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ABSTRACT

Experimental data from low-energy proton induced deuteron breakup have been

analyzed with the separable potential model (SPM). The experimental data

cover symmetric and asymmetric coplanar correlations and symmetric nonoo-

planar correlations at T = 10.0 MeV measured at this laboratory and

symmetric coplanar correlations at T =12.5 MeV measured at Rice Univer-

sity. The agreement between the SPN calculations of and experimental data

on the correlation spectra is very good both in shape and absolute magni-

tude. However( systematic deviations between experimental data and SPM

predictions for kinematic conditions corresponding to low relative pp

energy are found, at least partly due to the neglect of Coulomb effects

in the pp interaction used in the calculations. A review of the SPM model

is given.

This work was supported by the Swedish Atomic Research Council



1. INTRODUCTION

In the last decade much interest has been devoted to the three-nucleon

problem. One of the reasons is the important theoretical progress made by

Faddeev who in i960 formulated the integral equations giving an exact
2)

quantum mechanical description of the three-body system. Later Mitra ,
3) It)

Lovelace and Amado have made important contributions to the solution

of the three-body scattering problem using separable two-body forces. From

the experimental point of view the incorporation of on-line computers and

efficient multiparameter data collection systems in the experimental

facilities has made it possible to perform accurate and kineraatically

complete experiments mapping large parts of the phase space in three-

nucleon reactions. Early theoretical attempts to describe the deuteron

breakup by neutrons or protons concentrated on the two-body aspects of the
5 6 7)

reactions, i. s. the first two terms in the multiple scattering formula * .

The idea in most experiments has been to isolate a certain reaction mecha-

nism by a careful choice of kinematics. The spectator model has been

applied to cases where one of the nucleons is left with a low energy in

the laboratory and the Migdal-Watson theory for final state interactions

to kinematical regions where the internal energy of a pair of nucleons is

low in the final state. For high incident energies (T > 100 MeV) these
n,p

kinematic regions are rather well separated and the multiple scattering

series probably converges and the nodels give a fairly good description of

e 1
9)

the experimental data . For lower incident energies the phase space be-

comes narrower and a clean separation is hardly possible to achieve

Also, the multiple scattering series may not converge '.

In four recent reports from this laboratory » » » a n experimental in-

vestigation of the peak corresponding to low neutron energy in the d(p,2p)n

reaction at T * 10.0 MeV was presented. This peak is by tradition called

the "quasifree" pp-scattering peak. The spectator model has been used to

analyze most experiments even at low energy^' . From different experi-

ments at this laboratory it was found that sane of the earlier statements

made on the origin of the "quasifree" peak are justified mainly because all

earlier experiments on this peak at low energy (T < 13 MeV) have been per-

formed in a symmetric coplanar geometry f . On the contrary in the asym-

metric coplanar cases the position of the "quasifree" peak no longer



occurs at minimum neutron energy but rather at equal internal energies in
12)

the two pn systems possible. Furthermore a Treiman-Yang test showed

that it was unlikely that the spectator diagram dominates the process.

Also an investigation of the noncoplanar correlations in the d(p,2p)n

reaction clearly showed the failure of the spectator model to account for

the experimental data. Finally, an attempt to include pn quasifree scatter-

ing and final state interaction corrections in the calculations using the

procudure given by Cromer, Thorndike and Brown gave very poor agreement

with experiment , indicating the need for an exact treatment taking all

three nucleons into account.

Amado , Cahill , Ebenhöh and others have used separable interactions

for the two-body forces and succeeded in solving the integral equations

numerically. The two-body forces were spin-dependent, s-wave, Yamaguchi

interactions. Coulomb forces have so far not been included. Also hard core

and higher partial waves in the two-body interactions have to be included

in the calculations before any conclusions can be made about specific

three-body effects such as off-energy-shell effects and three-body forces.
*

Using Ebenhöh's computer codes experimental data on proton induced deute-

ron breakup obtained at Uppsala ' have been analyzed. Experiments at

higher proton energies (T > 13-5 MeV) have previously been compared with

similar calculations ' ' . Data at lower energies may be more relevant

because of the neglect of higher partial waves than the s-waves in the

two-body interactions used in the calculations.

The agreement in spectrum shape as well as in absolute magnitude between

calculation and experiment gives rise to a hope that more detailed compa-

risons might yield information on off-energy-shell effects or three-nucleon

forces provided the calculation can be refined to include the Coulomb force

and phase equivalent two-nucleon interactions. Several requirements will

also be put on the experimental accuracy. Therefore, an effort was made

to determine the absolute cross section scale and some additional spectra

were obtained with better statistics than previously (section 2). For the

sake of completeness, a short review of the fundamental relations in the

calculations is given in sect 3. In section h the calculations are compar-

ed with data at T * 10.0 MeV obtained at Uppsala and with data from Rice

University at T * 12.5 MeV15'.

We are very grateful to Dr Ebenhöh for sending us his computer codes



2. EXPERIMENTAL CONSIDERATIONS

The coplanar correlation measurements at Uppsala were made with rather

poor statistics and therefore a few additional, representative spectra have

been obtained with better accuracy for comparison with the separable poten-

tial model (SPM) calculations. The additional spectra obtained at T » 10.0
P

MeV covered the following angular settings: a) symmetric coplanar» 0, = 9.

» 30.0° and 36.7°» and b) asymmetrie-coplanar, 0_ = 30.0°, 0, = U3.U0 and

75 •*» • The spectra were obtained with the same procedure as the one de-

scribed in ref 11 except for a few changes described below.

Due to the complexity of the total system of accelerator, scattering cham-

ber, detectors, electronics and computer various check procedures must be

used during the experiment, It is important to reveal and replace a failing

component as soon as possible and because of such a failure reject doubt-

ful data. The different precautions described below represent such check

procedures. The main effort concerned the determination of absolute cross

sections.

In the earlier measurements the largest contribution to the uncertainty in

the cross section measurement came from the determination of the solid ang-

les. The largest source of error was probably the deformation of the deute-

rated polyethylene target due to beam heating. For this reason a device to

rotate the target was constructed (Fig 1 ). This device was run with a speec*

of 20 turns per minute and used to check the experimental set up and look

for drifts which might influence the absolute cross section scale. It was

found that the target deformations were smaller than earlier and that the

combined uncertainty in the solid angle determination was now 0.8 % rather

than the previous 1.6 %. This number could probably be further improved

by the use of polyethylene targets with carbon backing.

In the check run discussed above, a spectrum for T s 10.0 MeV (0_ » 6^ *

30.0°; «P_ • 0.0° and «pv * 180.00) was measured. It was separated into four

parts. The extracted cutoff radii were 5.52 ± 0.16; 5-52 ± 0.1l»; 5-51 ±

0.10 and 5.61* ± 0.1U fm. During the run elastically scattered protons from

deuterium were counted both in the coincidence and in the two monitor

detectors (6.
M1

5l».8 and 6..o » 60.0 ). The ratios between these numbers

in the four spectra were compared with the same ratios calculated from



known elastic pd cross sections

good.

20)
and solid angles. The agreement vas

In Table II a summary of cutoff radii determined at Uppsala for the same

kinematic situation is given. The measurements involved different targets,

solid angles (target to detector distance and aperture diameter), beam

characteristics (beam current, beam-spot diameter), and electronics. The

agreement is acceptable. In all measurements reported from this laboratory

on this reaction ' ' , a data taking period was always started and

concluded with this spectrum.

A very important check on the absolute cross section scale was the experi-

ment performed to remeasure the elastic pd cross section at 10.0 MeV^ .

It was shown that the reference data used previously on elastic pd scat-
20)

tering by A C Wilson et al were 10 % to small. Consequently all cross-

sections in this report for data obtained at Uppsala were renormalized

with a factor 1.10.However, all cutoff radii refer to the old cross

section scale.



3. THEORETICAL BACKGROUND TO THE CALCULATIONS

An excellent treatment of nonrelativistic three-particle scattering has
22)

been given by I Duck and most of the notations used below were taken

from this reviev. Klein has also reviewed the background to Ebenhoh*s

calculations in his thesis.

3.1 Two-body scattering

Two-body scattering is usually described with the Lippman-Schwinger equa-

tion. The main advantage of this integral equation over the Schrödinger

equation technique is that the boundary conditions for large distances be-

tween the interacting particles is built into the equation. The Schrödinger

equation for two-body scattering can be written in the following way, when

the potential is assumed to be spherically symmetric, independent of spin

and of finite range:

(Ho -

(D

Formally one can write the solution as

K K H Q ^ k

where $. is the solution of the homogenous equation with V = 0

E is defined through

(2)

(3)E = E + in

where it is understood that n is a small positive quantity which eventually

will approach zero.

The operator in (2) is the free two-particle Green's function

(1»)gQ(E) = (HQ - EV 1

and equation (2) can then be written

By iteration it can be shown

(5)

(6)



1
where

(7)

A complete knowledge of the ful l Green's function g i s equivalent to a

solution of the scattering problem.

It can be shown that

lim -
rr*O+

(8)

From the def in i t ion of the t-matrix an equation similar t o (5) can be

derived

t = v - vgot

This is the Lippman-Schwinger equation for the t-matrix.

By iteration it can be shown that

t = V - VgV

(9)

(10)

Once again it follows that the knowledge of the full Green's function is

equivalent to a solution of the scattering problem.

The Lippman-Schwinger equation (8) has a unique solution if the kernel

(K = g V) is compact, i.e. square integrable, which can be shown to be

true if the potential itself is square integrable, or

/ V2(r) d3r < » (11)



3.2 Three-body scattering

In three-body scattering there are two major complications compared to two-

body scattering. The number of degrees-of-freedom increases. In two-body

scattering, one relative momentum vector is enough for a complete specifi-

cation but in three-body scattering one needs two relative momentum

vectors. For example, particle 1 has the momentum p1 relative to the

center-of-mass of the subsystem (2,3) and this subsystem has the momentum

k. relative to the total center-of-mass. This means that even after a par-

tial wave decomposition of the amplitudes, the integral equations are coupled

integral equations for functions of two variables.

Another important complication arises if one tries to use the Lippman-

Schwinger equation to formulate the three-particle scattering problem.

The three particle Green's function G is defined by

G » Go - GoVG (12)

where V * V.. + V_ + V is the total interaction between the three par-

ticles. V.. is the interaction between pair (2,3) and G is the free three

particle Green's function

+ -1 P1 p2G - (H - E ) with H = -£- + •£-
o o o 2m. 2m_ 2m,

The kernel G V will thus contain terms of the type

. 3 , - » - • + . . •*••*• i i •*.-*•,«J( /) < |VJ '^ (13)

Now the integral of a squared 6-function is infinite and consequently the

kernel will not be compact. Then the Lippman-Schwinger equation will not

give unique solutions.

Faddeev solved this problem in an elegant way. He wrote down a system of

coupled integral equations each of which had a compact kernel. Paddeev

began his derivation by writing down the complete Green's function in terms

of an operator T

O1»)G • G - G TG
O 0 0

so that T satisfies

T • V - VG T
o

(15)
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The teros generated by iterating this equation are

T « V1 + V2 + V3 - (V1 + V2 + V3)Go(V1 +
(16)

V 1 " - V o V 2 " V1°oV3 " V 2 G o V 2

where various subseries can be identified

' t1Go t2 " (17)

where

t . - V. - V.G t .
i i i o i

(18)

Faddeev recognized these series as terms in an integral equation for T

T = + T (19)

where

G o <T2

V.T3 a * 3 " *3 Go ( T 1 + T£

T. = t j + KT (20)

and

K

O t 1* l

*2.° *2
t 3 t 3 o

(21)

Faddeev has shown that this (Faddeev) kernel K is compact or can be made
compact vhich means that the solutions to the Faddeev equations are unique.
The structure of the equations shows that T. corresponds to the pair i
interacting last . Faddeevs work is considered as the first paper in which
a mathematically correct nonrelativistic three-particle theory was pre-
sented. I t has often been stated that these integral equations are rather

unpractical to use in calculations. However, contributions of Lovelace ,
I,) 23)

Amado , Sandhaz and others have given modifications of the Faddeev
approach, more practical for numerical calculations. The calculations by
Ebenhöh which are used in this work are closely connected with the workof Sandhaz and collaborates23)

The starting point is Faddeev-like equations for appropriately chosen tran-

sition operators (Uag). Here o and g refer to the channel definition for
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three-body scattering given by Ekstein
2k)in

(22)

These are reduced to multichannel two-particle Lippman-Schwinger equations.

The advantage of this procedure i s that U g are directly connected to the

S-matrix elements

{ESn " ( 2 3 )

and that tg are related to the two particle t-matrix. Here p, is the momentum

of a pair 6 relative to the total center-of-nass and ̂ , is the momentum of

the third particle relative the center-of-mass of the pair 6.

pp-i*«iV

(2U)

This also shows that the t-matrix element must be known off the energy shell.

However, the coupled integral equations are associated with two continous

variables (p,q) and numerical solutions are in most cases too complicatedp

, Lovelace3' and Amado ' thatto achieve. It vas early suggested by Mitra

this problem could be overcome by the use of separable tvo-body interactions.
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3.3 SEPARABLE TWO-BODY INTERACTIONS

An example of a separable interaction is a separable potential V. In momen-

tum space one can write

(25)< k|v|k- > = X^k) • v<k')

and the corresponding t-matrix element is

< k|t(E)|k' > ^ k h l B W k ' )

where T(E) is the two-particle propagator

(26)

17)

25)
Amado has illustrated the use of a separable two-body interaction when

three-particles are considered. In Fig 2a an arbitrary three-body amplitude

(two-body scattering while the third is going by) is shown and Fig 2b

shows the corresponding diagram when a separable two-body interaction is

used. At the dashed line the three-body state has two-body kinematics. What

enters into the three-body amplitudes are not the potentials but the off-

shell t-matrix elements as indicated in section 3.2 and these are not simply

related to the potential form. If a two-body bound state, virtual state or

resonance pole dominates the two-body amplitude the separable form is an

excellent approximation to that amplitude. This can for example be seen in

Fig 2 where the separable form makes the scattering to through a particle-

like (quasi particle) intermediate state for which T(E) is the propagator.

However, at first sight it might seem unjustified to use a separable poten-

tial since for large distances field theoretical potentials are local and
3)

nonseparable. Lovelace argued that one of the most important results of

the Faddeev theory is that it justifies the use of separable potentials

and that the condition for it to be valid is that the two-particle subsys-

tem shall be dominated by a limited number of bound states and resonances.

This should be well fulfilled for the p + d system with s-wave scattering

in the S » 1 state with a pole at the binding energy of the deuteron and

in the S = 0 state with virtual states near zero energy in the T • 1 iso-

spin triplet (nnj np; pp).

Ebenhoh used spin dependent s-wave Yamaguchi two-body forces

V(p\ p) = Xg(p')g(p) (27)

26)
where g(p) is the Yamaguchi form factor

N
g(p) 2 o

P + B

(28)



and H is a normalisation constant given in ref

The propagator T(E) is

T(E) • kJ!?vr (29)

vhere J is a Jost function. The parameters k and B are connected with the

scattering length (a) and the effective range (r ) through the relations

(k + B)2(ro8 - 1) - 2B
2

(K - |
(30)

The effective range parameters used in the calculations are given in Table

I. The two-body forces used are rather uncomplicated. Especially the lack

of Coulomb forces is an important limitation as vill be shown belov. Also

hard cores, tensor forces and higher partial vaves are important to include

in the calculation. At 10 MeV, i.e. the energy of the present data* the

last three features of the tvo-body interaction should not be too important.



3.1» THE EBENHÖH PROGRAMME

1?)
Ebenhdh has given a detailed description of his calculations. After

formulating the integral equations for the breakup amplitude» he consider-

ed the spin algebra and the necessary antisyimnetrisation. The three par-

ticle states have the form (p., q., o., S, T, Mg, H_>. As only s-vave

interactions are involved the total spin S is not coupled to the angular

momentum. The total isospin T is also fixed to T = 5 (T, * O). O. •

(S., T.) denotes the spin-isospin state of pair i. Only interactions in

the cases (1;O) and (O;1) are assumed.

T ((S. T. *** t h e a BP 1i t u d e B which form the total amplitude

/ ' 5{T(li)(i) + J(T(O,1)(2)

(" T(o,D(3))

sing; S trip; ip; S « f

Here sing and trip refer to the spin in the fiirt pair.

Finally the correlation cross section is

dfi.

where Q is the phase space factor

Now partial wave decomposition of T, .(q.) gives
\8.,i.; ii' i

where ©i is the production angle of subsystem i relative the direction of

the deuteron in the total center-of-mass.
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- t is evaluated from an integral equation of one continuous

variable q and the amplitude is parameterized with six parameters (a-)

i' 1 + akq

where Q, is a LeGendre function of the second kind and s is square of the

energy in the total center-of-aass system. This is done by the code EBEH-

HQEH1. For a chosen laboratory energy of the incident proton the program

produces 2k paramters »j (i * 1,6) corresponding to

t - 0.5 and S • % (onp - 1); S - \ (onp = 0,1 and a 5 5 » l)

This code takes about 20 minutes to run on the Uppsala IBM 370/155 computer.

These amplitudes are used as inputs in a second code (EBEHH0EH2) which cal-

culates the correlation cross section for a chosen kinenatical situation.

The only necessary »edification vas a change of the subroutine calculating

the kinenatics in order to make the program calculate noncoplanar correla-

tions.
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3.5 INTEBPRETATK» OF THE BREAKUP AMPLITUDE

The structure of the integral equations for the breakup amplitudes indi-

cates that the breakup process can be looked upon as a two-step process»

involving first rearrangement scattering (or production) and then final

pair breakup (Fig 3 ) . The Faddeev component vith the smallest relative

momentum is the most important one. However, Amado showed that only the

sum of all three Faddeev components gives a peak with a shape close to the

Migdal-Watson shape. Indeed, Ebenhöh later demonstrated that the pre-

dicted shapes from the SPM-model and Migdal-Watson model of an n-d breakup

experiment at T • 18.1» MeV only differed slightly provided the same n-n

scattering lengths were used.

The second characteristic feature of breakup spectra is the peak corre-

sponding to low spectator energy. Ebenhöh explained this peak as due to a

peaking in one of the rearrangement amplitudes. These off-shell amplitudes

are backward peaked in terms of the pair-production angle as defined in

section 3.U.
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k. RESULTS AND CONCLUSIONS

The present comparisons with SPM calculations cover the following coplanar

spectra measured at Uppsala

Symmetric spectra (6 « 61. 20°, 25°, 35° and

Asymmetric spectra (8^ « 20°, 25° 35 , l»5°, 50° and 55°i

e. 30°)

2.

These spectra were obtained with rather poor statist ics and
have been reported

Symmetric spectra (6 = 8i

Asymmetric spectra (8^ • U3.fc°, 75.fc° and 6_ • 30.0°)
These spectra were obtained with better s tat is t ical accuracy
and have not been reported before.

30.0°; 36.7°)

All these spectra are shown in Fig U-18 together with the SPM calculations.

Throughout this work no adjustment in absolute magnitude of either experi-

mental data or theory has been made unless explicitly specified. The agree-

ment is very good in most cases. However, there are certain systematic

deviations. For low relative energy of the two protons in the final state

the difference in absolute magnitude is worse. However, for large relative

energies, i.e. large opening angle between the detectors, the agreement in

absolute magnitude is good over the whole spectrum. It should be noted that

the shifts in the asymmetric spectra between the MSIA (modified simple

impulse approximation) fits and the experimental distributions reported in

ref 11 is reproduced by the SPM calculations. In Fig 10 an MSIA fit to

data between the arrows is given for comparison (dashed line).

In Figs 19-27 the noncoplanar data from ref 13 are compared with the SPM

calculations. The agreement or disagreement is almost the same all over the

range of angles between the scattering planes. This is clearly shown in Fig

28 where the theoretical and experimental peak cross sections are compared.

The dashed line is a least square fit of a »normalized SPM distribution

(N • 0.86). As expected from the analysis of the coplanar spectra, the agree-

ment in absolute magnitude at the maximum of the peak is worse for the lar-

gest angles between the scattering planes where the relative PP energy is

smaller than for the coplanar spectrum. As pointed out in ref 13 the peak

for large angles between the scattering planes cannot be explained by a

peaking in the production amplitude for a pp pair17)

L
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A closer look at the different amplitudes contributing in the SPM shows

that it is the amplitude corresponding to final state interaction in the

pp pair which causes the peaking for large angles between the scattering

planes.

In Fig 29 a comparison between data obtained at Rice University at T »

12.5 MeV for pp and pn coplanar symmetric correlations of the d(p,2p)n

reaction and SPM predictions is made. The experimental peak cross sections

of ref 15 corresponding to minimum neutron energy are compared with the

corresponding SPM values. Where there was no peak in either the theoretical

or experimental distribution the cross section corresponding to minimum

neutron energy was taken. It should be kept in mind that the Rice correla-

tion cross sections were measured relative the elastic pd data of A C
20) 21)

Wilson et al and are probably some percent to small also at 12.5 MeV.

From this comparison, one infers that in the pn case the agreeisent is quite

good over the whole angular region but in the pp case the same trend which

could be observed in the comparison with the Uppsala symmetric coplanar

data at T =10.0 MeV is found also here. The disagreement is worse for

small opening angles between the detectors, i.e. at low pp relative energy

in the final state at the point corresponding to minimum neutron energy

where the comparison is made. The experimental points corresponding to the

smallest opening angle (30°) are probably wrong. The excellent agreement

for the rest of the pn distribution makes it unlikely that this point

should disagree so drastically and because of the monitor method used

(the spectra were accumulated simultar.cs];) the corresponding pp value is

probably also wrong.

There is also a "micro" structure in the experimental distributions which

might be due the cross section normalization procedure used. One of the

coincidence detectors was used as monitor detector. There is an appreciable

background in the single spectra at the position corresponding to protons

elastically scattered from deuterium at small scattering angles. This is
12

due to the fast rising p-C elastic cross section for small scattering

angles. This might also be the reason for the strange experimental values

for eo + e, » 30.0°.

The neglect of Coulomb forces in the calculations should give deviations

between the SPM calculations and the experimental data. Most of the data

used in the comparisons were taken to enhance the "quasifree11 pp mechanism.



The experimental peak corresponding to minimum neutron energy is according

to Ebenhoh due to a peaking in the off-shell rearrangement amplitude in

the same kinematic region. Consequently no direct relationship between the

pp force used and the calculated peak cross sections can be expected. Never-

theless, an attempt to make a rough estimate of the influence of Coulomb

forces vas made in the following way. Fig 30 shows the pp cross section,

calculated with the effective range formalism without Coulomb forces, used

in the SFM calculation fiasuea line) ana the s-wave pp cross section

i 6,cm
PP

90°) with Coulomb forces included ( s o l i d l i n e ) . The experimental

points were taken from refs 27 and 28. As can be seen the pp cross sect i or

used in the SPH calculat ions i s smaller than the actual values above ~ 3 o

NeV protoi. energy. Using the e f f e c t i v e range formalism without Coulomb

forces the e f f e c t i v e range parameters (a and r ) were changed so that

the cross sec t ions calculated matched the 90° center-of-mass pp cross s e c -

t i on at 3 .0 and 7 .0 NeV proton energy. The re su l t was the d-jhed and dotted

l i n e in Fig 30 (a * 6 .37 fm and r « 1.37 fm). These parameters were

then used for the pp force i n the SPM ca lcu la t ions . The resu l t s are shown

i n Figs 1». 6 and 9 as dashed l i n e s .

e,The agreement is worse except for the spectrum corresponding to 9,

20.0° (<P_ = 0° and <P- - I6o MFig k). This last change might be related to

the fact that for lover energies the pp cross section calculated vith the

"new" effective range parameters is smaller than the cross section calcula-

ted vith the old parameters. This rough way of introducing Coulomb effects

would indicate that the inclusion of Coulomb forces makes the disagreement

worse between experiment and theory. However, due to the simplicity of the

approach, it might be an example ef what Lovelace has expressed "The

three-body system is far too treacherous to be delt with by physical in-

tuition". It illustrates anyhow the importance of including Coulomb forces

in a correct way in the SPM calculations. This is unavoidable if any reli-

able a test of the dynamical three-nucleon calculations is to be made.

The neutron induced breakup reaction is not very useful for this purpose

becasuse the nn scattering length is not veil known and the experiments

are extremely difficult to make vith sufficient accuracy. It will take some time

before a calculation including Coulomb forces, hard core effects, tensor

forces and higher partial waves in the nucleon-nucleon interactions used

vill be perforjwd. A detailed experinental investigation of polarization

effects in the d(p,2p)n reaction might give information of the importance

of the last two effect*.
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FIGURE CAPTIONS

Fig 1 The r o t a t i n g t a r g e t holder used in the experiment.

Fig 2 Tvo-particle scattering with a third particle passing unaffected.

a. with an arbitrary amplitude.

b. with a separable amplitude.

Fig 3 Diagramatic visualization of the last-pair interaction aodel.

Figs fc~9 Coplanar symmetric correlation spectra for T * 10.0 MeV

and the corresponding SPM distributions (solid line). The dashed

lines in Figs It, 6 and 9 correspond to SPM with a modified pp

interaction.

Figs 10-18 Coplanar asymmetric correlation spectra for T = 10.0 MeV and

the corresponding SPM distributions (solid line).

Figs 19-27 Noncoplanar symmetric correlation spectra for

Fig 28

10.0 MeV

and the corresponding 3PM distributions {solid line).

Experimental peak cross sections for noncoplanar correlations

together with a curve calculated with the SPM code (solid line)

and the latter distribution renormalized with a factor 0.86

(dashed line) as a function of the angle between the scattering

planes. The normalization constant was determined by a least-

squares procedure.

Fig 29 Experimental peak cross sections for coplanar symmetric pp and pn

correlations at 12.5 MeV (Rice data) as a function of the polar

angle of one of the detectors. The solid line is the SPM code

pp distribution and the dashed one is the corresponding .curve

for pn correlations.

Fig 30 The center-of-mass pp cross section. The solid line is the s-vave

pp cross section (0p£ - 90°) vith Coulomb forces included. Thecm
dashed line the pp cross section calculated with the effective

range formalism without Coulomb forces (a • -7.76 fm ; r •
PP o

2.86 fm) and used in the SPM calculations. The dashed and dotted
line is the corresponding cross section for (a • -6.37 fta ;

PP
r" • 1«37 fm). The experimental points are taken from refs 27

and 28.
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Table I Effective range parameters used in the calculations

Nucleon
pair

np

PP
np

Spin

0

0

1

Isospin

1

1

0

Scattering
length
(fa)

-23.68

- 7.76

5.U16

Effective
renge
(fm)

2.67

2.86

1.75

Table II Summery of cutoff radii extracted from the Uppsala measurement
of the d(p,2p)n cross-section for T = 10.0 MeV; 8 , * 0. •
30.0°; <P3 s 0.0° and iph = i80° P

Month - Year
Extracted cut-off
radius (fm) Remarks

Ji» -72

April -72

Sept -72

Dec -72

Jan -73

5.32 ± 0.06

5.63 ± 0.08

5.57 ± 0.05

5-51» ± 0.06

5-52 + 0.05

Coplanar correlations

Roncoplanar correlations

Excitation function

Check of absolute scale
1b)Excitation function

Weighted mean value 5.51 ± 0.03
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