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ABSTRACT 

A one-dimensional system of electrons interacting via a BCS-type 
interaction is investigated, by renormalization group technique, in two 
successive approximations at T = 0, keeping only a single energy variable 
u>. The first approximation is equivalent to the summation of leading loga
rithmic terms carried out by Bychkov et al. and correspondingly the vertex 
function displays a singularity at a finite value of w . The second ap
proximation accounts for the noxt leading logarithmic terms as well, and 
by this means the singularity is shown to be pushed down to ш = О . Due 
to important self energy contributions, however, the invariant couplings 
behave differently and tend to a saturation value at и = 0. 

РЕЗЮМЕ 

Методом ренормализационной группы была исследована одномерная взаимодействующая система электронов при Т * 0°К температуре, в двух последовательных приближениях с учётом только одного параметра энергии ы и взаимодействия типа БКШ. Первое приближение оказалось эквивалентным приближением Бычкова - Горькова - ДБЯЛОШИНСКОГО, основанным на суммировании старших логарифмических членов; следовательно, вершинная функция при конечном значении ш имеет сингулярность. Во втором приближении учитываются и непосредственно следующие логарифмические члены. Показано, что их учет приведет к перемещению сингулярности к «»о . Однако, из-за существенных собственно энергетических поправок инвариантные постоянные связи имеют другое поведение: при ш=о они имеют ограниченный максимум. 

KIVONAT 
Egydimenziós, kölcsönható elektron-gáz rendszert vizsgáltunk BCS 

tipusu kölcsönhatás esetén két egymásutáni közelítésben zérus hőmérsékleten 
a renormálásj csoport módszer segítségével, egyetlen energiaváltozóra szo-
ritkozva. Az első közelítés ekvivalensnek bizonyult a vezető logaritmikus 
tagok Bicskov, Gorkov és Dzjalosinözkij által véghezvitt felösszegezésével; 
következésképpen a vertex függvény egy véges ш értéknél szinguláris vi
selkedést mutat. A második közelítés az eggyel alacsonyabb rendU logarit
mikus tagokról is számot ad. Megmutattuk, hogy ilyen módon a szingularitás 
iá » O-ra tolódott le. Lényeges sajátenergiás járulékok következtében az in
variáns csatolások ettől eltérő viselkedésüek; ш = o-nál véges értékű 
maximumuk van. 

• л З Ч С Я К С 
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1. Introduction 

The article by Little concerning the possibility 
of superconductivity at high temperatures aroused 
considerable interest in investigating one-dimensional 
metr.llic systems. It is well known that no phase exhibiting 
long-range order can exist in one dimension at finite 

2 temperatures provided the forces are of short range , thus 
3 the theorem does not apply to. the BCS reduced Harailtonian , 

where the interaction is of infinite range. A more realistic 
approach to the problem of superconducting type phase 
transitions is to use the Ginzburg-Landau* functional for 
the free energy. This has been done by Rice , who showed 
that, if the existence of superconducting order below 
some temperature T is supposed, the fluctuations in the 
phase of the order parameter act in such a way that the 
renorraalized equilibrium value of the order parameter 
becomes zero in one and two dimensions. The applicability 
of the Binzburg-Landau theory in one dimension, however, 
is itself open to question . Using quite general arguments, 
the Bogoliubov inequality and the f sum-rule, Hohenberg' 
has obtained the same result as Rices the absence of 
superconducting type ODLRO in one- and two-dimensional 
systems. 

Bychkov, Gorkov and Dzyaloshinsky /BGD in the fol
lowing/, on the other hand, reached a different conclusion 
when they investigated possible singular behaviour of the 
vertex part in a one-dimensional ву^ет of electrons 
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interacting via an interaction of BC3 type but of finite 
range« Besides the Cooper diagrams, BGD took into account 
zero-sound bubbles, too, both of which are logarithmic 
in one dimension. The vertex function resulting from the 
solution of the hierarchy of parquet equations pointed to 
the existence of a critical temperature in essentially 
the same manner 'as in the BCS case. 

9 In a recent paper Dzyaloshinsky and Larkin emphasize, 
hov/ever, that the pole of the scattering amplitude obtained 
by BGD in the parquet approximation does not indicate a 
phase transition at some finite temperature; it shows only 
that at low temperatures the effective interaction becomes 
strong and the parquet approximation is no longer applicable, 

A comparable situation pertains in the Kondo problem °, 
where Abrikosov's solution of the parquet equations leads 
to a scattering aniplitude which diverges at the Kondo energy 

12 /temperature/» Fowler and Zawadowski , using the renor-
13 realisation group theory , have presented an improved 

treatment of this problem analogous to the self consistent 
treatment of the X-ray problem by Noaieres et al. Fowler 
and Zawadowoki's second-order scaling approximation goes 
beyond the leading logarithmic approximation of Abrikosov 
by accounting for the next leading logarithmic terms by 
means of the Lie differential equation of the renormaliza-
tion group. The resulting scattering amplitude in free fron 
the non-physical singularity. A similar result has been 

IS obtained by Abrilcosov and Jíigdal . 
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It can be expected therefore that an analogous 
improved treatment of a one^dimensional system of electrons 
interacting via a BCi! type /but finite-ran^e/ interaction 
would remove the BGD-singularity at finite temperatures« 
It is the aim of the precent paper to-show that thin really 
is the case. 

In Sec«2 v/e describe the model. The interaction 
matrix elements are specified in ouch a way that the 
interaction Ilnmiltonian contains only two independent 
coupling constants. The particular choice of the frequency 
and momentum variables for which the vertices will be 
calculated is also riven here« In Sec«3 a survey of the 
renormalization group technique is presented and its most 
important ingredients the invariant coup-iingo are defined 
and discussed. 

oec«4 is devoted to the calculation of the two 
invariant couplings and the vertex in leading logarithmic 
approximation /first order renormalization/« The result 
obtained corresponds exactly to that of BGD /see eq« (ll) 
of their paper/« Second-order renormalisation is carried 
out in Sec« 5» By collecting (flnw/uj, type contributions 
to the vertex and consistently g ln<-V<-4p type terms in the 
self energy, the invariant couplings are shown to satisfy 
differential equations with solutions which exhibit no 
singularity as a function of ̂  and behave just in the 
same way as the corresponding quantity does in the Kondo 
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problem. On calculating the imaginary parts of the 
perturbational expressions, too, it turns out that these 
play no role whatsoever in the disappearance of the 
spurious singularity, at least in со far as the invariant 
couplings are concerned. These latterare all real. Know
ing the invariant couplings as functions of a scaling 
energy, the vertex function and the one-particle Green's 
function are then determined from the corresponding Lie 
equation in an approximation which, however, does not s 
account for the imaginary parts. It is found that the 
solutions for oo-*o show a power law behaviour as r(**>)—uj 
скъек C M ^ G ' Í U Ы', where in our approximation oCs 3/2 and 
ß = 3/4» Thus second-order renormalisation shifts the 
infinite growth of P, which occurs at a finite value of u> 
in the parquet approximation, to u>=0. \/hen the temperature J 
is taken as variable, instead of to t this shows the j 
tendency of an ordered phase to form only at T=0, as 
would be expected. Thic point will be examined more closely \ 

in the second paper of this series, in which various res- ' } 
Ь <-* 

ponse functions will be calculated in the framework of the <; 
renormalitation group technique. 

A discussion of our recults is given in Gee. 6. 
I 

: 
2. The model 

Let us consider a one dimensional system of electrons 
I 

described by the Hamiltonian j 
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H Q = > £, С* С / 2 . 2 / 
W e r 

U^ ' ÍL Z ^k< w - k ' M < « <« <Чу с^, / 2 . з / 

where c k o f is the creation operator of an electron with 
momentum к and opin cX ; <fk is I.lie kinetic energy of 
the electron; and Qfk-,, k«, ^3» kz) *G **ie interaction 
matrix element, which is restricted to a narrow energy 
raiv;e - characterized by the cut-off energy tOr -in the 
vicinity of the Fermi energy. 

The vertex Q p y j (ki» ̂ 1» k 2 , c U 2 * k3» c°3» k4>4;) 
depends on three independent momenta and three independent 
frequencies, which are chosen as usual to be k,+k9, 

X 4-

k~-k-,t кд-k-i and L^>-. + Lo0f со, -^i» L°A - ^ /k-+kp=s 
кк^+к4; ^ +1^- u^ +^/. 

It v/ill be seen later that for our purposes the 
vertex can be calculated for a special choice of the 
variables. We want to restrict our calculation to a single 
frequency variable to and fix the momentum variables so 
that the most singular terms are picked up. This will be 
done ao follows. 

If only the second-order vertex corrections are 
taken into account, the three diagrams shown in Pi;> 1 
can be drawn /see Ref. 6/. Fig. la is the Cooper-
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tvpe bubble, it depends on ^ + l c 2 a n d ^l*^ i n a log"" 
arithmic fashion provided these variables are small 
compared with wP • Fig. lb shows the zero-sound-
type bubble, which depends on k^-kj. a n d ^"^i 

and also shows a logarithmic dependence if jk^-k-jH 2k Q 

/leading to a doubling of the period/ and ^ - ^ ^ 0. 
If the variables are chosen so that the above rela
tions are fulfilled and also the momenta lie close 
to the Fermi momentum, the k̂ -k-̂  ** ° a n d t n e con
tribution of Fig. 1c is negligible. Accordingly we 
shall choose the momentum variables of the vertex 

to Ъе к 1 в-к 0» ^ ' V kyko* k4 s"" ko ^ ko i s t h e - e r u i 

momentum/. ) moreover, the energies on all four 1е£;з of 
the vertex will be of the sane order of magnitude, 
e»r> c°i e r *° / *-«!.*--£t-> , uj £ i и , to., -- i w can bo 
taken/see Fi(> 2/. 

The restriction to a single variable in calculating; 
the vertex in oufficient if only the invariant coupling 
is to be determined. It doeo not uatter whether his 
variable io energy or momentum. ".,'o work here with a 
rinrle energy variablef but exactly the сшле resultо 
would be obtained by takinr, all the energies equal 
to zero and keeping a cingle momentum valuable q with 
the choice k-j=-ko> k 2=k Q+q, k^sk -q, к.я-к »-2q. In belli 
caceo the same number of typical lo; ;ariilj.pc ten:и appear. 



- 7 -

The generalization to more variables doec not encounter 
any basic difficulties, though the actual calculation 
becomes much more complicated, especially in higher 
ordere. 

Forgetting Uiuklapp processes, the vertices are 
singular only when they describe the scattering of an 
electron with momentum near to +k on another electron 

о 
with momentum near to -k • '»'"hen both incoming electrons 
have momenta near to +k or -k , the contribution of 

о о 
these vertices is negligible. Those processes will 
therefore be neglected from the interaction in Eq. /2.3/, 
in which both k, and kp and similarly k̂  and k. are in 
the vicinity of +k^ or -k . Only the following interaction 
matrix elements will be retained: 

i« 
« • ^ 1 - Л » Л 5 ' к ' . ) = < 

, . / • 

or- - v„ - къ &. k^ к, , ! - i c e 4 [^ ttKii +1с 0-к-,<.к, (к, £^к.*1г в 

(IM) 
I - к э - к » £ W,,V 4£ -к„+к, ЛАН 4-k.-k, i к ь к , £ *.We-»kb 

[or -k^-kj^W, kjfc -k^k» а*Л ^k.-k»«, к,,кц£4к.*к» 

where k3 is a cut-off in momentum space corresponding to 
the cut-off CJD in energy representation. 

/ The effect of Umklapp processes has been investigated 
q 

in the parquet approximation by Dzynloshincky and Larkirr ; 

ЛгмЩМЯ»*1 *«Л> 



| § И * * ^ Й $ ^ Й « ( £ Ч # -—- ','"-*»*st-*4 -*--.«-«tsaÉ*e*if, 

ft 

- 8 -

an improved approximation io to be presented by one 

of the present authors in a subsequent publication»/ 

With this special choice of the matrix elements 

the elementary vertex is the following 

Two special cases are worth mentioning here. g-î gô k 
i 

corresponds to the Little interaction investigated £y 

BGI> in Sec. II of their paper« The choice g2«0 leads to. 

the phonoa-mediated electron-electron interaction of 

BCS: g, describes processes in which the momentum transfer 

is equal to 2k Q, and it is this matrix element which is 

large and negative in the case of electron-phonon 

interaction» Prom tue point of viev/ of superconducting-

-type behaviour, then, g, would be expected to represent 

the nost important part of the matrix elements. The 

results of this and the following paper bear out this 

expectation. One important point worth noting here is 

that even if we v/anted to restrict our calculation to 

the special cases g-̂ egĝ g or g-^0, go**0 only, it would 

still have been necessary to introduce two different 

coupling constants at the beginning and to make the 

specialization only at the end of the calculation. The 

reason is that in both cases higher-order contributions 

to Г yield, in general, a spin structure 

» * ( i , y * Ä i \ ä*y hi " А °*J °|4jf f / 2 . 6 / 

1 
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with Г\ ^ Гр, different from that of the elementary 
vertex, and therefore, as will be seen, the tv;o couplings 
are renormalized differently. Later on, when we use 
perturbational expressions of Г1 on the right-hand side 
of the Lie equation, the prescription is to replace all 
bare coupling constants by the invariant ones, which can 
only be done properly if it is assumed already from 
the beginning that g^g« a n (* is different from zero. 

The Hamiltonian /2.3/ can be rewritten, taking into 
account the above restrictions on the interaction matrix 
elements, in the form 

н„ - í 2 «C 4t aM v и- ь z «С С К, «ч-. / 2 ' 7 / 

where at denotes the creation operator for electrons 
with momenta lying near to +k and bt ß stands for the 

creation operator of electrons with momenta near to -k • 

Diagrammatically these interactions will be represented 

as shown on Fi«*. 3» The solid and dashed lines stand 

for the Green's functions of electrons with momenta near 

+k Q and -k Q, respectively. The two Green's functions 

actually have the same form 

Q t ( k , u ) - G C * W ) - u , ^ , ^ ^ ; ^ ' /2.8/ 

where $ W m £ W - £ . s V W ~ W e ) is the kinetic energy relative 

to the Permi energy. 



- 10 -

3. Survey of the renormalization group technique 

The concept of the renorinnlization group was 
introduced in quantum field theory to eliminate divergences. 
These divergences can be compensated by adding counter 
ter.ns to the Lagrangian, which is equivalent to a 
multiplicative renormalization of the Green's functions, 
vertices and charges, v/ith the multiplicative renormal icing-
factors forming a continuous group. Considering this group, 
the arbitrariness in the choice of multiplicative factors 
is in turn equivalent to the introduction of new variables 
in the Green's functions and vertices, so that the 
multiplicative renormalization is carried out by changing 
these variables. Л disadvantage of this method is that 
there is some arbitrariness in the choice of the functions 
with an increased number of variables; the physical Green's 
functions and vertices correspond to a particular value 
of the additional variables» 

An analogous multiplicative rtnormalization procedure 
12 

was performed by Fowler and Zawadowski for the Kondo 
problem. It would be possible to carry out a similar 
treatment in the present problem, too, but instead, 
we shall give a simplified, though less general formulation* 
Looking at the low order perturbational expression for 
the Green's function and vertices, it can be seen that, by 
changing the cut-off energy us* to u>' and simultaneously 
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the coupling constants in an appropriate Manner, the 
Green's function and vertices ore multiplied by constants, 
independent of the frequency variabler« This nenne that 
the cut-off energy nerves ал a natural scaling pa2\aneter, 
at least in low orders of the perturbational expansion« 
Tim suggestion that the cut-off energy is v. good scaling 
parameter in similar logarithmic probier.а cones froi* 
Anderson , who lined euch a scaling in a. very simrlo v/â , 
without applying; the rcnoi"'.alisation ;;rou.p technique, 
in the Koudo problen. The drawback of Anderson's derivation 
of scaling laws, though, is that the effective coupling 
depend с not just on the scaling energy but on other energy 
and momentum variables, too» T..e believe that, if scaling 
indeed exists, the properly defined invariant coupling 
does not depend on the energy variables of the vertices 
by which it is itself defined, iieverthelecs, as this 
frequency independence was checked only for low order 
vertices, the justification of our procedure needs further 
investigation. 

Supposing nov/ that scaling really exists, in the 
present problem, i.e. a simultaneous and correlated change 
of the cut-off energy and coupling constants leads to a 
multiplicative renornialization of the total Green's 
function and total vertices, the renormalizing factors 
should be real and independent of frequencies. Thei^efore 
in determining them via the Green's function and vertices 

a very simple choice of variables, the one uc::'.-:.vibed in 



- 12 -

tie previous section, can be made* 

It should be emphasised that the existence of scalin,; 
is an assumption and does not hold a priori for any 
problem. But one can check that in the present probler. 
the saiic results are obtained if one (;оез back to the 
more sophisticated formulation of the renomalization 
(;roup technique, closely following e.£> the prescript.!ons 
of Kef. 13. 

How let uo write the Green's function and vertex 
function in the following way: 

,-*_* ***** 

Chauvins to-^ to cJj, and, simultaneously, the couplings 

C-. and ft« ! '° G± a n f ^ £p ' r e s r c c t i v e l y , mul t ip l ica t ive 

renormalization means that 

^ U S j • 1<* » ^ ) * ^ P< ( ^ - V' 4*' i 

P / ° * Ч , и p { £ - i 

/3.1/ 

/3.2/ 

/3.3/ 

/3.4/ 

/3.5/ 

/3.0/ 
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where according to our assumption the factors z. are real 
and independent of со • 

By requiring the invariance of Dyson's equation under 
transformations /3.3/-/3.6/, which means that G has to 
transform in the saiae way as G Г" G G G T G , v/e get 

-i -i 
- ~7 ~7 "* - У 7 /3.7/ 

i.e. only three of the z1 s are indej)endent. Eq. /3*7/ ensures 
the equivalence of the new and original states. 

The z*s can be deterriined from eqs. /3.3/-/3.5/ by 
taking ui e to» . ^e <je* 

al 'o 

~^. л ~" — — — _ _ _ _ _ _ — 

d. < i , <\\ . «3Í) ' / 3 - е / 
.—- i 

1 *{~* • 2i_Jkl / 3 # 9 / 
/_2_ 

M t . f ^ 
~7 -

^ 1 

*-s •"x"' 
/3.1o/ 

Thus, usin- eqs. /3.7/-/3.1o/, eq. /3.6/ yields 

1 / ^->x <>: = <h _ J _ _ L L ^ _ _ L _rdi___i___) i H , /злх/ 
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Ф Tho coupling constants gí and g£ are to be determined by 

'.ho self-consistent solution of eq» /3«11/. They specify 

how the couplings should be varied simultaneously with the 
о 

change of the energy scale. As the combination с P d*" is clearly 
invariant under transformations /3»3/-/3»6/» the <ji will be 
called invariant couplings in ivhnt follows. They art: 
sometimes also called invariant diaries, as the concept с one о 
originally from quantum electrodynamics. 

The multiplicative property of the Green's function, 
vortex and other physical quantities /e.g. certain response 
functions/ - which is supposed to hold in our case but does 
not necessarily hold in general and has to be proved in each 
case - allows one to improve upon perturbation theoretical 
results for thece quantities by use of the Lie equation of 
the group. Thus, for any quantity obeying; the condition 

A Í Г7; - V . «U 1 я ~ 'A i ~ . «J,. «J. ) , / з л 2 / 

a differential equation of the form 

x s \-i 

can be derived, where x = u ) / u s • Natura l ly , eq# / 3 . 1 3 / 

applies to the invar iant couplings as we l l . 

It must be stressed again tha t the invar iant coupling 

depends only on w i / и ь • when i t appears in a Tde equation, 

MJJ.U; replaced by the frequency valuable , as a function of 
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which the quantity Л io to be determined. It is after this 
replacement only, that the invariant coupling becomes 
frequency dependent* It is because in practical calculations 
we always have to use a Lie equation, and hence a formally 
frequency dependent invariant coupling, that this procedure 
is often quoted in the literature as frequency-dependent 
scalin;;« 

The prescription of the renormalization croup technique 
is to calculate the right hand side of eq. /3»13/ by pertur
bation theory for 1ж> = ы л / J =1/. The resulting differential 
equation will produce the quantity A in the v/hole energy 
range» This perturbation series goes in powers of the 
invariant coupling, so that if the invariant coupling is 
small for an arbitrary change of the scaling energy, the 
quantity determined from the solution of the Lie equation 
using a few terms of the perturbation series will represent 
a good approximation in the whole energy range. If, however, 
the invariant coupling increases and becomes of the order 
of unity, while the scaling energy goes towards lower 
energies, a perturbation expansion of the right hand side 
of the Lie equation breaks down and only qualitative recultn 
can be obtained. 

Let us notice that the most important quantity of the 
theory is the invariant coupling, because it enters the 
right hand side of eq. /3#13/ for any physical quantity. 
Thus, before any other quantities are determined., first the 
invariant coupling has to be known. 
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м» Fir at" vorder r e n o m a l i nation 

The Lie equation for the invar iant couplin/;:: f\* and 

;-Д ara 

"Л -ч -

Ля v/e have already mentioned, the r ißht hand eideu of then* 

equationo can Ъе calculated by me&nr; of per turbat ion 

theory, provided the invariant c o u p l i n g are erial l . In the 

present cection the f i r c t - o r d e r correct iono to d, i\ and l\ 

/cce eqo. / 3 . 1 / and /3*2//v.'ill be considered» 

The f i r s t - o r d e r self energy con t r ibu t ion , bein/; 

independent of OJ, can be incorporated in to the chemical 

potent ia l and thur. d / u i / s l . I t foil owe from eqn. /3#11/ 

tha t 

The diagrams contr ibut ing to f1 in the second ordor /they 

(;ive the f i r s t - o r d e r correction to Г1 / are ohov.n in Fi(>/1# 

Kip. 4a shows the Cooper-type contr ibut ions to the vertex 

.vhUe Fig. 4b gives the zero-sound type diagrams« The 

respective contr ibut ions a r e : 

•-) lb U- S; - £ ) [ l v v ^ á , - ц + ,,;) ^ л . j , / ' . . 3 / 

»•.I T™ 1 и - о - т ) [ ( Ц 1 - Ц ^ 1 <5 ^ á 4.cj| í K i < »ftf 
/ 4 . 1 / 
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Thus up to first order, ч and i\ are given by the 
following expressions: 

Г, ы . L 4- 3L[U± - i - ) , /4 .5/ 

1 г. 1 2.TÍU- < ^ V u>D /- / 4 . 6 / 

Prora eqs. /4*2/, using eqs« /4*5/ and /4*6/ and expanding 
the denominators up to first order, the perturbational 
exprescions 

/4.7/ 

* - ^ + & «- 15 • /4.8/ 

are obtained. These quantities are real, as the imaginary 
parts appearing in the numerator and denominator of eq. 
/4.2/ cancel each other. Using eqs. /4.7/ and /4*8/ to 
calculate the right hand sides of eq. /4.1/, two simple 
differential equations result: 

§ 7 **. cj, (x, cj«, <jj . JL -i. «jlU.cj^cjJ y /4.9/ 

r - ^ q L ( x , o „ q J « JL_L ^ 1 ( у ' ^ > ^ ' /4.Ю/ 

which solve to yield 

-a. tf < * V 
' /A»11/ 

WO" 

«Jul«)« «}i.-±9« + i * /4.12/ 
1 - J i < TCtf 
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oimilar resultз can be obtained for the vertices in the 
two spin Channels provided we neglect the imaginary partо 
in eqs« /4*5/ and /4«6/: 

г ,ы«^ы , rvuN^u /4ЛЗ/ 

Talcing £,e22=ß /Little interaction/ our results are 
exactly the came an those obtained by BGD in the corres

ponding special cane where their variables 5 and ъ coincide-
Actually the more general case/i.e. a vertex with two 
energy variables/ can also be obtained in the framework 
of the present theory by treating two Lie equations for 
P 4 and Г г , one for each energy variable. 

Comparison with the result of BGD shows that this 
first-order scaling is equivalent to summing up the nost 
singular contributions in logarithmic approximation. Ac the 
imaginary part is lower order in the typical logarithmic 
terra this first order scaling cannot account for it properly, 

It is worth pointing out that only g-, is important 
in determining the singular character of gi and g£,since 
terms proportional to g-jCp and gp * n eQ» /4*3/ cancel the 

corresponding terms in eq. /4»4/# If we take £,«0, the 

result in this approximation is g£=0, gA^ß? i n t n e o n e " 

•dimensional case and g|=0, g£=g2 (l - «* .2̂ 1 L%, ~ J 

in the three-dimensional case. The different behaviour of 
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сЛ stems from the fact that the :его-sound-type bubble 
is non-logarithmic in three dimensions. Thus for this 
special choice of interaction already a first-order 
renormalization is sufficient to account for the 
disappearance of the phase transition when the dimen
sionality of the system is reduced from three to one; second 
order renormalization does not modify this result« 

5. Second-order renormaliaation 

In order to improve upon the approximation of the 
last section, let us calculate the perturbation expression 
of the vertex and invariant couplings to third order. 
This means second-order corrections in the renorraalizing 
factors z. and consequently the self energy graphs shovm 
in Fig. 5 have to be considered as well« These staphs 
give a contribution 

from which d/u>/ is given as 

Л«) - i - т п Ы ^ - ^ ^ К ^ - Ы - / 5 , 2 / 

Even if it is taken into account here, the imaginary part 
doec not give any contribution to the renormalization. 
On inserting eq. /5*2/ into eq. /3»3/, z-, turns out to 
be real 

z ^ = i + W^(<£-Wt.+<&) U ZL «"•• /5.3/ 
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The third-order vertex corrections are shown 
only schematically on Fig. 6. Tlie contributions of the 
dia^ramr; of the Cooper as well ac the zero-sound channel 
/Fig. 6a and 6b/ consist of two typical logarithmic 
integrations: to logarithmic accuracy they give оь (M_ W^ 

and Qî Jj &*• ^/^j) -type contributions many of which cancel 
out. These ^ чАо, terms are already accounted for in 
the first-order scaling; they constitute the QJ &. ^/i~>b 

terms in the expansion of the result of the last section. 
These graphs, however, also yield an imaginary contribution 
which is linear in £ц. UJ/WJ, . The graphs /Pig« Gc/ 
belonging to the third channel - which is non~log;aritlmiic 
in lower orders /Pig« lc/ - give also logaritlinic 
contribution in this order. The sum of the contributions 
of Pig. 6a,-6b and 6c is 

^iv(^-£; - ^ ^ Í J J L H ' ^ y ^ - ̂  ^ Í f5tt ] 
/5Л/ 

^I^4> ^ ^ [ ( H V - *«i«<3̂  <ЦЛ я °l»* 

3 3 
where C/g-y denotes the constants of order g , which 
have not been calculated in detail and are generally 
complex. Using eqs. /4.5/ and /4*6/ Г\ and f\ can be 
obtained from /5#4/, in accordance v/ith the definition 
/3.2/ as 
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f\tl' - 1 «• #t 1 « ^ - * * ) + 3L ( ^ £ - i T < L S ) ,5.5, 

+ dt?b*-<j')«~£ * c,(Vi, 
/5.6/ 

+ сто |,(У-ЧЧ -4<il-4^-Z, + ct, 1). 
After inserting eqo. /5*5/t /5.6/ into eqe. /3*4/, 

/3.5/ utilising eqo. /3.6/, /3.7/ and /5.2/, we retrieve 
a system of coupled equations which has to be solved 
celf-consistently. Up to second order in с v:e ret for 
the renormalizing factors 

- ц?г i h ' - Ч Ч + Ч * -H) ^ / 5 ' 8 / 

and therefore 

4 • * + # «-a * £ ^ £ - j ^ Л-Й*- /5.9/ 

* = * + j£ ̂  *ifb^á + Á ^ / 5 Л о / 

The imaginary parts and -the constants C./g / have been 
cancelled everywhere in the renornalizing factors and 
in the invariant couplings. 

In this approximation the Lie equations for the 
invariant couplings become 

A ^ CL' Ы - x ( iii» + J^ii!) /'j.ll/ 
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g iu «jl (x). ±- Ä ( i ^ 1

 + 3^4) / D . 1 2 / 

Comparing: ther;e equation::; i t i c apparent flia t 

yl 1*1 = T <з1(<)+ Ч » - " * ! ' / r 3 . i 3 . / 

The сшпе relation in valid in the first-order scn.1in;> 
The solution of eq# /^•11/ can be obtained only in ач 
implicit form, Aß is nhovvn on Fi,<> 7, гА/х/ has no 
singularity and the dimension!ess invariant coupling 
î/V<J" tends to the finite value -?. if x->0 for an 
attractive ;/;-, < 0 interaction. Ac before i? continues 
to be unimportant» For attractive interaction the second 
term on the ripht hand side of eq» /5» 11/ in positive, 
and when the sinrularity duo to the first negative term 
starts to build ui), it counteract к and otop3 the singular 
growth of the invariant coupling;» Curve /a/ on Fit> 7 
displays the resultim-; smooth behavtoui*» For repulsive 
interaction the invariant coupling remains small and the 
result of the second -order renormalization, an shown by 
curve /b/ on Fi/> 7, is essentially the some as that 
of the firrjt-ordor renornali^ation. 

In thin approximation the invariant coupling and 
the vertex function differ from each other due to the 
important self ener/;y contributions, Hein*: eqs. /b*b/ 

and Л . 6 / and neglecting the imaginary pnrt3f the Lie 
equations for fj , and fl are 
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£ и г. w - ± С ай? - i b ^ W ^ ' ) ] , /SM/ 
\ l 

/5.15/ 
- z ^ , n i W 4 2 ^ w < » i I u , " 1 ^ l , c , / i • 

and,uning en. /5.2/, the equation determining d/x/ is 

— Й ^ Л Ы - 7i7J7i[^lU)-<j,'U)^(*)^cj^U)]. /5.16/ 

Knowing q'^ob'bj, ̂ [U'oH-̂ ^̂ 'jt-r̂ and applying* the weak 
coupling ansumption g./xvr 4r 1, i=l,2 , the solution of 
eqs. /5»14/-/5»1б/ can be found" for the limiting case 
X - UJ/UÍJ, - ^ О 

4 *' ' /5.17/ 

V » ; /5.18/ 

Kq. /5.17/ shows that the effect of the second order terms 
in eqs* /5.14/ and /5.15/ is such as to shift the singularity 
found for a finite value of из in the parquet approximation 
to co=0. 

6. Conclusions 

Y/e have investigated a one-dimensional system of 
electrons interacting via a two-particle interaction of 
finite range which has been aosuiied to be constant, with 
a cut-off at tô  around the Fermi energy. 
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As the simplest cane, only those matrix elements of the in
teraction have been retained which describe the interaction 
of electrons on opposite sides of the Fermi surface. By the 
use of renormalisation croup technique, v/e have calculated 
the invariant couplings, the one-particle Green's function 
and the vertex as a function of a .single energy variable 
in two successive approximations in order to see if they 
show any singular behaviour indicating a phase transition 
or not. 

In the corresponding three-dimensional problem, both 
approximations would yield nothing more than the sum of the 
Oooper-type ladder diagrams. The one-dimensional character 
of the problem manifests itself in the fact that there are 
more elementary vertex diagrams depending logarithmically 
on the variable UJ than in three dimensions» Por the 
interaction considered here only the elementary Cooper-type 
bubble is logarithmic in the three-dimensional case, whereas 
in one dimension, for large momentum transfers, the zero— 
sound-type bubble /Fig. lb/ and in the next order, the 
diagrams coming from the third channel /shown on Fig. 6c/ 
аз well, have to be added on the same footing. 

Our first approximation consists in taking the first 
logarithmic correction in the perturbation expansion of the 
vertex and invariant coupling« Inserting this into the 
right-hand side of the Lie differential equation, the result 
corresponds exactly to the summation of the parquet diagrams 
in logarithmic approximation. This result was obtained by 
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BGD by solving a system of non-linear integral equations« 
The first-order renormalization gives invariant couplings 
and vertex functions which become singular at some finite 
value of the energy* 

In the ne::t step the perturbational expressions for 
the reduced vertices are calculated up to second order. 
In tMs order self energy contributions of the form 
q r со £*.új/tó, have also to be considered, hence in this 
approximation we go beyond the parquet approximation» Tliese 

corrections play an important role in reducing the Lie 

differential equations of the invariant coupling to the 

relatively simple form of eqs. /5«11/ and /5.12/. The 

solutions of these equations are free from the spurious 

singularity of the first approximation and tend to a 

saturation value й« /it\r «-2., ^r/V*-«-! for co-*o. The 
equations determining Г-,, P« and d, on the other hand, 
are more complicated and an analytic expression for gi 
would be necessary to find their solution in the v/hole 
range of со values. By restricting ourselves to u>»0, 
however, the above limiting values of g£ and g£ can be 
used to determine P M and d/u>/ from the corresponding 
Lie equations, with the result P(u»)**uT and d.(«o) e* u* ц 

for io-*CU Taking the temperature as a variable instead 
of to, it can be concluded that the finite critical 
temperature T predicted by the first approximation is 

с 
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shifted to zero, indicating that there is no phase 
transition at finite temperatures« 

It v/аз emphasized in ;Jec. 3 that the improvement of 
the perturbational expansion by the renormal iz at ion group 
technique stems fron the fact that the series expansion 
on the right hand side of the Lie equations progresses 
in powers of the invariant couplings« But if the invariant 
coupling becomes of the order of unity, this expansion 
breaks down* This is precisely what happens in the present 
problem for g-, < 0, so that even our second-order scaling 
is not completely reliable« Nevertheless, we believe that 
this approximation shows correctly that there is no 
singularity in the invariant couplings and as a consequence 
there is no phase transition at finite temperatures« The 
saturation value of the invariant couplings and the exponents 
of the vertices as well as the Green's function are determined 
by higher-order corrections« In this respect the second-
-order renormalization gives only qualitative results» 

In calculating the effective couplings the imaginary 
parts have been properly accounted for, and gi and gA have 
proven to be real quantities» As far as the vertex function 
and the one-particle Green's function are concerned, however, 
their imaginary contributions could not be determined in a 
consistent way in the present framework: to do this higher-
-order terms need to be taken into consideration« 
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The limited information provided by eqs. /5*14/ and 
/?. 15/ determining П<^<$ l-k-, V l U > • ^ . " i ^', U o » t °, * k«. ? °) 
sew is sufficient to indicate an instability of the system, 
but for calculating physical quantities like conductivity 
a knowledge of the vertex as a function of all of its 
variables is needed« In principle it is possible to extend 
the present calculation to many variables, the prescription 

13 
for this has been given by Bogoliubov and Shirkov • never
theless, there are certain response functions that can be 
calculated directly by the renormalization croup theory 
using the expression for the invariant coupling obtained 
here« These response functions may indicate the character 
of the ordering which takes place in the system at T=0. 
The results of such a calculation are reported- in the fol
io wine paper« 

Another problem is posed by retention of the interaction 
r.iatrix elements neglected in the present work« These are 
processes in which both incoming electrons are on the same 
side of the Permi surface, hov/ever they do not alter the 
result that there is no phase transition at finite 
temperatures, they only modify the ground state of the 
system« The effect of these processes will be investigated 
in a later publication« 
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Figure captions 

Pig. 1. Second order vertex diagrams« The numbers 1, 2, 3 
and 4 stand for k,,uif o( ; kpt

 fop» ß » ̂ 3» ̂ 31 # 
and k-, ur , о respectively, a./ Cooper-type bubble, 
b./ zero-sound-type bubble, c / second-order diagrai.i 
of the "third channel". 

Pig. 2. General vertex diagram showing our special choice 
of variables on the four legs. 

Pig. 3« Diagrammatic representation of the two interaction 
matrix elements g-, and g« considered in eq. /2.7/. 

Pig. 4# oecond-order vertex diagrams« a./ Cooper-type 
bubble diagrams, b./ zero-sound-type bubble diagram Si 

Pig. 5. Second-order self energy diagrams. 

Pig. 6. Third-order vertex diagrams a./ in the Cooper 
channel, b./ in the zero-sound channel and 
c / in the third channel. Each interaction point 
can represent either g, or g 2. 

Pig. 7. The invariant coupling constant gí ao a function 
of x=u5/(Oj> /a/ for attractive g_f /b/ for repulsive 
g,» The dotted line shows the result of first 
order renormalization« 
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