically invariant description. Our argument is 
as follows. We are interested in the description of an un-
stable system. Such a system has to be created a finite time 
in the past before observation. The creation of the system 
implies setting up an apparatus that will serve as a "source". 
For instance in the case of a photon it could be an excited 
atom or molecule. The apparatus then defines a special frame 
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attached to the unstable particle. It is appealing to 
assume that if such particle is created, at say t = 0, in 
that particular frame, its corresponding wave function at 
t = 0, again in this special frame, will have the simple 
form (2.7). Because of the non-invariance of simultaneity, 
the description in other frames may be considerably more 
complicated. We remark that because of our definition the 
decaying state has always well defined spin (equal to zero), 
and, as we shall see below, for sufficiently narrow width, 
its mass spectrum is essentially frame independent. 

Having defined our unstable state at t = 0, we now 
proceed to study its time development. Following the usual 
reasoning, we look at the quantity A(t,K) defined by 

2(y2 + k2)*5 63(k - K1) A(t, ic) = <u, K|e~lHt| y, icr> , (2.10) 

, . 2 
where H is the total hamiltonian. |A(t, K)j is the quantum 
mechanical survival probability. From (2.7) 

r
a F2(M)e-i/M2 + K2 t A ( t' K> = J r—77^ TTTv dM . (2.11) a. (M) a_ (M) o 

The exponential in the integrand has branch points at M = ± iK. 
Using the relation 

2iTTF2(M) = a+(M) - (M) , (2.12) 

we can write 
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^ 1 f r K) = — / 
c 

-il/M2 + K 2 t 
A(t, K) = ^ T / - dM , (2.13) 

where the contour C is indicated in figure 1. If we now 

assume that has a pole on the second sheet (reached 

by continuation from above the cut from M Q to + «>) , located 

z = M - iT, the contour can be deformed as indicated in 

figure 1, where AB runs on the first sheet and BD runs cn 

the second sheet. The residue of the pole is picked up in 

the process and we obtain, 

A (t, if) = = exp{-it yj(M - ir)2 + K 2 } 
a1(M - ir) 

(2.14) 

+ R(K, t) , 

where a' = da/dz. R(K,t) gives the well known departure 
9 

from the exponential decay law. For suitable choices of F , 

we have a* = 1, R << 1, and if M - p » MQ, 0 < T << M, we 

find 

A(t, K) = exp {-it \Z\i2 + K 2 y — rt + 
V/Y2 + K 2 

(2.15) 

The factor y/ \/y2 + K 2 is precisely the appropriate 

relativistic correction factor for a particle of mass y and 

momentum ic decaying in its rest frame with a half life 2r"1. 
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If instead of (2.7) we study the evolution of a state 
obtained by "boosting" (2.7) so that its momentum is Kb, we 
find 

- v = * " t e f c r ) * - W r r ) ] 

2 
X exp [-it /u2+k 2 - y Tt (2.16) 

L u v V + k ^ 

0 P ± - A 
V+Ku*/ 

Vt /y2+Kb
2 + Ru(K, t) 

where R^(Kft) will make a small contribution in the same 
sense as R(c,t) does. The description then gives an expo-
nential decay law, "invariant" to lowest order in r/y. 

After this review of the massive case we now study the 
massless case. In accordance with our previous discussion 
we let m^ = m2 = MQ = 0. Since in Nature massless particles 
are associated with the weaker interactions, we may assume 
if necessary or convenient that y (the "bare" mass) and F(x) 
(the transition matrix element) are small. On the other 
hand we cannot have T << y, for we would then recover the 
massive case. Considering again (2.14), we may write, for 
|K| >> M and M ~ r , 

[(M-iD2
 + K2]** « M + i iSripi + M o[(-il)4] , (2.17) 

This suggests that we set M = T, for then, replacing in 
(2.14), we find, 
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A(t, <) = exp [-it | K | - Mt - it | K | 0(^-)] 
a' (M-iD M K 4 

(2.18) 
+ R(<, t) 

and if we further assume that |R| is small, the leading 
terms in (2.18) will have precisely the appropriate form 
for a massless unstable particle. The terms of order 
—4 4 
M /K reflect the non invariance of the wave function, while 
R(K,t) gives the departure from the exponential law expected 
from the positivity of H. 

If we take (2.18) seriously, from previous experience 
with separable potential models we expect M = y. The ex-
ponential decay in intensity is then roughly given by 
exp [-(y/<)yt]. Since astronomical observations at a wave-
length of 21 cm have shown no anomalies up to distances of 
10^ light years (i.e., time of the order of 10^ years), we -49 
should have y < 10 g. Here we may note as an amusing 
result that if we identify this "bare" mass with a purely 
electromagnetic photon mass, for instance in the sense of 
reference (7), the upper limit obtained agrees closely with 
the present experimental upper limits for the photon mass. 

We finally want to discuss some alternatives within 
the same model. So far we have only considered the case 
when the pole remains in the second sheet. We may ask 
what happens if we allow the pole to move to the point 
M = 0. We find that there are two possibilities; from 
(2.14) we would have 
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A(t, k) a — ~ T exP {-it | S ) + t) , (2.19 cs (0) 

and therefore, since |R(«,t)| 0 as t - «, if a'(0) is 
finite, |A(t,K)|2 approaches a constant value as t goes 
to infinity (see figure 2). However, in order to have 
a'(0) finite, F2(x) has to vanish rather strongly as x 0. 
Clearly, this case corresponds to the presence of a 
stable bound state of zero mass, plus a continuum which 
does not couple to zero mass. If on the other hand a*(0) 
is infinite, the exponential term in (2.14) disappears, 
and |A| goes to zero as an inverse power of t (dashed 
curve in figure 2). The time evolution of |A|2, which 

2 
becomes dependent on the details of F (M), does not display 
simple transformation properties under boosts. For these 
reasons it is difficult to think of this case as describing 
an unstable particle at all. 

We notice that these features are not peculiarities of 
the massless case, but rather they will show up in this 
model whenever we consider a state whose rest energy coin-
cides with the threshold for its decay channels. Clearly 
the arguments about the behaviour of a*(0) apply equally 
well to a1(MQ), (MQ # 0), with similar consequences for 
|A(t, K) |2. 

In the first case, i.e., decoupling, one might very 
well question the interpretation of the initial decrease in 
the survival probability as indicative of instability. A 
simpler interpretation is obtained by saying that in this 
case all particles involved are stable, and the decrease is 
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due to the admixture 01 multiparticle states in the defini-
tion of the initial state. In fact, a closer look at 
equations (2.6) and (2.9), shows that in this case they can-
not simultaneously hold, unless a new set of states, satis-
fying 

<MQ, P|Mq, 5'> = 2 u>o 63(p - p') , (2.20) 

where u^ « y ^ ^ n ^ ) 2 + p2 , is added to (2.6). In other 
words, a bound state of mass equal to the threshold mass must 
be added to the physical states for consistency. 
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3. Conclusions 

Because of the lack of experimental evidence, the 

question of instability of massless particles is at 

this moment mainly of theoretical interest. A statement of 

the problem in the framework of a solvable model which in-

corporates quantum mechanics and Poincar^ invariance is 

then of relevance. It is quite possible that because of the 

presence of zero mass particles, multiparticle effects, 

(i.e., infrared divergences), play a major role. Since no 

scheme is presently known in which all these questions can 

be considered outside a perturbative approach, we have 

studied a model combining Hamiltonian dynamics and relati-

vistic invariance, but restricting the treatment to the two 

particle sector. Within the context of this model a 

particle whose mass is strictly zero is stable. States which 

display an approximate invariance and to the same order of 

approximation show zero mass and exponential decay law, can 

also be constructed. A third class of states, corresponding 

to a transition matrix element which is non-vanishing at 

threshold, fail to show recognizable particle features. 

The author would like to thank Prof. E.C.G. Sudarshan and 

Dr. A. M. Gleeson for helpful suggestions and illuminating 

discussions. 
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Figure Captions 

Fig. 1* The contours of integration for eqs. (2.13) and (2*14) 

Fig. 2. Time dependence of |A| 
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