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ABSTRACT

A one-dimensional system of electrons interacting via a BCS-type
interaction is investigated, by renormalization group technique, in two
successive approximations at T = O, keeping only a single energy variable
w. The first approximation is equivalent to the summation of leading loga-
rithmic terms carried out by Bychkov et al. and correspondingly the vertex
function displays a singularity at a finite value of w . The second ap-
proximation accounts for the next leading logarithmic terms as well, and
by this means the singularity is shown to be pushed down to w = O . Due
to important self enerqy contributions, however, the invariant couplings
behave differently and tend to a saturation value at w = O.

PESINE

_MeTOZOM peHOpMANN3ALUXOHHOA rpynny OHJA MCCHEAOBAHA OAHOMEpHAfl
B3anMOZenCTByMAn cucrema 3nexrponos npu T = 009K remneparypa, B ABYX no-
CJe A0BATEIPHHX NPUOJIMXEHUAX C YUETOM TOJILKO OZHOT'O napaMeTpa 3HEPruM o
u B3aumoAeicTeusi Tuna BKil. [leproe npuGamxenne OKA3aA0CH IKBMBAJNEHTHHM npu-
OnukenneM BryxoBa - TopbKoBa — JISANOMAHCKOTO, OCHOBAHHHM HA CYMMUDOBAHMM
crapuyx JorapuMnuecKux 4ieHOB; CleLOBATENBHO, BOPUARHAA PYHKUMA NpH Ko-
iEYHOM 3HAYEHMM w MMEeT CUHI'YAAPHOCTH. BO BTOPOM NPHOJIAREHMH YUMTHBAKT-—
CA ¥ HemocpeACTBEHHO clellywuue norapuduMmyeckue uienH. [10KA38HO, uro ux
yueT NpuBEAECT K NepeMeileHH CHHTYJAPHOCTH K w=0 . OAHBKO, M3-3a Cyuecr—
BEeHHHX COOCTBEHHO 3HEPreTMYECKMX MONPaBOK NHBAPMAHTHHE NOCTOAHHHE CBA3MW
MMerT Apyroe noBeAeHue: MPU w=0 OHM HMEHT OTPAHMYCHHHI MAKCHMYNM.

KIVONAT

Egydimenzids, k8lcstnhatbd elektron-gdz rendszert vizsgaltunk BCS
tipusu k8lcsdnhatads esetén két egymasutidni kdzelitésben zérus hdmérsékleten
a renormdlasi csoport médszer segitségével, egyetlen energiavaltozéra szo-
ritkozva. Az elsd k8zelités ekvivalensnek bizonyult a vezet® logaritmikus
tagok Bicskov, Gorkov és Dzjalosinszkij &ltal véghezvitt fel8sszegezésével;
kévetkezésképpen a vertex fliggvény egy véges w értéknél szingularis vi-
selkedést mutat. A masodik k&zelités az eggyel alacsonyabb rendil logarit-
mikus tagokrdl is szamot ad. Megmutattuk, hogy ilyen mdédon a szingularitas
w = O-ra tolédott le. Lényeges sajdtenergids jarulékok kdvetkeztében az in-
varians csatoldsok ettdl eltérd viselkedéstiek: w = 0-n8l véges értéki
maximumuk van.
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le Introduction

The article by Little1 concerning the possibility
of superconductivity at high temperatures aroused
congiderable interest in investigating one-dimensional
mnet?2llic systems. It is well known that no phase exhibiting
long-range order can exist in one dimension at finite
temperatures provided the forces are of short rangez, thus
the theorem does not apply to. the BCS reduced Hamiltonianj,
where the interactiion is of infinite range. A more realistic
approach to the problem of superconducting type phase

4

transitions is to use the Ginzburg-Landau’ functional for

the free energy. This has been done by Rice5

» Who showed
that, if the existence of superconducting order below

some temperature Tc is supposed, the fluctuations in the
phase of the order parameter act in such a way that the
renormalized equilibrium value of the order parameter
becomes zero in one and two dimensions., The applicability
of the Ginzburg-Landau theory in one dimension, however,

is 1itself open to questionG. Using quite general arguments,
the Bogoliubov inequality and the f sum-rule, Hohenberg7
has obtained the same result as Rice: the absence of

&

superconducting type ODLRO™ in one-and two-dimensional

systems,

Bychkov, Gorkov and Dzyaloshinsky6 /BGD in the fol=-
lowing/, on the other hand, reached a different conclusion
when they investirated possible singular behaviour of the

vertex part in a one-dimensional system of electrons

%
;-
i
i




interacting via an interaction of BCS type but of finite
range. Besides the Cooper diagrams, BGD took into account
zero~sound bubbles, too, both of which are logarithmic

in one dimensione. The vertex function resulting from the
gsolution of the hierarchy of parquet equations pointed to
the existence of a critical temperature in essentially

thie same manner fas in the BCS casee.

In a recent paper Dzyaloshinsky and Larkin9

eniphasize,

however, that the pole of the scattering amplitude obtained

by BGD in the parquet approximation does not indicate a
phase tremsition at some finite temperature; it shows only

that at low temperatures the effective interaction becomnes

strong and the parquet approximation is no longer applicable.

A comparable situation pertains in the Kondo problen

lo

where Abrikosov’s11 solution of the parquet equations leads

to a scattering amplitude which diverges at the Kondo energy

/tenperature/, Fowler and Zawadowskilz, using the renor-

malization group theory13

» have presented an improved
treatment of this problem analogous to the self consistent
ireatment of the X-ray problem by Hozidéres et al.l4 Fowler
and Zawadowgki’s second-order scaling approximation goes
beyond the leading logarithmic approximation of Abrikosov
by accounting for the next leading logarithmic terms by

means of the Lie differential equation of the renormaliza-

tion groupe The resulting scattering amplitude io free from

the non-physicel scingmlarity, A similar result hag been

obtained by Abrikosov anud liigdall”,

13
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It can be expected therefore that an znalogous
improved treatment of & one—-dimensional system of electrons
interacting via o BCY type /but finite-ranpe/ interaction
vould renove the BGD-singularity at finite temperatures.

It i3 1he ain of tho precent paper to-show that this really

is the case.

In Sec.2 we describe the nodels The interaction
natrix elerients are cpecified in guch a way that the
interaction llamiltonian contains only two independent
coupling constants. The particular choice of the frequency
and momentum variables for which the vertices will be
cnlculated is also given heres. In Sec.3 & survey of the
renornalization group technique is pre:sented and its most
inportant ingredients the invariant coupiingec are defined

oend discussede

veced 1is devoted to the calculation of the two
invariant couplings and the vertex in leading logaritimic
approximation /first order renormalization/. The result
obtained corresponds exactly to that of BGD /gee eq. (11)
of their paper/. Sccond-order renornalization is carried
out in Sece. 5, By collecting gjlnt»/ub type contributions
to the vertex and consistently g2ln~d/u5 type terms in the
gell’ energy, the invariant couplings are shown to satisfy
differential equations with solutions which exhibit no
singularity as a function of w and behave just in the

sane way as the corresponding quantity does in the Kondo
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probleme. On calculating the imaginary parts of the
perturbational expressions, too, it turns out that these
play no role whatsoever in the digsappearance of the
spurious singularity, at least in co far as the invariant
couplings are concerned. These latterare all real. Know-
ing; the invariant couplings as functions of a scaling
energy, the vertex function and the one-particle Green's
function are then determined from the corresponding Lic
cquation in an approximation which, however, does not
account for the imapginary partse. It is found that the

-
golutions for «o >0 show a power law behaviour as Clw)~w

and GlolwGh) w‘, where in our approximation &= 3/2 and
@ = 3/4. Thus second-order renornalization shifts the
infinite growth of I, which occurs at a finite value of w
in tlie parquet approxination,to w=0. Vhen the temperaturec §
is taken as variable, instead of w , this shows the |
tendency of an ordered phase to form only at T=0, as
would be expected. This point will be examined more closely ;
in the second paper of this series, in which various res- ‘%
i

ponse functions will be calculated in the framework of the 4

renormalization group technique.

A discussion of our results is given in Sec. 6.

2. The nmodel

Let us consider a one dimensional systenr of electrsons

described by the Hamiltonian

H = Ho + Hint 1]
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= T y 4 K k\ k ® y =
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vhere Croc

is the creation operator of an electron with
nonentum k and spin &« ; ¢, is {l:e kinetic ener;y of
the electron; and %{kl, k2, k3, k4) is the interaction
natrix element, wnich is restricted to a narrow eneryy

Tran;;c - characterized by the cut-off energy Oy -in the

vicinity of the Iermi cner(.r.

The vertex E;plé- (kl,tul, Ky st k3,cu3, k4‘“ﬁ)

decpendgs on three independent nonenta ana three independent

s

frequencies, which are chogen as usual to be k1+k9, ;

! s

k3-kl, k4-k1 and o4+, Wy =)y W, =y /k1+k2=
::]{3+k4; L\)l +(sb= h_?3 +Lx.34/o

It will be gceen later that for our purposes the

vertex can be calculated for a special choice of the

AR BB e R

variables. Vie want to restrict our calculation Lo a single

frequency variable v and fi:x the momentum variables so

that the most sinrular terms are picked up. This will be

done ag follows.

If only the second-order vertex correctiongc are

taken into account, the three diagrams shovm in PFi;. 1

a———

can be drawn /see Ref. 6/. VFig. la is the Cooper-




type bubble, it depends on k1+k2 and W+, in a log-
arithmic fashion provided these variables are small
compared with w,. . Fige. lb shows the zero-sound-

type bubble, which depends on k}'kl and uz-ui

and also shows a logarithmic dependence if Ika-kffﬂ2ko
/leading to a doubling of the period/ and (xz-uif¥ O.
If the variables are chosen so that the above rela-
tions are fulfilled and also the momenta lie close

to the Fermi momentuw, the kq-k1=¥ O and the con-
tribution of Fig. lc is negligible. Accordingly we
shall choose the momentum variables of the vertex

to be k1=—k0, kzzko, k3=ko, k4=-ko /k0 is the Ferni
romentwa/. loreover, tlie energies on all four legs of
the verte:xr will be of the sae order of magnitude,

3

. = S
Coflle Wy E T ) WLF T, Wy :i—u

A can bhe

taken/see Fip, 2/,

The restriction to a single variable in calculating
the vertex is sufficient if only the invariant coupling
is to Le deterained. It does not natter whether his
variaoble is energy or nmonentun. e work here with a
cingle enerpy variabley but cxactly the sane results
would be obtained by taking; all the energies equal
to zero and keepin; a single nowmentwa variable q with
the choice k1=-ko, k2=k0+q, kgzko-q, k4=-k0s2q. In boti

caces the sene nuwiber of typical Jojoriiluiic teriis appens,




CJ\“Q,“L,“S,&“) =

The generalization to riore variables does not encounter
any bagic difficulties, thou;h the actual calculation
beconies nmuch more complicated, especially in higher

orders.

Forgetting, Uuklapp processes, the vertices are
singular only when they describe the scattering of an
electron with momentum near to +ko on another electron
wvith momentum ncar to —ko. When both incoming electrons
have momenta near to +ko or -ko, the corntribution of
these vertices is negligibles Those processes will
therefore be neglected from the interaction in Eg. /2.3/,
in which both kl and k2 and similarly k3 and k4 are in
the vicinity of +k6 or —ko. Only the following interaction

rintrix elements will be retained:

{ —ke=ky =k ky g akiky  aad to-ky kg Ky, €k, oky

or -k, -kye kb ‘(~£ ~kor kp and +k°-‘(,£ k.'k, S+, kp

(2.4)
\‘ -ka“\'pﬁk.,kgf 'k,,“k’ I'\'\d. +k.‘k’£k"k3£ "ko"kb

‘3*{
‘11{
Lor ~vo=%p 2k, 16 ~korky and  ake-kys ky kyé 41, ok,

O otherwice

where ki is a cut-off in momentun space corresponding to

the cut-off wp in energy representation.

/ The elfect of Umklapp processes has lLeen investigated

in the parquet approximation by Dzyaloshingk; and Larking;




an iuproved approximation ian to be presented by one

of the present authors in a subsequent publication./

With thia special choice of the matrix elements

the elementary vertex is the following
(o)
Mo ye = Sy Sps = Gr s Spy 2.5/

Two special cases are worth mentioning here. g,=g,=¢

1 interaction investiigated by

corresponds to the Little
BGD in Sece II of their papere. The choice gz=o leads to.
the phonon-mediated electron-electron interaction of

BCS: 81 describes processes in which the momentum transfer
is equal to 2ko, and it is this matrix element which 1s
large and negative in the case of electron-phonon
interaction, From tiie point of view of superconducting-

~type behaviour, then, i) would be expected to represent

the most important part of the metrix elements. The

results of this and the following paper bear out this

expectation. One important point worth noting here is

i
i

that even if we wanted to restrict our calculation to
the special cases gy=f,=g or glfo, go=0 only, it would

otill have been necessary to introduce two different

‘
s R

coupling constants at the beginning and to make the

e R

specialization only at the end of the calculation, The
reason is that in both cases higher-order contributions

to {7 yield, in general, a spin structure

= I Y
P‘P'xé - r‘1 S“Y éﬂ‘ - Pl G d (Jﬂx , /2. 6/




with Pl # [, different from that of the elementary
vertex, and therefore, as will be seen, the two couplings
are renormalized differently. Later on, when we use
perturbational expressions of [’ on the right-hand side
of the Lie equation, the prescription is to replace all
bare coupling constants by the invariant ones, which can
only be done properly if it is assumed already fronm

the beginning that gllgz and is different from zero.

The Hemiltonian /2.3/ can be rewritten, taking into

account the above restrictions on the interaction matrix

elements, in the form

wnt

S I LSS 2.
H =+ 2, A, . Q:w A, ka“m + = D e by b 2 /2.7/

where aiqc denotes the creation operator for electrons

with momenta lying near to +ko» and b;p stands for the

creation operator of electrons with momenta near to =k o
Diagrammatically these interactions will be represented
as shown on Fiz, 3. The s0lid and dashed lines stand

for the Green’s functions of electrons with momehta near

+k and -ko, respectively., The two Green’s functions

actually have the same form

_(0, (o) _ 4
G, (ko) = Glkw) = TR T agnia 1 2.8/

where {(k)=&(k)-€, =v(kl-k)1is the kinetic energy relative
to the PFermi energy.

3 ¥ RIS SR AP NE TEEF PP P ¥ RS J-wone P SRR SRR SE AR R R e
b e S R B e e i 8
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3. Survey of the renormalization group technique

The concept of thec renormalization group was
introduced in quantum field theory to eliminate divergences.
These divergences can be compensated by adding counter
termns to the Lapgrangian, which is equivalent to a
niultiplicative renormalization of the Green’s {functions,
vertices and charges, with the multiplicative renormnalicing
factors forming a continuous group. Considering this group,
the arbitrariness in the choice of multiplicative factors
is in turn equivalen® to the introduction of new variables
in the Green’s functions and vertices, so that the
multiplicative renormalization is carried out by changing
these variables. A disadvantage of this method is that
there ig sone arbitrariness in the choice of the functions
with an increased number of variables; the physical Green’s
functions and vertices correspond to a particular value

of the additional variables.

An analogous nultiplicative renormalization procedure
weg performed by Fowler and Zawadowski12 for the Kondo
problemns It would be possible to carry out a similar
treatment in the present problem, too, but instead,
we shall give a simplified, though less general formulation,
Looking at the low order perturbational expression for
the Green’s function and vertices, it can be seen that, by

changing the cut-off energy ws to wp and simultaneously




the coupling; constants in an appropriate n.anner, the
Green?s function and vertices arve nwuliiplied by constants,
independent of the frequency variables. This neans that

the cut-off energy cerves as a natural ccaling paraneter, ‘

at least in low orders of the perturbational expencion.
The sugscstion that the cut-off eneryy is o ;00d scaling

parancter in similar logaritiuviic prdblenn coner fror.
Ando*sonl6, who used guch o cealing in a very singple wayr
without applyine the renor:walization roup technigue,

iun tliec Koundo problenis The drawback of ‘nlercon’s derivation
ol scaling laws, though,is tiat the efTective counling;
dependc not just on the scaling energy but on other cner(y
and nonrentuwn variables, too. e believe that, if sccaling
indeed exists, the properly defined invariant coupling
does not depend on the ener;;;y variables of the vertices

by which i1t ig itself delined. lleverthelecs, as this
Trequency independence was checked only for low oruer
vertices, the justification of our nroccdure needs further

investigation,

supposing now that scaling really exists, in the
present problem,i.e. a siniultaneocus and correlated change
of the cut-off energy and coupling constants leads to a
nultiplicative renormalization of the total Green’s
function and total vertices, the renormalizing factors
should be real and independent of frequencies, Therefore

in determining them via the Grecen’s function and verticces

a very simple choice of variables, the one decerit-cd in




o

ti'e previous cection,can be nade.

It should be enphasized that the existence of scalin;;

is an assumption and doeg not hold a priori for any
jp2obleris Bul one can check that in the precent problern:
the garic results are obtained if one (;oes back to the
more sophisticated formulation of the renormalization
sroup technique, closely following eefs the prescriptions

of Ref. 13,

licw let ug write the Green?s function and vertex

Tiinc tion in the following way:

Gl el = dlE, ) g 9] G (k) /3.1/

I"\

A - , .
‘d(ws (o) = q, C ) ‘gufgm G2 Uy () S Sy - /3.2/
Changing w,y to LJ; and, sinultaneously, the couplings
1y and o Lo gi and gé, respoctively) miltiplicative

renornalization means that

(S qoal =2 A5 0], >
T2 90 g ) =2 T (2, qu au) /3.4/
MEIENTU A AL SRR /3:5/
TG, G e ey 13+

At i o R

.

1



- 13 -

where according to our assunption the factors z; are real

and independent of w .

By requiring the invariance of Dyson’s equation under
tranasformations /3.3/-/3.6/, which means that G has to

. to) [{-1] ~
transform in the same way as G [ GGG G, we get

' /3.7/

iees only three of the z’s are independenti. Ibg. /3.7/ ensures

the equivalence of the new and original states,

The z’s can be deternined from eqs. /3.3/-/3.5/ by

taking = wy. We qet

"‘L(%n v G ‘.)z)

‘-1 - ! \ \ !
d, ( 1. ; "j‘ ! CJ‘I ) /3'8/
[14 =2 QA 1.)
ZL - — o ‘ 3 ‘3\i ’ /3. 9/
P‘ k 1 , 53‘ ' ‘:j; H
_ r‘J_ L ‘—3.; I} ‘31, (31_)‘. /3. 10/
-3 ~ .

thus, using eqse /3.7/-/3.10/, eqe /3.6/ yields

’ d-z :')—‘D ! 1 1 ~' E“!
(3‘, = (34’ (Nh ﬂ...'.._.cé:,....).- ._.F‘ ( wop Gy C-“‘) =1 2 /3.11/

dfk4,~}l:91) ﬁ((i,g:,q;)

S T A A N g




The coupling constants Ci and gé are to be determined by

“Iie self-consistent solution of eqe /3.11/. They specify

hiow the couplings should be varied sinultaneously with the
change of thie euneryy scale. Ag the combination gr‘dg is clearly
invariant under transfornationc /3.3/-/3.6/, the q: will be
cnlled inveriant couplings in what followse They are

sornietimes alco called invariant charges,as the concept ccenes

originally from quantun electrodynamicse

The multiplicative property of the Green’s function,
vertex and other physical guantities /eege certain recponsge
functions/ = whicn is supposed to hold in our case but does
not necegsarily hold in general and has to be proved in each
case - allows one to improve upon perturbation theoretical
resnlta for thege quuniiiies by use of the Lie equatioin of

the group. thusg, for any quautity oberying the condition

A LI \ ! P (W
/-\( Lay ! 3«.1 c}l) P IA ( Wy ! 31. c}l } y /3.12/
n uifferential equation of the form
- .
sy ; _ 1 3 ’ My iy 3'1
so Al g ) = ¢ ;-;'gl"-“ A%, g1 (x.qu:) %d*-‘i"‘-*z‘ﬂ;/ i
: =1

can be derived, where x=w,;w;, » Haturally, eq. /3.13/

applies to the invariant couplings as well.

It niust be stregsed gpain that the inveriant coupling
depends only on we/ws o Vhen it appears in o Tie equation,

wy, Lo replaced by the frequency varinble, oo o (unction of

e S N R
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which the quantity A is to be determined. It is after this
replacement only, that the invariant coupling becomes
frequency dependent. It is because in practical calculations
we always have to use a Lie equation, and hence a formally
frequency dependent invariant coupling, that this procedure
iz often quoted in the literature as frequency-dependent

scalin/:e.

The prescription of the renormalization group tecimique
is to calculate the ri:ht hand side of eq. /3.13/ by pertur-
bation theory for w=w, /§=1/. The resulting differential
equation will produce the qu:intity A in the whole energy
range. This perturbation series goes in powers of the
invariant coupling, so that if the invariant coupling is
small for an arbitrary change of the scaling enerpy, the
quantity determined from the sclution of the Lie equation
using a few terms of the perturbation series will represent
a pood approximation in the whele energy range. If, however,
the invariant coupling increases and becomes of the order
oi7 unity, while the scaling energy goes towards lower
encr;ics, a perturbation expansion of the right hand side

of the Lie equation breaks dovm and only qualitative results

e

can be obtained.

o T

Let us notice that the most inmportent quantity of the
theory ic the invariant coupling, because it enters tie
richt hand cide of eq. /3.13/ for aeny phjsical quentity.
Thus, before any other quantities are determined, Iirgst the

invariant coupling has to be knowvm.

e i et et et oA PR L




Je IMirgoti-order renormalization

The Lic equaition for the invariant coupling:e ﬁi and

A Aare
) Yoy \ o | ]
G oA - ' \ ; v ‘ e _
3 ln 4. “.31,‘11) = ,5-{ ~l.x Y (E’ “}1“”}1.',@1), ;31\“"}“(11}} , " 12/4.1/

-4y &

A3 we have already nentioned, the right hand cides of these
equalions can be calculated by means of periurbation
theory, provided the invariant couplinss are snnll. In the

present cection the first-order corrections to d, V) ond [

/cce eqse /3.1/ and /3.2//viill be counasidered.

The first-order seclf cnergy contribution, being

indcpendent of w, can be incorporated into the chenical

potentizl ond thus 4,/ /=1. It followc from eqs. /3.11/
that
ok, g, )
‘X - ' = G t ' __;,-.:._- L= A1 2..
C}‘ \ o‘a‘lo 31..) C;‘ ' ' /4.2/

f_‘J‘ { 1'r$,:, j;.)
Tie diagrams contributing to ' in the second order /they
give he first-order correcticn to ﬁ’ / arc shovn in Pi. .4
Fige. 4a shows the Cooper-type contributions to the vertex
xhile Fige. 4b gives the zero-sound type diapgrams. The

respeciive contributions are:

r

W m e - T ) 1quq Sy S et ) Sac sy, 1, 113/

{ :“J. ‘lpz» } '

, { t {—;r)‘ 1 N , }
) — = - (P ¢ < YC
& 1wy { tr o , !_(“(j1 2"1’-}1‘ "‘:(1 s -+ 43’ Cwd (‘“5 l’

/heif

P e

A e e S s e

ey A W,




~ ~e

Thus up to first order, [y and PL are given by the

following expressions:

Yo o« 2 (S - tix), /445/
F“’_ L PR ﬂi(ﬂ.&&)——i{_iﬂr)
v 8 - 2w v 9. Wp /4.6/

From eqse /4.2/, using eqs. /4.5/ and /4.6/ and expanding

the denominators up to first order, the perturbational

expressions
v (4 _ + j;_. ‘qh wb‘
i L £ v Oy /4e7/
v () : wd
G = et b /4.8/

are obtained. These quantities are real, as the imaginary
parts appearing in the numerator and denominator of eqe.
/4.2/ cancel each other. Using eqs. /4.7/ and /4.8/ to
calculate the right hand sides of eq. /4.1/, two simple

differential equations result:

| &g egnad - L X qllgaal), 0.5/
S 8 i (2,909 = & 54 Zlf:‘;:") / fae1ef
which solve to yield
g x) = — _22*&\1 | Y
g x)=gi— T g, + £ 4_%% — /4.12/
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oimilar results can be obtained for the vertices in the
two spin channels provided we neglect the imaginary parts

in eqs. /4.5/ and /4.6/:
P1(x]==c3:(x) , M, (x) = Qi(x) /4-13/

Taking gy=8y=( /Little interaction/ our results are
cxactly the same as those obtained by BGD in the corres-
ponding special case where their variables { and 1 coincide.
Actually the more general case fi.e. a vertex with two
energy variables/ can also be obtained in the framework
of the present theory by treating two Lie equations for

~

—
'y and I, , one for each energy variable.

Comparieon with the result of BGD shows that this
first-order scaling is equivalent to summing up the nost
singular contributions in logarithmic approximation. As the
imaginary part is lower order in the typical logarithmic

term this first order pcaling cannot account for it properlye.

It is worth pointing out that only €y is important
in determining the sinﬁular character of gi and gé,sinee
terms proportional to g,£, and gg in ed. /4.3/ cancel the
correspondins terms in eq. /4.4/. If we take £y=0, the
result in this approximation is gi=0, £3=G> in the one-
-dimensional case and gi=0, gé=g;2.( i~ 9, mbe o0 wr )"

2wt iy
in the three-dimensional case., The different behaviour of
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¢> stems from the fact that the rero-gound-type bubble

is non=logarithmic in three dimensions. Thus for this
special choice of interaction already a first-order
renormalization is sufficient to account for the
disappearance of the phase transition when the dimen-
sionality of the system is reduced from three to onej; second

order renormalization does not modify this result.

5 Second-order renormalization

In order to improve upon the approximation of the
lagt section, let us calculate the perturbation expression
of the vertex and invariant couplings to third order.

This neans second-order corrections in the renormalizing
factors (N and consequently the self energy graphis shovn
in Fige 5 have to be considered as well., These graphs

ive a contribution

Z(u(k»"’) = T“:T:J, (ﬁal“)!‘iz"' Cj: )(‘*"““‘)(Qw% "i—v’.‘x)/ /5.1/

from which d/w/ is given as

d
Oi(w) = i_ 4 r-,-:-i-;l (a: -6‘914_‘1:)(&"—& -{th) /502/

Lven if it is taken into account here, the inaginary part

doec not give any contribution to the renormalization.
On inserting eqe /5.2/ into eqe. /3.3/, 2, turns out to |
be real %f

- L o

v
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The third-order vertex correctionc are shown
only schematically on Fige. 6. The contributions of the
diagrans of the Cooper as well as the zero-sound channel
/Tig. 6a and 6b/ consist of two typical logarithmic
integrations: to logarithmic accuracy they give %3 &kakm
and 9’5% 0w w/w, ~type contributions many of which cancel
out. Thege 6$°#L5 terns are already accounted for in
the first-order scaling; they constitute the cgf LS wlu,
terms in the expansion of the result of the last section.
These graphs, however, also yield an imaginary contribution
which is linear in @ w/w, . The graphs /Fig. Ge/
belonging to the third channel -~ which is non-~logarithmic
in lower orders /Fige. lc/ - give alpso logaritluiic
contribution in this order., The sum of the contributions

of Fig. €a, 6b and 6¢c is

e (08 —im e 2)[ 29! Sy by = 97 s 4y /524/

o 2
+ Tolot e Ty [(zaqlaz - 2‘34’32) Suz 5(18

‘(5}43 —ch:.‘h *Zﬂxﬁi _2'%:)5&5 5(’3] + C(‘ﬁ‘)l

3

vhere C/gB/ denotes the constants of order g~, which
have not been calculated in detail and are generally
conplex., Using eqs. /4.5/ and /4.6/ ﬁ}l’and ﬁfl’can Le
obtained from /5.4/, in accordance with the definition

/3.2/ as




o . ol 1 /56/
- — [} __LJ "‘il. ‘ L (S .
1 i + Iy i‘(jz, (Q“ p 3 1'!‘) + 2——-——-“_!0,. 3: (6\ w — QA%}))

t o o (@0 - 290w 299l - 2q) e g ¢+ calql.
After inscerting eqse. /5.5/, /5.6/ into eqs. /3.4/,
/3.5/ utilising eqs. /3.6/, /3.7/ and /5.2/, we retrieve
a asystem of coupled equations which has to be solved
celf-congistently. Up to second order in g we get for
the renormalizing factors

L

L , ‘
- h f o ws
=4 + r‘ tup + ;(4;" e + 11‘-‘,‘((%‘(11 11)&-“"/‘.’5‘."’{/
] | ‘1 “
;14—2;“‘"%—2"\'-&'—1,*—11‘«1%&:‘%;
‘ .
L‘ (a\—lq q;+2—(éiql'2(al}eg\—(:)—:+ /5.&)/
and therefore
! ﬁ_‘i‘ Wo 3 s
O I N R SRy
' 3
(3L:(3L+£:_Q»\- +lj_*u’- 7’::..__3__!2“  /5.10/

The imaginary parts and -the constants Ci/gz/ have been
cancelled everywhere in the renormalizing factors and

in the invariant couplings.

In this approximation the Lie equations for tlic

invariant couplings becone

> Nyl 4 9l Yo
2onglls (2l g U)o /5011/

leul




& v ' (x) ' () ‘1()
- Q»\ ¢ = ! 4 C‘h (3' _._.__x $el2
bW AL("’ Tx 9i0) ( i ) /5e12/

Conparing: thene equations it is npparent that
L =1 qud ¢ q. -4 1
g =z gl 9amage /5.13./

The same relation is valid in the first-order cecaliiise
The colution of eqe /%.11/ can be obiained only in an
implicit forme As is chovm on I'if. 7, gi/x/ has no
sinpularity and the dimensionless invarinant coupling
%:/&qy tends to the finite value -2 if x>0 for an

attractive 31< (O interaction. S/t before g, continuern

o
to be 'minportant. For attractive interaction the gsecond
term on the right hand cide of eqe /%.11/ is positive,
and wnen the acineularity dne to the first nepative term
starts to build up, it counteracts nand otopg the sinpulay
crowthh of the invariant coupling. Cwrve /a/ on FMije 7
displays the resulting osnooth behavioure. Tor repulcive
interaction the invariant coupling renains omall ond the
resuli of the cecond-order renormnlizatlion, ao chown by

curve /b/ on Fire 7, is essgentially the same as thet

of the {irst-order renornaliation.

In this approximaiion the invariant coupling and
the vertex function differ from eochi other dne to tiiie
important self enerpy contritntions. Using: cqse /HeH/
and /5.6/ and neglecting the imaginary parts, the Iile

s
1

equations for ﬁ s and [} are

4

e A St . 5. W Wi i e s wni
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9 r i «\(" W2 \ )
2 Tl = L[ 28 - A (gl - il W], /50147

1
P = oy \ "(x) ' V3
o Tylxl = L [ 3 4 A g

%:EB 1 v '
o ; /5157
- 2{}(;] Cx;_(x) +2 cz‘(!\fa,_ (<) —an,_ (x')] \

and, using eq. /5.2/, the equation determining d/x/ is

{

3 | ' \ '
5 Al = L Ll - qilaqueqlta] - ysaaes

Knowing CJ:(xro):—lno, q;(vo)*"‘“‘*‘p‘},g, and applying the weak
coupling ansumption gi/x\r « 1, 1i=1,2 , the solution of
eqse /5¢14/=/5.16/ can be Tound- for the limiting case

X=LJ/LJ)—90

w o=
PA (u) = r'z_(‘*-’) =< —":n) , /5.17/
3
() = (Z,)"

/5.18/

'qe /5¢17/ chows that the effect of the second order terms
‘ in eqse /5.14/ and /5.15/ is such as to shift the singularity
found for a finite value of w in the parquet approximation

! to (,Q:Oo

6. Conclusions

/e have investijrated a one-dimensional system of
electrons interacting via a two-particle interaction of
finite range which has been assunied to be cunstant, with

a cut-off at w,; around the Fermi energy.
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As the simplest case, only those natrix elenents of the in-
teraction have been retained whicii describe the interaction
of electrons on oppogcite gides of the Fermi surface. By the
use of renormalization group technique, we have calculated
the invariant couplings, the one-particle Green’s function
and the vertex as a function of a single eneryy variable

in two successive approxinations in order to sece if they
show any singular behaviour indicating a phase transcition

or note.

In the corresponding three-dimensional problem, both
approxinations would yield nothing more than the swa of the
Qooper-type lndder diagramse. The one-dimensional character
of the problem manifests itself in the fact that there are
nore elementary vertex diagrams depending logarithmically
on the variable w than in three dimensions. For the
interaction considered here only the elementary Cooper-type
bubble is logarithmic in the three-dimensional case, whereas
in one dimension, for large momentum transfers, the zero-—
sound-type bubble /Fig. 1b/ and in the next order, the
diagrams coming from the third channel /shown ‘on Fig. 6¢/

a3 well, have to be added on the same footing.

Our first approximation consists in taking the first
logarithmic correction in the perturbation expansion of the
vertex and invariant coupling. Inserting this into the
right-hand side of the Lie differential equation, the result
corresponds exactly to the sunmation of the parquet diagrans

in logarithmic approximation. This result was obtained by
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6 . . . .
BGD™ by solving a system of non-linear integral equations.
The first-order renornalization pgives invariant couplings
and vertex functions which become sinjular at some finite

value of the energye.

In the next step the perturbational e:xpressionsfor

the reduced vertices are calculated up to second order.
In tris order self energy contributions of the forn
qLQJQNQVLb have also to be considered, hence in this
approximation we o beyond the parquet approxination. These
corrections play an important role in reducing the lie
differential equations of the invariant coupling to the
relatively sinple form of eqs. /5.11/ and /%.12/. The
solutions of these equations ere free from the gpurious
singularity of the first approximation and tend to a
saturation value 3: [Ro=-2, qi/fmr'-'v'-i for w->0, The
equations determining [, 92 and d, on the other hand,
are nore complicated and an analytic expression for gi
would be necessary to find their solution in the whole
range of w values., By restricting ourselves to w=0,
' however, the above limiting values of gi and gé can be

used to determine (v} and d/w/ from the corresponding

Lie equations, with the result r‘(w)“w-%' and  d(w) =< W
for w->0, Taking the temperature as a variable instead
of w, it can be concluded that the finite critical

temperature Tc predicted by the first approximation is

st il s .5 N Al o 3 N i e
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shifted to zero, indicatin;: that there is no phasge

trangition at finite temperatures.

It was emphasized in Lece 3 that the improvement of
the perturbational expansion by the renormalization jroup
technique stens from the fart that the series expausion
on the right hand cide of the ILie equations progresses
in powers of the invariant couplingse. But if the invariant
coupling; becomes of the order of unity, this expansion
breaks dowvn., This is precisely what happens in the present
problen for £y < 0, so that even our second-order scaling
is not completely reliable. Nevertheless, we believe that
this app.roximation shows correctly that there is no
singularity in the invariant couplings and as a consequence
there is no phase transition at finite temperatures. The
saturation value of the invariant couplingc and the exponentis
of the vertices as well as the Green’s function arc determinced
by higher-order corrections. In this respect the second-

-order renormalization gives only qualitative results.

In calculating the effective couplings the imaginary
parts have been proper.y accounted for, and gi and géthave
proven to be real quantities. Ags far as the vertex function
and the one-particle Green’s function are concerned, however,
their imaginary contributions could not be deternined in a
consistent way in the precent framework: to do thisc higher-

~order terms need to be taken into congideration.
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The limited information provided by eqs. /5.14/ and
/5.15/ determining ‘jxﬁxg(:k.,sﬁ“'.ko.-%uﬁ Vo.%wﬁ,‘ko.%uﬂ
cecnts sufficient to indicate an instability of the sycten,
tut for calculating phiycsical quantities like conductivity
a knowlecdge of the vertex as a function of all of its
variables is needed. In principle it is possible to extend
the present calculation to many variables, the prescription
for this has been given by Bogoliubov and Shirkovlj. liever-
theless, there are certain response functions that can be
calculated directly by the renormalization group theory
using; the expregssion for the invariant coupling obtained
here., These response functions may indicate the character
of the ordering which takes place in the system at T=0.

The results of such a calculation are'feported-in the fol-

lowing paper.

Another problem is posed by retention of the interaction
natrix elements neglected in the present work. These are
processes in which both incoming electrons are on the sanme
cide of the Fermi surface, however they do not alter the
recult that there is no phase transition at finite

temperatures, they only modify the ground state of the

e g B g P e

systerns The effect of these processes will be investigated

in a later publication.
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Firure captions

Fige leo Second order vertex diagramse The numbers 1, 2, 3

Pige

Fi"o

FiL,o

I“i&'o

Pige

3.

4o

He

o

Te

and 4 stand for kl’“ﬁ’ L kz,fdb, I k3,td3, Y
and k4, uﬁ, S respectively. a./ Cooper-type bubble,
be/ zero-sound-type bubble, c./ second-order diagran

of the "third channel®.

General vertex diagram showing our special choice

of variables on the four legs.

Diagrammatic representation of the two interaction

matrix elements 61 and &o considered in eqe. /2.7/.

Second-order vertex diagramse a./ Cooper-type

bubble diagrams, b./ zero-sound=type bubble dia;ranis.
Second~order self energy diaprems.

Third-order vertex diapgrams a./ in the Cooper
channel, b./ in the zero-sound channel and
ce/ in the third channel. Each interaction point

can represent either £) OF Goe

The invariant coupling constant gi as a function
of Z=w oy [a/ for attractive i /b/ for repulcive
Eye The dotted line shows the result of first

order renormalizatione.
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