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RELATIONSHIP BETWEEN THE SPHERICAL SHELL MODEL
AND THE DEFORMED HARTREE-FOCK MODEL FOR NUCLEI

M. HARVEY

Abstract

A definition of the spherical shell model

Hamiltonian is given for nuclei in which the Hartree-Fock

field is deformed; this definition is consistent with the

usual phenomenological parametrization. Calculated

single particle energies in an individual particle model

and in a shell model with residual interaction are pre-

sented. A new approach to describing deformation effects

in the spherical shell model is presented in terms of the

deformation of the Hartree-Fock field. A comparison is

shown between the results of projected unrestricted Har-

tree-Fock calculations and the new deformation-renorir.alized

spherical shell model. A "shape-dependent" effective

interaction for the spherical shell model is suggested.
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Relation entre le modèle a couché sphérique et
le modèle Hartree-Fock déforme, pour les noyaux*

M. Harvey

*Comttiunication sol l ic i tée pour le Congrès de l'Association
canadienne des physiciens ayant eu lieu a Montréal du
18 au 21 juin 1973.

Résumé

On donne une définition du modèle Hamiltonien

a couche sphérique pour les noyaux où le champ Hartree-

Fock est déformé; cette définition est en accord avec

la paramétrisatxon phénoménologique habituelle. On

présente les énergies calculées des particules simples

dans un modèle pour particule individuelle et dans un

modèle à couche avec interaction résiduelle. On présente

une nouvelle façon d'aborder la description des effets

de la déformation dans le modèle à couche sphërique,

laquelle est en fonction de la déformation du champ

Hartree-Fock. On compare les résultats de calculs

Hartree-Fock non restreints et projetés et le nouveau

modèle a ccuche sphérique à déformation renormalisée.

On suggère une interaction efficace "dépendant de la

forme" pour le modèle a couche sphërique.
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The spherical shell model for nuclei was

proposed over twenty years ago, yet, despite its longevity,

the foundations of the model are still under critical discus-

sion. In formulating the model it is assumed that particles

move in an average spherical single particle potential gener-

ated, self-consistently, by all particles in the system. When the

full Hartree-Fock (H-F) field calculation is actually performed,

however,it is found that, for most nuclei, the average field

is deformed and not spherical. The existence of this deformed

field has led to the so-called deformed Hartree-Fock model .

The spherical shell model continues to be used , however,and

we find in the literature calculations for the same nucleus

done with both the i ^erical and deformed field models. This

talk is concerned with the compatability of these two types of

calculations. We shall see that the two models are indeed

compatible and, indeed,we shall see, through an understanding

of the relationship between the two models, how each enriches our

understanding of the other.

The first concern is how to formally define

the spherical field when the H-F field is deformed. In the

phenomenological approach ' we consider a description of the

field in terms of a harmonic oscillator potential perhaps,

and choose the parameters such that the eigensolutions have

the observed mean square radius. Thus we choose TKUO ^ 41 A

What does the deformed H-F calculation have to say about the
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mean square radius? In Figure 1 we show the results of Lee
4\ 5)

& Cusson on light nuclei using the Saumer-Pearson G-

matrix #2. Although theory and experiment do not agree in

places on a fine scale, it is clear that the A ' dependence

of the root mean square radius is exhibited- How does the

mean-square-radius (MSR) arise in a deformed

H-F calculation? It can be written in the following form:

MSR = <X6|R
2|X6> R2 = j£ I r i

2

i

~ " cn3 6 a 3 6 ot3
a3

~ a3 Sex pa 6 a 3 fi
a 3

where pn is the density matrix for the DHF state X., and a,3
plot o

is a general single particle representation. If the repre-

sentation has angular momentum j a good quantum number, then

we can write

MSR = I
ab

with p the spherical density distribution.

What determines the spherical density distribu-

tion in a deformed H-F procedure? The H-F field as I have

already pointed out is 'in general deformed but it can always

be expanded in terms of spherical tensors.
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hg = T + U

= T + U° + I VX = h Q + I U
X

The spherical density distribution p° arises largely from the

structure of the spherical part of the completely deformed

field. This has been verified from the Hartree-Fock results

of Lee & Cusson by showing that the diagonalization of p°

also largely diagonalizes h . The verification was done with

the aid of Paul Lee. This immediately suggests that we should

define the spherical potential to be just the spherical part

of the fully deformed potential. With knowledge of the full

H-F potential we can extract the eigensolutions of h . This

extraction has also been done for sd-shell nuclei by Paul Lee

from the results of the EVALIN Hartree-Fock Program using

the Saunier-Pearson potential. We show in Figure 2 how these

energies change as we proceed throughout the sd shell. I

don't want to comment too much on the accuracy of these results

in this talk but would rather concentrate on the principle.

I note however that the Si_ orbit is below the d5 .^ at 0

and Ne probably indicating a deficiency in the potential.

We do see the raising of this level throughout the shell in

39

agreement with the experimental data on Ca. The numbers on

the levels show the occupancy of each spherical level in the

H-F state (to get the average number of particles in each level

one should multiply the occupancy number by 2j+l).
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Having now defined the spherical shell model

Hamiltonian,let us examine the usual spherical shell model

calculation. In this approach we write the Hamiltonian

H = h + V (N.B.V EH-h - n o more and no less)

= G-U°.

It is usual to consider the residual interaction taken in the

space of a few valence shells. To examine the structure of

V it is necessary to consider the actual structure of U
1C D

Since p° % 1 for core orbits we can write

Ua3 = ^ Gac3c + I Gavgv
pvv w h e r e c a n d v i n d i c a t e core and

c v valence orbits respectively.

= u°R + 6°

This has divided the total spherical field into the contribution

from the core and the contribution from the valence orbits. Now

the matri.x elements of the (bare) two-body potential G for shell

model states having configuration of a closed shell with a

few particles in a few valence orbitals has the structure

<G> *n H G , , + G + h G .
cc'cc 1 vcvc vv•vv'
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where summations over core (c) and valence (v) orbitals are

implied. The factors of k are included to avoid double

counting. Thus

<G - U°> ^ ^ G . , + G + k G .
cc'cc' vcvc 2 vv'vv'

- G - G - G °
cc'cc1 vcvc vv'vv* v'v'

= h

We see then that if we use the single particle energies of h°

in a shell model calculation then we have to subtract from the

matrix elements of the (bare) residual interaction the contribu-

tion that the valence orbits make to the average field.

Alternatively one can subtract U° from the single particle

energies and take the single particle energies as the eigen-

solutions of T+U°; this latter approach is then consistent with

the standard shell model calculation. We see then that we have

to consider the complete potential U° in order to be able to get

spherical wave functions that have the correct MS"R but only that

part of it that represents the contribution from a core in

order to define the single particle energies that cro into the

spherical shell model (with residual interaction).

Paul Lee has also extracted the single particle

energies of iP^T+U0 from the H-F code. We find that the energy

differences e . - e (where the p, level represents the Fermi

energy) are linearly dependent on the fico of the basis states
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used in the H-F codet This should not be and indicates that

the representation of H-F states in terms of the

expansion over 5 oscillator wells (as it is in the EVALIN Pro-

gram) is not really sufficient for the extraction of single

particle energies. We have tried to correct this by the

technique

(E. - e ) = — 3 _ _ — E ^ _ calc x 41 A~1/3 .
1 Pjs corrected ™°basis

The extracted spin-orbit parameter x and I parameter y for sd-

orbitals is shown in Fig. 3. The spin orbit parameter has an

A dependence which, since we introduced this into the cor-

rected values* suggests that we should be carefu] in taking a

2
literal interpretation of the results. The I strength does

not have any smooth dependence. Whereas the absolute numbers

are probably not correct, they do indicate that we should

expect a change in the single particle energies throughout a

shell and it is not sufficient to simply assume the energies

observed at the beginning of the shell as for example in 0.

So much for the single particle potential and

single particle energies. What about the rest of the shell

modal calculations? It is well known that it is not sufficient

to diagonalize the bare effective interaction within the space

of a few valence orbits. In the first place the eigenfunctions

are very much governed by their spherical structure obtained

t N.B. the total energies do not have suah a dependence.
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from hQ. The consequence of this is that such data as enhance-

ments to E2 transitions can be underestimated by often a fac-

tor of 4. The correction to the electric multipole matrix

elements is usually put into the calculation phenomenologically

with the use of effective additional charges on both valence

shell neutrons and protons. These effective charges are

supposed to derive from the fact that the valence particles

polarize the core - in other words they attempt to correct

the spherical shell model for the fact that the average field

is not spherical but happens to be deformed. The correspond-

ing corrections have also to be included in the effective

interaction. Various approximations have been suggested ' for

how the so called "core-polarization" corrections should be

included in the spherical shell model using bubble diagrams,

TDA and RPA and higher-order corrections. I want to consider

here a much simpler approach.

We recall that in defining the spherical shell

model Hamiltonian we first constructed the fully deformed HF

field

h. = hrt + I U X

o o *•

but up till now have only used the spherical part of this field.

It is the non-scalar tensors, however, that contain all the know-

ledge there is to know about deformation - they are, by

definition, the deformation terms. It is clearly desirable to
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somehow make use of these operators in trying to describe the

effects of deformation in the spherical shell model.

We consider the following auxiliary Hamiltonian

H = hQ+ I — T (* exchange) .
< U o >

The auxiliary Hamiltonian has been constructed such that the

Hartree procedure, or with the special exchange term,

the II—F procedure, will lead exactly to the sinale particle

field hr. In other words both H and H, have the same single

particle fields. If we now write

H = HA + Vres (Vres = ^ V

we see that the new residual interaction does not contribute

at all towards the field. If we are interested in properties

of H that derive from the field then these should also be

properties of HA. In the first approximation then it makes

sense to study the properties of HA.

Note that this approach is completely parallel

to that of the early definition of the spherical shell model

Then we wrote

H = ho + Vres <V
res

 = H ~ V

and in the first instance ignored V to derive properties

of the nucleus in terms of the properties of the single

particle spherical Hamiltonian hQ. In this way predictions
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of ground state spins and parities were determined together

with such estimates as the Schmidt values for magnetic moments

and the Weisskopf estimates for electromagnetic transitions. We

would like to learn now how much of the spectrum we can under-

stand with the auxiliary Hamiltonian H which incorporates

all parts of the average field (and not just the spherical

part as does h ).

Just as it is convenient to consider a simple

form for h in terms of the spherical harmonic oscillator, so

is it convenient to consider a simple form for hr in terms of
o

the deformed harmonic oscillator:

Tl r „ £
l6 ~ ~2in ̂  i

i

5 ho + Bo Qo + B2 (Q2 + Q-2>•

The deformed oscillator can be written in terms of a spherical

oscillator with quadrupole deforming terms. We shall restrict

ourselves to axially symmetric cases (B2 = 0). The auxiliary

Hamiltonian then takes the form

H = h Q + xtiwo I Qi* Qj (* exchange)

with x a strength constant and the exchange mixture chosen, for

even even nuclei, such that
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3A13 + 3A31 = A 1 1 + 9A33 = 8

where <TS|exchange|TS> = A
2 T + 1' 2 s + 1.

With these conditions the II-F procedure on H A leads

exactly to the deformed oscillator field.

What are the properties of H ? There are now

two ways of proceeding. We could take the deformed H-F

approach and project states of angular momentum 41 from the

H-F state Xr (i.e. lowest solution to the deformed harmonic
0

oscillator). The energy spectrum can then be estimated by

calculating the expectation value (I^JH \\\i ) . In Figure 4 I

show (by the dots) the result of such a calculation in Ne

for various strengths of the Q.Q potential. These calcula-

tions were done by Pierre Amiot using the EVALIN Hartree-Fock

program of Lee & Cusson . Let us consider now the spherical

shell model approach. In the first approximation we might
consider diagonalizing the Q.Q potential just within the

space of configurations having a closed 0 core with four

particles in the sd-shell. This calculation is very simple

because, as Elliott has shown, the Q.Q. potential within

the space of a major oscillator shell can be written

v 1 v
2, Q,'Q-; ^ 7 ), QJ'Q- - (one-body terms)x j ^ i 3

2 (C - 3L ) - (one-body terms)
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where C is the Casimir operator of SU3 and L is the orbital

angular momentum. The coefficient of L^ is therefore -— xfiio

from which we can easily deduce the spectrum if we ignore the

effects of the single particle terms. The results of such a

calculation are shown by the dashed lines in Figure 4. Clearly

the energy dependence is linear in x. Clearly also there is

disagreement with the projected H-F result. What we should

consider in the shell model calculation, however, is not the

"bare" Q.Q. potential but a renormalized potential corrected

for the polarization of the field. The general procedure for

determining the renormalized interaction has been given by

9)Bloch & Horowitz and the particular renormalization of a

Q.Q potential given by Harvey . If v,^ is the effective in-

teraction to be used in a truncated space #1 and V is the fun-

damental (bare) potential defined for the full space #1+2 then

vll = Vll + V12 r V21'

The second term provides the correction to V in the space #1

for neglect of space #2 in terms of a complicated "coupling"

operator^' v . If V = Q.Q and we consider truncation to a

major oscillator shell then

v n = Q 1 1 ^ 1 1 + 2Q1L-Q12 r v 2 1 +

where Q 1 1 is the part of the quadrupole operator that trans-

forms within an oscillator shell and Q 1 2 is the part that
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transforms out of an oscillator shell (actually coupling

shells differing by 2fiw). The factor of 2 arises because

12
of the two quadrupole operators. To estimate 2Q Fv^i we

consider the effective quadrupole operator Q within an

oscillator shell that has the same matrix elements for spher-

ical states(s) as the bare quadrupole operator has for de-

9)formed orbits (6). Again the Bloch-Horowitz procedure

tells us

Q 1 1 = Q 1 1 + 2 Q 1 2 r v 2 1 + —

11 A
and <Q X > s = <Q>6 = ^ <Q>S

We write

with an enhancement factor a. For an N=Z even-even nucleus

a = 1+2^ where n = effective charge. Now it is seen that

12 11
20 1^21 = (a-l)Q . Thus the effective residual interaction

can be replaced by

= a

Thus, in the spherical shell model, the effective

interaction we should use is the quadrupole-quadrupole inter-

action renormalized by the factor a = <Q>r/<0> . Since the
o s

deformation of the well depends on the strength x, this
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renormalization factor is also x-dependent. The results

of the renormalized shell model calculation for the spectrum

of Ne are shown in Figure 4 by the solid curves and we see

a remarkable agreement now between these renormalized spheri-

cal shell model results and the unrestricted deformed H-F

results.

[As a historical note I should explain that

the renormalized shell model results were produced first since

they involve essentially back-of-the-envelope type calculations,

It was with extreme gratification that, when the deformed

H-F calculations came out of the 66 0 0 computer, we found

that they had this remarkable agreement.]

What is a realistic value for x? Mottelson

pointed out some time ago that we should consider a field

having the property that the deformation of the field is

identical to the deformation of the lowest eigensolution in

the field. The argument being that the field is being gen-

erated by the particles and we should expect to find a field

only where there are particles. If we select this "shape-

consistent" deformed oscillator as a realistic estimate of

the average field then we find the corresponding Q.Q strength

at x 1) -3.79 x 10"3 for 2 0Ne. We note now that the spec-
s. c.

trum at this shape-consistent point is very similar to that

from the full H-F calculation of Lee & Cusson using a G-

matrix; in other words this use of an auxiliary Hamiltonian
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appears to have extracted the essential features of the more

complete calculation.

For the "shape consistent" harmonic oscillator,

the enhancement factor a ^ 2. In terms of the effective charge

formalism (a = l+2n) this implies the use of an effective

charge n of h- Thus we see that the polarisation corrections

we are putting into the spherical shell model for the "realistic"

situation are, demonstrable, consistent with our use of an

effective charge of about h.

You will note that there is a discrepancy

between the projected and renormalized spherical shell model

result for x > x ; why is this? In Figure 5 we show the B-
S • O •

deformation of the H-F solution as a function of the 0.0

strength x. Since the H-F potential has the deformed

oscillator structure for any x we can solve the H-F

problem exactly. The exact answer for the g-deformation is

shown by the solid curve in Figure 5 . The crosses show the

results from the EVALIN program. Clearly we see that the

representation of the H-F orbits in terms of an

expansion over five major spherical oscillator shells (as they

are in the EVALIN code) is not adequate beyond x _ • Even

atx the error in the $-deformation is

In Figure 6 I show the results of calculations

with the auxiliary Hamiltonian Ha for Si. In this nucleus

the H-F procedure shows two low lying solutions one
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oblate and the other prolate. Again we find that in both cases

the projected H-F results and the renormalized spherical shell

model results agree remarkably well. Again we find reasonable

agreement between the spectra for the shape-consistent strengths

and those from the (unpublished) H-F calculations of

Lee & Cusson using a G-matrix effective interaction; indeed

the agreement between the theories is better than the agreement

between theory and experiment. We can now perhaps say that

field effects are understood and the discrepancy with experiment

is due to the ignored (non-field producing) residual interaction

V which (hopefully) can be treated in the spherical shell
JL 6 S

model by matrix diagonalisation. But this is another story.

Of particular interest is to note that the shape

consistent strengths in the prolate and oblate solutions are

not the same,i.e.,the auxiliary Hamiltonians are not the same;

i.e., the renormalization in the spherical shell model should

depend on the shape of the field. How can such an effect be

included in the spherical shell model? In general it would

be very difficult to include such an effect - but there is a

possibility if one uses an SU3 basis. The SU3 states are the

remnants in the spherical shell model space of the fully

deformed states, the (Au) numbers of the SU3 representations

corresponding to the $y °f the deformed state. If we are to

renormalize with respect to deformation,then the effective

interaction will have a (Ay) dependence. What information do
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we have that such a dependence is actually needed in a spheri-

cal shell model calculation? In Figure 7 I show the recent

12)
shell model results of the University of Michigan group

25(Draayer & Hecht) for the low energy spectrum of Mg. They

noted that if they use a Kuo G-matrix with a standard ((Ay)

independent) renormalization then the calculated spectrum

doesn't look at all like the calculated spectrum (see spectrum

labelled KB(MS)). On the other hand if they allow themselves

the freedom of a (Ay) dependence (spectra labelled with +R)

then they are able to reorder states in the spectrum such

that the experimental spectrum is more understandable. They

also find that the properties of their states (Le., ground state

quadrupole moment and the gross features of E2 and Ml transi-

tions) are in better agreement with the experimental data.

These results are very preliminary and it is

too early to say whether a shape dependent renormalization is

25really necessary to explain the data in Mg / but in view

of our earlier calculations it is indeed a fascinating - and

provocative - possibility.
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