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ABSTRACT 

An approach to making reactor sensitivity studies and reactor param-
eter uncertainty analysis using transport theory is developed. Sensitiv-
ity functions based on variational principles are reviewed and compared 
with an alternate approach using generalized perturbation theory. The 
computational implementation of the method using transport codes is also 
discussed. Finally, the use of cross-section error files in conjunction 
with sensitivity coefficients in estimating uncertainties in reactor 
parameters is described. 
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I. INTRODUCTION 

This technical report is intended to be an introduction to reac-
tor sensitivity theory as it has evolved from the ongoing program in 
shielding sensitivity analysis at ORNL. In this new effort we are at-
tempting to determine what cross sections are most important in calculat-
ing reactor physics parameters for fast reactors and what effect uncer-
tainties in the basic nuclear data have on the performance of such reactor 
systems. The theoretical developments follow closely methods based on 
diffusion theory already applied to reactor sensitivity studies by Staceyl*2 

using a variational approach and Gandini3 using generalized perturbation 
theory. Both of these methods result in successful formalisms for pre-
dicting cnanges in arbitrary reactor parameters based on system perturba-
tions. Our own efforts in shielding analysis1*"7 have stressed both analytic 
and predictive aspects of sensitivity theory and the use of transport 
calculations. This approach is embodied in the code SWANLAKE.8 Such 
techniques are continued with the present effort in reactor analysis. 
Adopting this philosophy means that physical principles similar to those 
developed by Usachev9 and Lewins20 for interpreting generalized adjoint 
fluxes as importance functions for particular reactor parameters will be 
used as the basis for analytic aspects of our studies and a middle road 
between variational methods and generalized perturbation theory will be 
used for the predictive phase of the work. 

The extension of transport theory cal-*ulational methods, specifically 
tnose employed in ANISN,11 to the reactor field pose new problems, and at 
least an initial attempt at overcoming some of the more difficult ones is 
presented in this memorandum. In this phase of the effort, additional 
development work is indicated. The approach at present has been to 
tneoretically justify use of methods which differ as little as possible 
from those which are already in current use in the shielding program and 
have a clear history of proven value. 

One of the most important aspects of the program will be to attempt to 
estimate reasonable uncertainties in reactor parameters based on uncer-
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tainties in microscopic cross-section data. Only a preliminary introduc-
tion to the use of cross-section error files and sensitivity coefficients 
are discussed here since two other papers will address this area in more 
detail.12,13 The implementation of this phase of the work will certainly 
evolve as our experience with uncertainty estimation procedures increases. 
It is only the question of the character of the sensitivity coefficients, 
specifically the need for coefficients with linear operators, and their 
use in conjunction with predicting variances in reactor parameters that 
will be discussed in this work. 

II. REACTOR SENSITIVITY THEORY 

A. Definitions 

The developments in this section are designed to introduce the defin-
ing equations for the sensitivity functions needed to implement a sensitiv-
ity study. In accordance with our past approach to this problem, we will 
try to develop bilinear functions suitable for analysis and predic-
tion of the form: 

\ ( X ) = M>(O (1) 

where is an adjoint flux; L a general linear operator; $(£) a flux; 
£ a point in phase space defined by position r, energy E, and solid angle 

and R ^ T ) the general sensitivity function for operator L whose appli-
cability has been discussed in previous papers.1**6 

For reactor applications, the governing balance equation for neutrons 
is the homogeneous Boltzmann equation, noted symbolically as; 

A<f> - XB<J> = 0 (2) 

where A is the BoJtzmann operator for leakage and scattering processes; 
B is the fission source operator and \ is the eigenvalue related to the 
multiplication constant for the system by X • k 1. An alternate and also 
useful form of Eq. (2) is: 



P0 = (A - XB)4> = 0 (3) 

The homogeneous adjoint equation for this system is given similarly by: 

where A* and B* are the adjoint operators of A and B, respectively, and 
<fi* is the adjoint flux. The eigenvalue X in the forward and adjoint equa-
tions is the same since the eigensolutions to Eq. (2) are biorthonormal to 
those in Eq. (4). The operator A* and B* satisfy the conventional defin-
ing relationship for an adjoint operator: 

where and ij/ are arbitrary functions and the braces <> denote an inte-
gration over all phase space £. Vanishing boundary terms for the leakage 
operator included in A are implied in using Eq. (5). 

In deriving a useful sensitivity function, the result of a calcula-
tion (whose sensitivity is being studied) must be defined. For reactor 
work, the most general result will be a bilinear ratio of the form: 

where 0 and solve Eas. (2) and (4), respectively, and Hj and H2 are 
arbitrary operators. Included in this definition are the defining equa-
tions for reactivity worth, Doppler coefficient, etc. (see Appendix A for 
a summary of the specific forms of R). Also included are simple reaction 
rate ratios where R is not a function of 4>*. That is: 

(A* - XB*)<J>* = 0 (4) 

(5) 

(6) 

(7) 

It should be noted here that reactivity worth is a special case of Eq. (6) 
since the worth definition2 involves the use of (i.e., the perturbed 
flux resulting from a perturbation defined by the worth operator Hi). 



This case is special in that it is necessary to estimate <j>f with <j> in 
order to have a simple analytic expression for R. 

B. Perturbed System and Criticalitv Reset 

In order to assess the sensitivity of R to cross-section data in the same 
manner as was used in the shielding work, it is necessary to be able to define 
analytically the differential rate of change of R with respect to cross~ 
section changes. It is also necessary to have a method for making 
estimate of a finite change in R, 6R, which is a linear function of finite 
changes in the cross section. This is most easily done for reactor applica-
tions with use of a variational principle for estimating the result R in a 
perturbed system. The method of defining variational principles using 
Lagrange multipliers as suggested by Pomeraning14 and Stacey1 will be 
employed here. The major difference in our approach, however, will be in 
the definition of the equations for the perturbed system, Our approach in 
this regard will be consistent with that of Gandini3 and the proponents of 
generalized perturbation theory. The basic reason for choosing this middle 
road is due to the nonlinear nature of Stacey's resultiiu: variational 
principle, which is incompatible with our linearity requirements in uncer-
tainty analysis (to be discussed later). We choose, however, to pursue 
Stacey's approach of deriving sensitivity functions based on varia-
tional methods because of the relative simplicity of the derivations and 
the fact that they include important effects which can be overlooked 
without careful application of the generalized perturbation approach. 

Thus we define a perturbed system (resulting from cross-section 
changes) in line with the Gandini approach, as follows: 

where, 

A'<f>r - X B V 0 ( 8) 

A' = A + <5A (9) 
B* = B + 5B 
(J)1 = <J) + 6<j> 
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For comparison purposes, Stacey's perturbed equation is: 

A V - A ' B V » (10) 

The major difference between Eqs. (8) and (10) is the fact that Stacey uses 
the perturbed eigenvalue X1 and Gandini uses the unperturbed value A. 
Implied in both of these approaches is the controversy of how to restore 
a system to critical after a perturbation has been introduced into it. 
The fact that the reactor system must be restored to critical is a physical 
fact and not subject to debate from eitfter side. Stacey's approach is 
equivalent to assuming that criticality is restored in a purely mathematical 
way by adjusting v, the average number of neutrons released per fission. 
That is, if we write the fission operator term as follows: 

XB = XvD (11) 

The perturbed system can then be represented by: 

X'B' = X * vD' = Xv'D' ( 1 2 ) 

or equivalently 

X'B*- XB = 6 (XB) Xt5 (vD) (13) 

Thus, the restoration of X' to its original value X can be thought 
of in terms of a change in v from v to v'. Any term which involves a 
6X = X* - X is a result of this method of restoring criticality and can be 
thought of as a 6v. In this regard, Stacey's perturbed equation is just a 
specific case of the one we will use [i.e., Eq. (8)], and a v change is 
possible from our point of view also. In Stacey's approach, however, this 
6v form of the return-to<-critical is built into all his perturbation equa-
tions and proves to be the source of terms nonlinear in the cross-section 
changes. From our point of view and that of Gandini, Eq. (8) is more 
physical. In this case A" and B' imply a physical change in the system 
operators which will maintain criticality. The exact mode of returning 
the system is left unspecified and can be dealt with outside of the 
mathematical formalism that follows because of the linear nature of the 
sensitivity functions which result. A return to critical, however, is 
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implied in the perturbed operators of Eq. (8), and this should not be 
forgotten. 

C. Variational Principle 

Proceeding then, with the derivation of the general sensitivity func-
tion we introduce Pomraning^ variational principle for R, given by: 

Fp(<M*,r,r*s>X) = R(cj>,cJ>*) 
- <J*,(A - XB)<£> - <^r, (A* - AB*)<fr*> 

It should be noted that r and r * act as unspecified Lagrange multipliers 
which introduce, as auxilliary conditions, the equations that <J> and <j>* must 
solve for F^ to be stationary. In this case, the unperturbed equations 
for cj> and cj>* are used. The stationary properties of ,Fp are as follows: 

*p(M*,r,r*,X) = R(<M*) (15) 

<5Fp(<M*,r,r*,x) = o (16) 
/ 

That is, the functional is identically equal to R when the flux estimates 
used in evaluating the functional are solutions to the Boltzmann equation 
and its adjoint, and the first variation of Fp around this stationary 
point is equal to zero. The expression for the first variation Fp de-
termines the equations which r and r * must solve and can be written as 
follows: 

SFp(* **,r,r,x) = 6\ < T * , B « > + <sx < T , B * < J > * > 

~ <̂ <J> > (A* - XB*) r* -

- /<5<f)*,(A - AB)r - -dR < M * ) \ 

\ d<J>* / 

Here, the derivatives of R are functional derivatives defined by 

(17) 

It 

| W W + e6(g -n)1 - R[<Kn)l | dR = lim ) R[<Kn) + e6(C -n)] - R[»(n)l ( (18) 
d<j> £->"0 



8 

Some particular,examples of these derivatives for several reactor param-
eters appear in Appendix B. 

The conditions which must be met for F^ to be stationary are therefore: 

( A . X B ) R - D R I T X * * } < 1 9 ) 

(A* - AB*)r* = d R <t»t*> (20) a<p 

<̂ T,B*<{>*> = 0 (21) 

<T*,B<ĵ > = 0 (22) 

Equations (19) and (20) are the governing equations for the generalized 
functions r and r*, and Eqs. (21) and (22) are the conditions that require 
r* and P, to be orthogonal to the fundamental mode flux and adjoint solutions 
to the critical equations, Eqs. (2) and (4). These latter conditions will 
be discussed more fully in the next section. 

Order of Errors 

One further statement about the properties of F^ is needed before a 
sensitivity function can be derived. The statement involves the conditions 
that insure that the use of Fp to estimate R in a perturbed system involves 
only second-order errors in the functions <?,<{>*,and A. Thus, writing 
the perturbed principle F^ as: 

F
P' (<M*»r,r*x) = R(*,4»*>H1,,H2») 

(23) 
- <T*>(A' - AB')£> - <r,(A*' - AB*')(f>*> 

Here explicit reference is made to a perturbation which results in a change 
in the operators Hj and H2 used in defining R, so that the discussion is 
completely general (note the perturbed principle F^ is stationary about the 
perturbed result Rf). 

Expanding the perturbed operators A1, B1, Hj, H^, we get 



= R O f r ^ * , ^ , ^ ) - < r * , ( A - a b ) £ > - <^r,(A* - a b h * > 

+ R ( < j , , 4 , * , H i ' , H 2 * ) - R ( < J > j H ^ ) ( 2 A ) 

- <V*,(6A - A6B)<£> - <J\(6A* - A6B*)<|>*> 

Since unperturbed fluxes were used, the second and third terms in 
this expression are identically zero and we get: 

Fp
,(<M*,r,r*,x) = r o m * , ^ , ^ ) + { r o m * , ^ 1 , h 2

? ) - R(<f>,<1)*,h1,h2)J 

- < ( r * , ( 6 A ~ A 6 B £ > - < ^ T , ( < 5 A * - A 6 B * ) < J > * > 

The first variation of Eq. (24) is given as: 

( 2 5 ) 

« V = <5Fp 

(26) 

- <6T*,(6A - A5B)$> - <6I\(5A* - A6B*)<|>*^ 

+ 6A <^T*,5B^+ 6A <jr,6B*(^> 

+ <5<|,,(6A* - A6B*)T* [R(*,**.H1\H2') - R(*,**,HltH2)J^ 

+ <6<J>*,(6A - A6B)T - [ROM*,^ 1,*^*) - ROfr,**,^,^)^ 

The 6Fp term in the expression is identical to Eq. (17) and arises 
from variation of the first three terms in Eq. (24). All the other terms 
in Eq. (26) arise from variation of the remaining terms in Eq. (24). 

If the unperturbed fluxes are now used in evaluating Eq. (26), we see 
that 5Fp=0 identically, and all the remaining terms are of second order. 
Thus, an estimation of R*, the perturbed result, can be made using F£, with the 
unperturbed quantities and X, since it is stationary to second order 
about R1. As a result, we can write: 

5R = R' - R « Fp* - Fp + second order errors 

= R ^ ^ * , ^ 1 , ^ ' ) - R O M S H ^ H , , ) (27) 

-<r*,(6A - A6B)<f̂ > - <[r,(5A* - A6B*)<j>*> + second order errors 

Noting that to first order: 
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(28) 

and using an adjoint form of the fourth term in Eq. (27), we can finally 
write: 

Equation (29) is in a form which is now completely compatible with 
the form of tne equations handled in shielding sensitivity studies. In 
particular for predictive applications, SWANLAKE was developed to handle 
integrations of bilinear functions of perturbed operators (i.e., forms 
like <j)>*,6L4>>), and all terms in Eq, (29) are of this form apart from 
the simple normalizations of tne form < J | » * a n d R ( J | > , < { > * ,H 1 SH 2) . For 
che analytic aspect of sensitivity theory, the integrations implied by 
the braces and the actual perturbed operators can be dispensed with 
and differential sensitivity functions of the form given in Eq. (1) can 
be used for a sensitivity analysis of tne entire subset of operators 
whicn make up H^, H2, A, and B. In this instance, tne general operator 
L in Eq. (1) can be replaced by any subset of the operators Hlf H2, A, 
and B in studying any part of Eq. (29) independently. A desirable 
feature of Eq. (29) from the analytic and predictive standpoint is 
that the reset of the system to critical implied in 6A and 6B can be 
studied independently. That is, a completely separate semsitivity 
analysis of the reset perturbation is possible utilizing the same basic 
approach used for cross-section sensitivity studies. 

One additional point is wortn considering briefly at this point before 
a discussion of numerical methods is begun, that being the explicit crit-
icalitv reset wnicn Stacey uses in his variational approach. 

(29) 

E. Criticality Reset 
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Tne form of criticality reset Stacey builds into his variational 
principle appears excplicitly in his derivations as terms of the form 
6A<r*,B * <£> and <r,B•*,$*> . Using Pomfcraning•s variational principle, 
we see that for the functional F p to be stationary, Eqs. (21) and (22) 
must be satisfied. That is, the generalized functions T and r* must be 
orthogonal to the fundamental mode fluxes 4>* and <J>, respectively — r 
and r * cannot contain any fundamental node contamination. The nature of 
the criticality reset terms under these conditions are then of the form 
6A<Cr*,cSB<f>> and 6Â T*,<SB<ĵ  and are thus higher order terms than any of 
the terms retained in the process of deriving Eq. (29). Stacey realizes 
this, but argues in favor of retaining these terms since they are easily 
calculated. From our standpoint these terms are theoretically unjustifi-
able in a derivation wnicn neglects all other nigner order effects and 
computationally tney cnange the proportional nature of the relationship 
existing between <5R and any of the perturbation operators. Tnis linear 
relationship is crucial for tne uncertaint3r analysis phase of a sensitiv-
ity study, and we therefore must neglect such terms. To the same order 
as the other terms in Eq. (29), therefore, we can state that a criticality 
reset involving a change in v as reflected in 6A terms can be neglected. 

III. COMPUTATIONAL IMPLEMENTATION WITH ANISN 

To continue tfte philosophy of using computational tools whicn already 
exist in our current shielding sensitivity program, the calculation of 
all flux quantities will initially make use of the transport code ANISN. 
Further development work will be necessary to remove any limitations 
imposed by this cnoice. For tne present, however, it is possible to 
implement reactor sensitivity studies using ANISN provided care is 
exercised and certain limitations are imposed on the options available 
in the code. A discussion of these and other solution criteria follow. 

A. Generalized Flux Equations 

The normal forward and adjoint flux calculations in a critical system 
pose no problems for a transport code, one simply solves Eqs. (2) and (4) 
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using the standard k~calculation option in ANISN. The generalized 
equations, however, are another natter, posing new problems which are best 
illustrated by looking at the generalized adjoint equation: 

(A* - AB*) r * = S* = <*R(<M*) (30) 

with the associated condition that: 

< r * , B * > » 0 (31) 

Equation (30) is an inhomogeneous, fixed source equation having a 
general solution made up of homogeneous and particular parts. For the 
homogeneous equation, the solutions are the eigenmodes correspond-
ing to the eigenvalues y^ which solve 

(A* - AjB*)** * 0 <32> 

These solutions are biorthonormal with respect to the forward eigenmodes 
which solve: 

(A - A±B)<fr = 0 
(33) 

such that: 

0 i 4 j 

1 i = j 
(34) 

For clarity of notation, we will let A = A q , s and <J> = < j>Q to denote 
the fundamental mode (critical) eigenvalue and eigenmodes, respectively. 

If the solutions form a complete set, then the source in Eq. (30) 
can be expanded in terms of the <J>*'s as follows: 

00 

s* - J ^ V i 8 * * } (35) 
i=o 
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where che biorthonorraality conditions gives: 

(68) 

The general solution to Eq. (30) can be similarly written as; 
CD 

r* « b ^ * * ^ (37) 
i»l 

Here, in general, bQ is an arbitrary constant since <j>* solves the homo-
geneous adjoint equation [Eq. (4)], For the particular case, we are 
considering the orthogonality condition imposed by Eq. (31) restricts 
the solution to be orthogonal to the fundamental mode, so that bQ = 0. 
The remaining coefficients, b^, are gotten from the orthonormality prop 
erties of the and d>* as follows: 

From this latter expression, it is clear that a unique solution for 
T* is possible only if bQ • 0, since bQ otherwise could be arbitrary. 
Uniqueness thus also requires the condition that: 

since any fundamental mode existing in the source (i.e., ao^0) would 
result in a fundamental mode component in r* (i.e., bQ^0). 

The character of the generalised source S* and the generalized adjoint 
flux r*, tnen are that they are both orthogonal to the fundamental mode 
flux, (J;, and neither one can have any fundamental mode contamination for 
the solution to Eq. (30) to exist and be unique. The non-uniqueness 
would arise from the fact that bQ in Eq. (37) is arbitrary if any funda-
mental mode solution is present in S* or r*. Care that this orthogonality 
condition is met cannot be stressed strongly enough for solutions 
of the generalized perturbation equations. In addition, fundamental con-
tamination is a major problem in using transport theory, as opposed to 
diffusion methods. These problems are illustrated in the discussions which 
follow. 

(38) 

<S*,+> - 0 (39) 
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B. Method of Successive Approximations 

In actual numerical computations, Eq. (30) can be solved by the method 
of successive approximations which is implemented in an Iterative fash-
ion as follows: 

« S* 
» xB*r*(0) + s* 

(40) 

= XB*r*^""^ + s* 

(N) 
The solution is taken to be r* * r*^ when the following convergence 
criteria is met: 

AB*r*(N) - X B ^ - U 

XB*r*(N) 

< e (41) 

Here, the superscripts represent successive iterates to the solution r* 
and correspond to outer iteration counters in a fixed + fission source 
calculation in ANISN. 

This solution approach which we will be using differs from both the Stacey 
and Gandini approaches in that (1) we solve the transport equation, not the 
diffusion equation, and (2) Stacey and Gandini use a Neumann series 
to solve for r * . In the Neumann series approach, the solution is repre-
sented by: 

N 

'r* - ( n ) (42) 
n=0 
(n) 

where the \{j* 's solve the following set of equations: 

(0) _ 
A*iJ»*x ' - s* 

A***(N) = (N—1) 

(43) 
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It is easily shown that the method of successive approximations and the 
Neumann series approach are equivalent since the fluxes are related as 
follows; 

r * ( N ) = ] f y ( i ) ( 4 4 ) 

i=o 

The method of successive approximations was chosen for the present 
work since it is the method used to solve fixed + fission source problems 
in ANISN. 

C. Characterization of Convergence 

The way in which the two solution schemes approach convergence is 
similar and can be characterized as follows. For the Neumann series, using 
the representation of the source given in Eq. (35), we can write the first 
iterate as: 

00 

A*i/>*(0) " S a i X i B * * $ ( 4 5 > 

i=l 

giving 
CO 

A***(0) = ^a,A*<fr* (46) 
i=l 

and therefore 
00 

**(0> - E v ! (47> 

i=l 

For the second and subsequent iterates, we get: 
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ok 
A*,j,*a) = X B * ^ ( 0 ) = ** 

1=1 

(48) 

As n gets larger, the fact that X is the smallest eigenmode leads to the 
(ri\ 

conclusion that the iteration process yields a rp* ' which approaches the 
first eigenmode solution to Gq. (32) since the fundamental mode ha*> been 
taken out of the initial source by orthogonality considerations. That 
is: 

V* - <J>* (49) 

The summation of the Neumann series has a convergence limit which 
is given by: 

OO oo 00 
r* = ^ 

• 2 > " - E E - M X 
n=0 n=0 i=l \ V 

(50) 

which after exchanging summation orders and summing over n gives: 
00 

r * = E a i <t>* (l-x/x.) yi (51) 
i=l 1 

Its rate of convergence depends on the ratio X/Xj, since this determines 
how well the smallest term in the series representintation of l-X/Xĵ  is 
converged to the real value after N terms. The error is therefore given 
by: 

N-l 

i - x1/xi s S (17) + e r r o r o f o r d e r ( t ^ ( 5 2 ) 
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For the method of successive approximations, we also get a final 
converged value of r* given by Eq. (51) with a rate of convergence 
governed by Eq. (52). It should be noted that these convergence rates 
are of the same order as those for solving the fundamental mode equation, 
since in that case the solution is not converged until all higher eigen-
modes die away. In the latter case, this also is governed by the separa-

te tion between Xj and X, and thus the error is of order (X/X±) : 

An upper limit to the number of iterations needed for convergen,ce can 
be estimated by assuming r* only has contributions from the first eiger£ 
mode. In this case: 

r * = a . ^ d - x / x . ) ( 5 3 ) 

The error after N-l iterations is gotten from the expansion of (l-X/Xj) 1 9 
as: 

r* = ax** [l • • • • + ^ J ' 1
 + 4 1 ( 5 4 ) 

where the order of the error in the expansion is: 

6 = i — i C 5 5 ) 

The result can be related to the convergence criteria given in Eq. (41) 
by the following manipulation: 

< * I B * * £ > 6 « fey 

Solving for N, we get finally: 

" ^ ' • t 1 - 1 7 ) 
N = 

An 
(57) 
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It is clear from Eq. (57) that as the separation between A] and A decreases 
the number of iterations increases logarithmically, a fact which should 
lead to quick solutions in "leaky" systems (Aj > > A) and much slower con-
vergence in large, absorption dominated systems (Aj = A). 

D. Fundamental Mode Contamination 

From the preceding discussion, it should be clear that using the 
method of successive approximations restricts the solution of the 
generalized adjoint equation to only the particular solution within some 
error limits. This is easily seen from Eq. (50), if we allow aQ/0. In 
this case: 

CO OO 
r* = 

n=o ±=o 

OO OQ 
* 

+ 

(58) 

+ X ) ^ i _ x/A. 4>i 

n=o i=l 

After N iterations, the second term in Eq. (58) approximates the 
particular solution as before, but the first term, representing the 
buildup in the fundamental mode, is nonconvergent. That is: 

N N 

r* (N) _ 
n=0 i=l n=0 v x / 

(59) 
00 

Na <j> + / a.<p 
° l—J 1 L 

i=l 1 -
— + 6. A i 
X. l 

No matter how small the initial contamination (as measured by a ), this o 
mode builds up linearly with the number of iterations and eventually the 
solution degenerates into a fundamental mode adjoint solution which blows 
up as: 
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l i m
 r*(N) , W a * (60) 

o ^ r Na„<f> 

Within the confine. the convergence criteria previously applied, 
the successive apprpxi ,n scheme would indeed "converge" since the 
iteration procedure would terminate when: 

N <aoB*<j)*> - (N-l)<aQB*$*> 

= f ^ C (61) 

The solution, however, would be virtually a pure fundamental mode (i.e., 
r* 'v (j)*) and r* would have no relationship whatsoever to the particular 
S* used as the fixed source in this equation. 

To guarantee a meaningful particular solution, the initial contamina-
tion must be made arbitrarily small so that after the N iterations needed 
to converge the particular solution, the fundamental contamination is 
still small. That is: 

N < < e , (62) 

A combination of Eqs. (36), (57), and (62) and some experience can be 
used to insure the initial contamination of the adjoint source S* (its 
nonorthogonality to the fundamental mode) is small enough to insure con-
vergence. However, since there are a number of sources of contamination, 
some of which are uncontrollable (numerical roundoff errors), it seems 
desirable to have an alternate way of handling this problem. The orthog-
onality condition given in Eq. (31) defining the stationary functional 
provides an easy method of eliminating fundamental mode contamination 
from r*. To insure this orthogonality relationship with an arbitrarily 
contaminated adjoint F*, one can simply apply an orthogonalizatiori SL 
procedure to sweep out the contamination as follows: 

r* . r* _ ̂ L ^ L t* (63) 
A < $ * , BJ> 
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It is clear that Eq. (63) satisfies the orthogonality condition given 
in Eq. (31) irrespective of the nature or size of the contamination. 
This expression can be used to eliminate any contamination after a con-
verged solution for r* has been generated or it can be used in the 
iteration process itself to periodically sweep out any contamination 
which might have arisen in the course of the calculation. The latter 
sweep out is difficult to handle computationally and should only be done 
when it appears that the sources of contamination are large enough to 
prevent convergence from ever being achieved. 

E. Adjoint S Equations n— — ^ 

In the actual process of solving the generalized adjoint equation 
numerically, consideration has to be given to the present limitations 
of the S^ code ANISN. One point to note is that a great deal of effort 
has gone into eliminating negative fluxes and oscillations about zero 
from S^ solutions.15 Both of these occurrences stem from the inadequacy 
of the diamond-difference scheme for flux extrapolat ions with course 
space and angle mesh spacings. Flux fixups involving hybrid-difference 
schemes are generally used in these cases.15 For generalized adjoint 
problems, however, the very nature of the adjoint source (i.e., its being 
orthogonaJ to the fundamental mode, an everywhere positive function) 
requires the generalized flux to be both positive and negative in the 
solution space. This necessitates the elimination of flux fixup schemes 
and the use of only pure differencing techniques despite their drawbacks. 
The coarse mesh acceleration schemes must also be carefully checked and 
modified where necessary since they are sometimes ill behaved with fluxes 
that change sign. A tighter range of allowable coarse mesh rescaling 
coefficient values appears to be sufficient for our present needs in 
this regard. It is expected that as the need arises, development work 
can be undertaken to remove these restrictions. There is certainly 
nothing conceptually difficult, for instance, about separating positive 
and negative flux solutions arising from the positive and negative com-
ponents of the fixed source in the actual solution process in each outer 
iteration. The two components can then be treated with the full S 
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capabilities available for any fixed source calculation with no complica-
tions. The process is simply laborious, and until the need arises we 
will not pursue such a course. 

A more fundamental deficiency of the S method for solving the n 
generalized equations is the non-adjointness of the difference equations 
which arise when a diamond-differencing scheme is applied to the leakage 
operator in the Boltzmann equation. This fundamental concern has been 
discussed in some detail by Carlson.16 The consequence of concern to us 
of the non-adjointness of the equations is the fact that the errors in-
volved give rise to unphysical boundary source terms in each space-angle 
mesh cell which contribute fundamental mode contamination to the solution. 
Carlson has investigated the order of magnitude of these terms and con-
cluded that they are quite small for k calculations. The fact that we 
deal with distributed sources and reactor parameters that are spatially 
localized heightens our concerns over the adjointness of the equations. 
While k might be unaffected, the spatial flux itself is certainly orders 
of magnitude more sensitive to the difference scheme adjointness, and 
since contamination of the order of 10 3 is cause for alarm in our case 
(this is the order of the convergence criteria e) the non-adjointness is a 
serious problem. 

Three approaches can be taken to mitigate this problem. In the first 
place as is done in all shielding problems, the forward and adjoint flux 
runs can be converged to very stringent criteria with respect to the space 
and angular meshes used to model the system. This mesh convergence sub-
stantially reduces the order of the non-adjointness errors since these 
latter errors disappear in the limit of small mesh sizes.16 For reactor 
sensitivity work, however, the order of error required for converged 
generalized solutions is much smaller and the meshes can become unreason-
ably fine. A second, and more practical alternative, involves the use 
of an anternate differencing scheme, "step mode" (available in ANISN) for 
solving reactor sensitivity problems. The "step mode" as will be sho\m 
below gives rise to adjoint difference equations, thus completely removing 
this cause of concern. 



In the "step mode" the volume averaged flux N in a space-angle cell 
is assumed to be constant across the cell according to the following 
scheme: 

N = 
Um>0 

V * V o 
(64) 

Here conventional S notation15 is used with m being an angular mesh n 
point, i being a space mesh point, and the centered mesh point m, and 
i + (1/2) are left out of the equations to simplify the notation. Since 
the differencing scheme has no effect on the adjointness of any operator 
in the Boltamann equation other than the leakage operator and is inde-
pendent of the energy variable,16 we can illustrate the general result 
with a one-group leakage term only. 

In S^ notation, the finite difference form of forward flux leakage 
term can be written as: 

w u ( A i + i N m " A i N i ) + W W " V i ' V * (65) 

The adjoint leakage is likewise given as: 

wy ( - A.N* ] - a , , N* i + a ,N* , (66) I I + I i+1 I I + I ) m+i m+i m-s m-i v 

th 
where ui and \x are quadrature weights and angles at the m centered angular 
point, the a's are the curvature coefficients, and the A's are the areas 
at the cell boundaries. Also, the a's and the A's satisfy the following 
condition: 

(Ai+i - A i ) Vi " Vi = " W M Ai+1 - I (67) 

To check for adjointness, Eq. (65) is multiplied by N and Eq. (64) by 
N*, both are summed over all space and angle and then subtracted to get: 
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i m 
L, - a ,N*N , m+2 m-2 m-2 

(68) 

wyN (A. + 1N* + 1 - A.N*) + a , - a i NK* , m+£ m+j m-£ m-j 

Using the step difference relations given in Eq. (64) and their ad-
joint counterparts: 

—* N = 
N , 
m-2 
* 

N m , m-2 

= N, 

Ni-1 

y > 0 m 

y < 0 m 

we can rewrite Eq. (68) as follows: 

2 2 { " " < A i + i N i + A « " A i W + w p (Ai+i - V W i } 

m 

y >0 m 

E E ! w u (Ai+iNi+iNi+i V W + w <Ai+i A i ) N i V i J 
m 

y <0 m 

(69) 

+ (70) 

i C S { W W W 
a iN ,N , + (a. ± m—2 m-2 fli—2 m-t-2 a ,)N , m—2 m+5 \ri} 

m 

The first terms in all the expressions in braces when summed over i 
cancel out for all points internal to the system. In addition, with anti-
symmetric boundary conditions (for the forward and adjoint fluxes), such 
as the conventional vacuum boundary conditions, the remaining surface 
terms cancel out. We finally are left with: 
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+ ( c W ± " V± > N«f± Nm-± <71) 

Using the expression for the a's given in Eq. (67), we can write 

(72) 

Converting back to expressions in N and N* only, using the step difference 
relations, we see that everything cancels out: 

The step-difference scheme thus results in adjoint numerical equations 
as opposed to the conventional diamond-difference scheme in which terms 
similar to those in braces in Eq. (72) do not cancel out. This property 
of step-difference eliminates the numerical difference scheme as a source 
fundamental mode contamination in solving the generalized adjoint equation. 

The final alternative, and the easiest of all to implement, involves 
using slab geometry models of the reactor system being studied. The ad-
joint difference equations in this geometry retain their adjointness prop-
erty using any differencing scheme. This fact is discussed at some length 
by Carlson and will therefore not be repeated here. Since one-dimensional 
reactor mockups only are being discussed here, the slab model may be the 
least objeetional of the alternatives for cylindrical reactors, with step 
differencing a possible alternative for spherical systems. 

- A.) (NN - NN ) - 0 (73) 
i m 



In conclusion, without further modification of any of the existing 
coding in ANISN, one can employ step-difference schemes or slab geometry 
and any differencing scheme,together with the method of successive approx-
imations with a positive and negative valued source for reactor sensitivity 
analysis. A fundamental mode sweep-out at the end of an ANISN run is 
recommended to remove any unnecessary homogeneous equation solution terms 
from the answers. In addition, fairly tight convergence criteria are 
recommended for the critical forward and adjoint solutions (which must 
also be run in step-difference mode if the generalized flux solutions are 
run in this mode) so that the initial source contamination will not 
interfere with the convergence in the generalized forward and adjoint 
runs. For more advanced reactor studies, further development work on 
adjoint differencing schemes is indicated and should be pursued. 

Having spelled out the procedures for determining sensitivity func-
tions for reactor problems, it is now possible to discuss the methods by 
which this information is combined with cross-section uncertainty data to 
predict uncertainties in reactor parameters. This connection can be de-
scribed most simply in terms of a statistical analog calculation for 
determining parameter variances based on statistical data uncertainties. 
Such an approach then leads directly to a discussion of deterministic 
methods using cross-section variances for estimating reactor parameter 
variances. 

To estimate the variance in a computed result R, that depends on a 
data base which has statistical uncertainties in it, a statistical analog 
computation can be made to evaluate the following defining expression for 
the variance of the parameter R: 

IV. UNCERTAINTY ANALYSIS 

A. Analog Uncertainty Analysis 

(74) 
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Here the variance of R, denoted by V is the expectation value, de-
t-h noted by { }, of samplings of the value of R (the n sample having a 

value R ), based on the statistical nature of the uncertainties in the n 
data base, and {R^} is the average or expectation value of R for all the 
samples. In computational terms, a correlated sampling from uncertainty 
distributions for the whole data base is made and a transport calculation 
using the sampled cross sections is carried out to get each R^. The 
sampling process consists of picking the energy dependent cross-section 
value for each partial cross section from a normal distribution having a 
specified variance V^ and an average value {G^J for the i*"*1 cross section 
element. Consideration of the correlated nature of the cross-section data 
would be taken into account in choosing from the data set. 

In terms of differences between R and the average value {R } resulting n 
from using a particular sampled cross-section data base, Eq. (74) can be 
rew/Jtten as: 

VR ' { K } <"> 

where 

<5R = R - {R } (76) n n n v ' 

Rewriting this expression in terms of the Rn
Ts being explicit functions 

of cross sections resulting from the sampling procedure (i.e. the set of E. X 1 

i R„ • V r i , n > ' { v s i , n > } . (77) 

where the i subscript refers to the elements of the cross-section set in 
the n1"*1 sample. 

If we assume a linear relationship to exist between the data base 
elements and the result (a condition that was carefully preserved in the 
derivation of the sensitivity functions), then we can express in terms 
of sensitivity coefficients as follows: 



27 

n i,n 
i 

(78) 

where 61 is given as: 

6Z. = Z, i ,n i ,n ( x,n/ (79) 

and the partial derivative is assumed to be invariant with n and equal to 
the value of 9R/9Z. computed with all Z. = {Z. }. x r l i,n 

With these assumptions, the variance in R can be computed from Eq. 
(75) as: 

VR = 
i J 

3Z. 9Z. i,n i,n x i 
(80) 

i j J 

In terms of sensitivity coefficients, P, relative variances, U, and 
covariances C, and the relative covariance matrix V, we can finally 
write: 

i j 1 3 1 3 (81) 

*«nere 

9Z 
/ f - L (82) 



A A 4.0 

v (83) 

i=j 

U, R M / M (84) 

The final problem variance is thus given in terms of sensitivity 
coefficients P and a covariance matrix V. The sensitivity coefficients 
are calculated in the course of solving the regular and generalized flux 
equations using a mean value set of cross section data (denoted by 
I. = {£. }). The partial derivatives at these mean values are the re-l i,n 
quired mean sensitivity coefficients. The covariance matrix likewise is 
evaluated using variances and covariances of the basic data around their 
mean. 

The task, of evaluating the full covariance matrix from basic nuclear 
data is a sizeable one, since correlations between elements must be cal-
culated. An initial attempt will be made to take into account only the 
strongest and most important of these correlations as determined by 
preliminary sensitivity studies. Additional evaluation will be left for 
future studies after more information is available on which to base 
judgments on the need for more detail and accuracy. 

It should be pointed out again that the form of Eqs. (78) and (81) 
necessitate to the use of linear (second-order accurate) approaches to 
calculating sensitivity coefficients. A consistent extension of these 
methods to higher order uncertainty estimates would require the evaluation 
of not only higher order sensitivity coefficients but also higher order 
moments of the uncertainty distributions in the basic nuclear data. 
Non-linear effects involved in the sensitivity coefficients should be 
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used only if the data uncertainty moments can be extended to higher 
order accuracy (a monumental task) and we therefore choose to remain 
consistent in ignoring higher order effects for these studies. 

B. Multieroup Methods 

For deterministic evaluation of parameter uncertainties, the expres-
sion for the parameter variance [i.e., Eq. (81)] must be computed from 
energy group averaged cross-section data. This requirement places an 
added burden on the cross-section uncertainty evaluator in that an effort 
must be made to convert pointwise data variances and covarianoes into 
group averaged data. Two major limitations inherent in such an effort 
are (1) the problem-dependent nature of the energy group structures and 
(2) the additional variances and covariances in the averaged cross-section 
data elements arising from the particular choice of a weighting function 
for group averaging. This latter consideration could be quite significant 
if the weighting function were a realistic problem flux spectrum which 
would then have structure in it correlated to some cross-section behavior 
for the problem. The flux would thus be correlated with the data it was 
averaging as well as having its own uncertainty bounds. We will ignore 
this consideration for the first sensitivity studies taking the weighting 
function to be a fixed, precisely known independent variable for the 
problems studied. The effect of weighting function uncertainties will 
certainly appear in later studies, however, as we narrow down the major 
sources of uncertainty in reactor parameters arising from basic cross-
section data. 

The effect of group structure will likewise be dealt with only as 
necessity dictates, in that initial correlations will be taken to be 
longer range than the anticipated fine group structures to be used for 
the study. Broad range variances and covariances are all that will be 
required for the fine group library we will use. 
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V. SUMMARY 

A complete summary of the sensitivity code system being developed at 
ORNL based on transport theory appears in Fig. 1. The central chain in 
this flow chart consists of the ANISN transport calculations of normal 
and generalized fluxes using the methods outlined in this report. Results 
from this sequence couple with the sensitivity analysis package SWANLAKE 
in two stages (indicated by SWANLAKE I and II). The first stage consists 
of a normal analysis of all relevant cross-section data and the second 
an analysis with k-reset options in effect. 

The left-hand chain represents the flow of uncertainty estimation 
procedures, starting with evaluation of basic uncertainty data from cross-
section measurements and leading to the creation of the ENDF/B-IV error 
file and the processing of these files into multigroup covariance matrices. 
Both of these chains link up in an uncertainty analysis package where 
estimates of reactor parameter uncertainties are made. This final stage 
will contain multiple analysis options to allow the overall parameter 
uncertainty to be broken down into various components while still main-
taining all data correlation information. 

Finally in the right-hand chain the linking up of processed cross-
section information (including complete files of partial cross sections) 
and auxilliary codes for creating general operators is illustrated. Pro-
cessed cross-section data and various cross-section operators are needed 
at all stages of calculation in the central chain. 

It is hoped that when the transport sensitivity analysis capability 
is fully operating and some experience has been gained through analysis 
of several problems we will be able to eliminate many of the restrictions 
on the methods employed. Hopefully an alternative P^-diffusion theory 
system can be deployed as a result of successful development of the trans-
port system. 
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CROSS SECTION 
PROCESSING 

(AMPX) 

Fig. 1. Flow Diagram of Reactor Sensitivity Analysis Procedures 



APPENDIX A. OPERATORS FOR PARTICULAR REACTOR PARAMETERS (R) 

<J>*H1(£> 
Bilinear ratio: R = 

<4»*H2(f)> 

Linear ratio: R = 
4> 

R Hi4> H2 ̂  

Breeding ratio 
(linear) 1 X 

capture in fertile isotopes 

? ( S £ . + 

1 1 X 

absorption and fission 
in fissile isotopes 

Reactivity worth 
(bilinear) 

AA4>f - AAB<J>1 

A denotes material change 
involved in worth mea-
surement 
*Note cj)<J> 

B V 
perturbed fission 
source 

*Note B'ss B and <p <|» 

Doppler effect 
(bilinear) 

AAtp - AAB<f> 
A denotes temperature in-
duced changes in all 
material cross sections 
based on two tempera-
tures Ti and T2. 

B<t> 
fission source 

Defining equations for transport operators in multigroup form are given as:.1^'15 

8 A m g' 

g' 
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APPENDIX B. GENERALIZED PERTURBATION THEORY SOURCES 

Forward source 

Adjoint source 

R S* S 

Breeding ratio R 
Zl e2 

NONE (linear) R NONE 

*Note: H! = Ej 
H2 = Z2 

Reactivity worth 
and 

Doppler effect 
(bilinear) 

R 

m 
Hj(J) H2<J> 

R 
r- * * * * H1 <f> H2$ Reactivity worth 

and 
Doppler effect 
(bilinear) 

R 
4*HicJ)> <*>*H2<£> 

R 

S = dR d(j>* 
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